JPH0218360A - Silicon nitride-base ceramics material - Google Patents

Silicon nitride-base ceramics material

Info

Publication number
JPH0218360A
JPH0218360A JP63169916A JP16991688A JPH0218360A JP H0218360 A JPH0218360 A JP H0218360A JP 63169916 A JP63169916 A JP 63169916A JP 16991688 A JP16991688 A JP 16991688A JP H0218360 A JPH0218360 A JP H0218360A
Authority
JP
Japan
Prior art keywords
molding
silicon nitride
sintering
compsn
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63169916A
Other languages
Japanese (ja)
Inventor
Takao Nishioka
隆夫 西岡
Yoshie Takano
高ノ 由重
Hiroshi Kukihira
啓 柊平
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63169916A priority Critical patent/JPH0218360A/en
Publication of JPH0218360A publication Critical patent/JPH0218360A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled ceramics material which has high strength and high reliability and is inexpensive by molding, degreasing and sintering a compsn. composed of Si3N4 powder, aluminum chelate compd., yttrium chelate compd., and specific org. material. CONSTITUTION:The compsn. is obtd. by mixing 40-70vol.% Si3N4 powder having <=1mum average grain size and >=10m<2>/g BET specific surface area, 0.5-10wt.% (in terms of metal) aluminum chelate compd. (e.g.: acetoalkoxy aluminum diisopropyrate), 0.5-10wt.% (in terms of metal) yttrium chelate compd. (e.g.: acetoyttrium diisopropyrate), and 10-30vol.% org. matter selected from resins and wax. This compsn. is then molded and after the molding is degreased by heating at <=800 deg.C in the atmosphere, the molding is sintered at 1,600-2,000 deg.C in a nonoxidative atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は信頼性が高く、経済性に関して有利な窒化珪素
基質セラミック材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to silicon nitride matrix ceramic materials which are highly reliable and advantageous in terms of economy.

(従来の技術) 一般にセラミックの強度は気孔率や結晶粒径、表面状態
に影響される。構造用セラミックスとして注目されてい
る513N4の強度もこれらに支配される。Si3N4
焼結体の強度を向上させる試みとして、焼結助剤の開発
、焼結方法の開発が行われている。例えば、ホットプレ
ス焼結ではAmsCeramv 5oc1Bull +
52(+973)、5801で曲げ強度〜l00kg/
w”、又常圧焼結では昭和56年窯業協会年会講演予稿
集(1981)、178Iで〜I 00 kg/@II
”が報告されている。いずれも気孔率を極力少なくする
ことによって強度向上を図っている。
(Prior Art) Generally, the strength of ceramics is affected by porosity, crystal grain size, and surface condition. These factors also govern the strength of 513N4, which is attracting attention as a structural ceramic. Si3N4
In an attempt to improve the strength of sintered bodies, sintering aids and sintering methods are being developed. For example, for hot press sintering, AmsCeramv 5oc1Bull +
52 (+973), 5801 bending strength ~100kg/
w”, and for pressureless sintering, 1981 Ceramics Association Annual Conference Lecture Proceedings (1981), 178I ~I 00 kg/@II
In both cases, strength is improved by minimizing porosity.

又主たる焼結助剤としてY2O3を用いた5i3tJ+
−Y2O3−AQ20a系窒化珪素焼結体の製造方法が
特公昭49−2109重号公報、特公昭48−3844
8号公報に開示されている。これらは、当該特許公報中
に示されているように、焼結助剤としてY2O3、A(
Y2O3等の酸化物粉末を主として用い、Si3N+粉
末と共に粉砕混合工程を経た後、成形、焼結を行ない、
所定のプロセスを経て焼結体を得ている。
Also, 5i3tJ+ using Y2O3 as the main sintering aid
-Y2O3-AQ20a-based silicon nitride sintered body manufacturing method is disclosed in Japanese Patent Publication No. 49-2109, Japanese Patent Publication No. 48-3844
It is disclosed in Publication No. 8. These are Y2O3, A(
Mainly using oxide powder such as Y2O3, after going through a grinding and mixing process with Si3N+ powder, shaping and sintering,
A sintered body is obtained through a predetermined process.

(解決しようとする課題) 上述した従来の技術では、助剤がYzO3、AQ203
という硬質材料であり、又それぞれの一次粒子が細かい
ため凝集性が高いこともあって、粉砕、混合には限界が
ありサブミクロン以下まで粉砕し混合することは非常に
困難であり、助剤の均一混合にも限界がある。
(Problem to be solved) In the conventional technology described above, the auxiliary agents are YzO3 and AQ203.
It is a hard material, and since each primary particle is fine and highly cohesive, there are limits to pulverization and mixing, and it is extremely difficult to pulverize and mix to a submicron size or smaller. Even uniform mixing has its limits.

さらに、粉砕のために使用するメディアからの不純物の
混入は不可避であり、これらが焼結体中に残存して欠陥
や焼結体組織の不均一の原因となり、焼結体の強度低下
や信頼性の低下をもたらすという問題点があった。
Furthermore, impurities from the media used for pulverization are unavoidable, and these remain in the sintered body and cause defects and uneven structure of the sintered body, resulting in decreased strength and reliability. There was a problem in that it caused a decline in sexuality.

さらに又、上述の方法は助剤混合粉末を金型プレス、あ
るいは冷間静水圧プレスによる成形が主で、複雑形状品
等の量産には不向きであった。−方、射出成形法は有機
材料と助剤粉末を混線、成形するため、量産成形法とし
てはすぐれているが、十分な混練を必要とするため、上
述の粉砕混合や不純物の混入は避けられず、又多量の有
機材料を要するため、脱脂工程での成形体の割れ等の問
題があった。
Furthermore, the above-mentioned method mainly involves molding the auxiliary mixed powder by die pressing or cold isostatic pressing, and is not suitable for mass production of complex-shaped products. On the other hand, injection molding is an excellent mass production molding method because the organic material and auxiliary powder are mixed and molded, but as it requires sufficient kneading, the above-mentioned pulverization and mixing and contamination of impurities cannot be avoided. Furthermore, since a large amount of organic material is required, there are problems such as cracking of the molded product during the degreasing process.

(課題を解決するための手段) 本発明は上述の助剤混入の際の不均一性、不純物混入を
極力抑制し、かつ量産性にすぐれた成形性を付加するこ
とにより、信頼性が高く、安価な窒化珪素基質セラミッ
ク材料を提供するもので、その特徴は、窒化珪素粉末を
40〜70容量%、アルミニウムキレート化合物及びイ
ツトリウムキレート化合物をそれぞれ金属量換算で0.
5〜10重量%、樹脂及びワックスより選ばれる有機材
料をIθ〜30→容n%よりなる組成物を成形、脱脂及
び焼結することにより得られるものである。
(Means for Solving the Problems) The present invention has high reliability by minimizing the non-uniformity and contamination of impurities when mixing the above-mentioned auxiliaries, and by adding moldability that is excellent in mass production. The purpose is to provide an inexpensive silicon nitride matrix ceramic material, which has the following characteristics: 40 to 70% by volume of silicon nitride powder, and 0.0% of each of aluminum chelate compound and yttrium chelate compound in terms of metal content.
It is obtained by molding, degreasing, and sintering a composition consisting of 5 to 10% by weight of an organic material selected from resins and waxes in an amount of Iθ to 30→n% by volume.

(作用) 本発明のセラミック材料によれば、窒化珪素原料粉末に
対し、アルミニウムキレート化合物及びイツトリウムキ
レート化合物を添加することにより、窒化珪素粉末の表
面に均一な被膜を形成し、成形用有機材料との親和性を
向上させる。又このキレート化合物が脱脂工程中に窒化
珪素粉末表面に、焼結時に要するアルミニウム及びイブ
トリウム酸化物の均一な被膜を生成し、助剤混合の不均
一性、助剤混合時の不純物の混入、及び成形用有機材料
の混練性の向上による11機材料の量の減少による脱脂
工程での割れの発生等の諸問題の解決のための働きをす
る。
(Function) According to the ceramic material of the present invention, by adding an aluminum chelate compound and a yttrium chelate compound to the silicon nitride raw material powder, a uniform film is formed on the surface of the silicon nitride powder, and an organic material for molding is formed. improve compatibility with Additionally, this chelate compound forms a uniform film of aluminum and buttrium oxide required during sintering on the surface of the silicon nitride powder during the degreasing process, resulting in uneven mixing of the auxiliary agents, contamination of impurities when mixing the auxiliary agents, and It works to solve various problems such as the occurrence of cracks in the degreasing process due to the reduction in the amount of 11-material by improving the kneading properties of organic materials for molding.

本発明のセラミック材の最良の効果をもたらすには、窒
化珪素原料粉末として平均粒度が1μm以下、好ましく
は0.5μm以下で、かつ比表面積(BET)がIO+
//g以上の粉末を使用する。アルミニウムキレート化
合物及びイツトリウムキレート化合物の量としては、そ
れぞれ金am換算で0.5〜10重量%が好ましい。0
.5重量%未満では焼結性及び成形用有機材料との親和
性が不十分であり、10重量%を超える場合は最終焼結
体の強度、特に高温特性の低下原因となり、又脱指工程
での成形体の割れ、ふくれの原因となる。各キレート化
合物は適量の溶媒に稀釈して使用することも可能であり
、又キレート化合物と共に窒化珪素原料粉末の凝集等を
低下させるための分散用有機材料を併用することもある
In order to bring about the best effect of the ceramic material of the present invention, the average particle size of the silicon nitride raw material powder is 1 μm or less, preferably 0.5 μm or less, and the specific surface area (BET) is IO +
Use powder weighing more than //g. The amounts of the aluminum chelate compound and the yttrium chelate compound are each preferably 0.5 to 10% by weight in terms of gold am. 0
.. If it is less than 5% by weight, the sinterability and affinity with the organic material for molding will be insufficient, and if it exceeds 10% by weight, it will cause a decrease in the strength of the final sintered body, especially the high-temperature properties, and it will also cause problems in the finger removal process. This may cause cracking or blistering of the molded product. Each chelate compound can be used after being diluted with an appropriate amount of solvent, and an organic material for dispersion may be used together with the chelate compound to reduce agglomeration of the silicon nitride raw material powder.

上記の混合物を高速ミキサー等により撹拌した後、さら
に成形用有機材料を10〜30容量%添加する。この場
合、10容fi1%未填では成形用混合物に適当な流動
性を付与することが出来ず、3G容ffi%を超えると
脱指工程での成形体の割れやふくれを生じる。
After stirring the above mixture using a high-speed mixer or the like, 10 to 30% by volume of an organic material for molding is further added. In this case, if the filling is less than 10% fi, it is not possible to impart appropriate fluidity to the molding mixture, and if it exceeds 3G volume ffi%, the molded product will crack or bulge during the finger removal process.

このような混合物を例えば加圧ニーダ−を用いて混練し
、射出、押出し等の成形用混合物として用いる。成形後
の成形体は公知の脱指法により脱tr1を行なうが、特
にキレート化合物を分解させ、窒化珪素粉末表面にAQ
zOa、Y2O3の酸化物の被膜を作るためには、大気
中〜800℃で加熱する。
Such a mixture is kneaded using, for example, a pressure kneader and used as a molding mixture for injection, extrusion, and the like. After molding, the molded body is detrl-removed by a known de-fingering method, but in particular the chelate compound is decomposed and AQ is added to the surface of the silicon nitride powder.
To form a film of oxides of zOa and Y2O3, it is heated in the atmosphere at ~800°C.

以上の作用では従来法に比較して成形用混合物を作成す
る時間が著しく短縮され、その均一性も向上する。又射
出成形、押出し成形等の量産成形も可能である。
With the above effects, the time required to prepare a molding mixture is significantly shortened compared to conventional methods, and its uniformity is also improved. Mass production molding such as injection molding and extrusion molding is also possible.

こうして得られた脱脂、酸化被膜処理後の成形体を、非
酸化性雰囲気I 800〜2000℃で焼結することに
より本発明のセラミック材料が得られる。このような本
発明のセラミック材料は助剤としての酸化物が均一に混
合されているため、焼結性にすぐれ、焼結中に導入され
る不均一性も極めて少ないため、高い信頼性をもったセ
ラミック材料となる。
The ceramic material of the present invention is obtained by sintering the thus obtained molded body after degreasing and oxide film treatment at a non-oxidizing atmosphere I of 800 to 2000°C. The ceramic material of the present invention has excellent sinterability because the oxide as an auxiliary agent is uniformly mixed therein, and there is very little non-uniformity introduced during sintering, so it has high reliability. It becomes a ceramic material.

(実施例) 単向粒子径0.37jm 1BET a 11.5n?
/g 、 tx結品化率=!ls、o%の窒化珪素粉末
10Gに対し、キレート化合物としてアセトアルコキシ
アルミニウムジイソプロピレート及びアセトイツトリウ
ムジインプロピレートをそれぞれ金属量換算で2重量%
及び4.5重量%をn−プロパツールに稀釈し、80℃
に保ち、SOOrpmにて15分撹拌した。上記に成形
用有機材料(中東油脂社製セルナNE−511)を10
重量%添加し、120℃で加圧ニーダ−にて混練した後
、射出成形(二次射出圧750kg/cJ) シ、IO
X IOX50m■1に成形体15本を作成した。
(Example) Unidirectional particle diameter 0.37jm 1BET a 11.5n?
/g, tx condensation rate=! ls, o% of silicon nitride powder, 2% by weight of each of acetalkoxyaluminum diisopropylate and acetoytrium diimpropylate as chelate compounds in terms of metal content.
and 4.5% by weight diluted in n-propertool and heated at 80°C.
The mixture was stirred for 15 minutes at SOO rpm. Add 10% of the organic material for molding (Celna NE-511 manufactured by Middle East Yushi Co., Ltd.) to the above.
After adding % by weight and kneading in a pressure kneader at 120°C, injection molding (secondary injection pressure 750 kg/cJ), IO
15 molded bodies were made in 1 x IOX 50m.

この成形体を璽50℃まで5時間、 SOO℃まで8時
間、さらに800℃まで5時間で昇温した後、800℃
で一5時間大気中にて保持した。上記成形体をN2雰囲
気5気圧、■800℃×6時間焼結した後、JISR1
601試験片に研磨し、引張り而についてダイヤモンド
ペーストにて仕上げた後、JISRIGO13点曲げ試
験に供した。
This molded body was heated to 50℃ for 5 hours, to SOO℃ for 8 hours, and then to 800℃ for 5 hours, and then heated to 800℃.
It was kept in the atmosphere for 15 hours. After sintering the above molded body in a N2 atmosphere of 5 atm at 800°C for 6 hours, JISR1
After polishing into a 601 test piece and finishing the tensile strength with diamond paste, it was subjected to a JISRIGO 13-point bending test.

結果は 平均抗折強度  135 kg/冒♂ ワイブル系数  25 の高強度で、高信頼性のセラミック材料を得た。Result is Average bending strength 135 kg/explosion♂ Weibull series number 25 A ceramic material with high strength and high reliability was obtained.

(発明の効果) 上述したように、本発明の窒化珪素基質セラミック材料
によれば、従来の5iaN4系焼結体に比し、著しく高
強度を有し、種々の機械構造部品として応用出来、特に
量産性で安価で、かつ高信頼性が要求される自動車d1
品等に適用するとき、極めて効果的である。
(Effects of the Invention) As described above, the silicon nitride matrix ceramic material of the present invention has significantly higher strength than the conventional 5iaN4-based sintered body, and can be applied to various mechanical structural parts. Automobile d1 requires mass production, low cost, and high reliability.
It is extremely effective when applied to products, etc.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化珪素粉末を40〜70容量%、アルミニウム
キレート化合物及びイットリウムキレート化合物をそれ
ぞれ金属量換算で0.5〜10重量%、樹脂及びワック
スより選ばれる有機材料を10〜30容量%よりなる組
成物を成形、脱脂及び焼結することにより得られる窒化
珪素基質セラミック材料。
(1) Consisting of 40 to 70% by volume of silicon nitride powder, 0.5 to 10% by weight of aluminum chelate compound and yttrium chelate compound each in terms of metal content, and 10 to 30% by volume of organic material selected from resin and wax. A silicon nitride matrix ceramic material obtained by molding, degreasing and sintering the composition.
JP63169916A 1988-07-06 1988-07-06 Silicon nitride-base ceramics material Pending JPH0218360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63169916A JPH0218360A (en) 1988-07-06 1988-07-06 Silicon nitride-base ceramics material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169916A JPH0218360A (en) 1988-07-06 1988-07-06 Silicon nitride-base ceramics material

Publications (1)

Publication Number Publication Date
JPH0218360A true JPH0218360A (en) 1990-01-22

Family

ID=15895333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169916A Pending JPH0218360A (en) 1988-07-06 1988-07-06 Silicon nitride-base ceramics material

Country Status (1)

Country Link
JP (1) JPH0218360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029541A (en) * 1994-03-27 2000-02-29 Dr. Schrick Gmbh Reciprocating machine with neutralization of free inertial forces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029541A (en) * 1994-03-27 2000-02-29 Dr. Schrick Gmbh Reciprocating machine with neutralization of free inertial forces

Similar Documents

Publication Publication Date Title
JPH08239270A (en) Superplastic silicon carbide sintered product and its production
JPH02141466A (en) Ceramic composite material and production thereof
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
JPH0218360A (en) Silicon nitride-base ceramics material
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JPH09227236A (en) Silicon nitride-base sintered compact and its production
JPH03504959A (en) Ultra-tough monolithic silicon nitride
JPH0283265A (en) Production of silicon nitride
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production
JP2955917B2 (en) Silicon nitride sintered body having high fracture toughness by addition of foreign particles and method for producing the same
JPH09100165A (en) Boride ceramic and its production
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JPH07291722A (en) Production of ceramics sintered compact
JP3211908B2 (en) Silicon nitride sintered body and method for producing the same
JPH05319910A (en) Ceramic composite material and its production
JPH06206762A (en) Composite material of ceramics and its production
Mujahid et al. Processing and microstructure of alumina-based composites
JPH08157262A (en) Aluminum nitride sintered compact and its production
JPH0442869A (en) Production of whisker-reinforced composite material
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH02307868A (en) Sic-based uncompressed sintered body
JPH06166569A (en) Production of sintered silicon nitride
JPH11130542A (en) Production of aluminum nitride sintered compact
JPH05294716A (en) Ceramic composite material and production thereof
JPH07187796A (en) Ceramic composite