JPH02183202A - Metallic mirror - Google Patents

Metallic mirror

Info

Publication number
JPH02183202A
JPH02183202A JP337789A JP337789A JPH02183202A JP H02183202 A JPH02183202 A JP H02183202A JP 337789 A JP337789 A JP 337789A JP 337789 A JP337789 A JP 337789A JP H02183202 A JPH02183202 A JP H02183202A
Authority
JP
Japan
Prior art keywords
mirror
single crystal
mold
electron beam
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP337789A
Other languages
Japanese (ja)
Inventor
Michihiko Fujine
藤根 道彦
Hiroshi Noguchi
宏 野口
Masataka Tate
舘 正敬
Kimitoshi Murashige
公敏 村重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP337789A priority Critical patent/JPH02183202A/en
Publication of JPH02183202A publication Critical patent/JPH02183202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the mirror which has excellent advantages, such as easy working, good thermal conductivity, low coefft. of thermal expansion, and resistance to flawing, by forming the mirror of the single crystal of W melted by an electron beam. CONSTITUTION:A water cooled mold 2 which holds a solidified W material 5 is disposed perpendicularly below a bar material 1 of W as a base material and electron guns 3, 4 are disposed diagonally above the mold 2. The electron beam EB1 is made incident to the front end part 1a of the bar material 1. The W liquid drops heated and melted from the front end part 1a of the bar material, therefore, fall to nearly the central part of the mold 2 to form the molten W pool 6. The temp. of the solidified W material 5 decreases gradually as the material descends perpendicularly below the mold 2 and grows the crystal perpendicularly downward from a molten part 5a so that the single crystal 10 of a large grain size is obtd. The metallic mirror which has the easy workability, the excellent resistance to oxidation and corrosion, and the high toughness is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属ミラーに関するもので、例えばレーザー
光、シンクロトロン放射光等の光を反射する金属ミラー
に適用される。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a metal mirror, and is applied to a metal mirror that reflects light such as laser light or synchrotron radiation light.

(従来の技術) 従来のレーザー光を反射する金属ミラーとしては、低中
出力機では、Si製鏡面に、金、銀もしくは誘電反射膜
をコーティングしたものが使用され、中高出力機では、
Cu製鏡面あるいはCu製鏡面に金、銀等をコーティン
グしたものが多く用いられている。
(Prior art) Conventional metal mirrors that reflect laser light are used in low-to-medium power machines, with a Si mirror surface coated with gold, silver, or a dielectric reflective film, and in medium-to-high power machines,
A Cu mirror surface or a Cu mirror surface coated with gold, silver, etc. is often used.

そして、従来のCu製の金属ミラーに比べ、W製のレー
ザー光用ミラーであると、錆にくい、つまり耐酸化性耐
食性が良好であるという利点があることから、日本のよ
うな高温多湿環境の下では、光の高出力機を中心にW製
の金属ミラーの要請が高まっている。
Compared to conventional metal mirrors made of Cu, laser beam mirrors made of W have the advantage of being resistant to rust, that is, have good oxidation and corrosion resistance. Demand for W metal mirrors is increasing, especially for high-output optical devices.

(発明が解決しようとする課題) しかし、従来の金属ミラーにおいては、W製の金属ミラ
ーは、その材質が高融点金属であること等の理由により
、未だ製造されていない。
(Problems to be Solved by the Invention) However, among conventional metal mirrors, metal mirrors made of W have not yet been manufactured due to the fact that the material is a high melting point metal.

一般に、金属ミラーに要求される特性としては下記の点
が挙げられる。
Generally, the characteristics required of a metal mirror include the following points.

(1)10.6μmの波長に対し反射率が高く吸収が少
ないこと、 (2)熱電導性がよく、熱膨張率が低いこと、(3)高
純度で変形が小さく慣がつきにくいこと、(4)化学的
、熱的に安定で、耐酸化耐食性が良いこと、 (5)加工性および再加工性に優れていること、である
(1) High reflectance and low absorption for a wavelength of 10.6 μm, (2) Good thermal conductivity and low coefficient of thermal expansion, (3) High purity, small deformation, and resistance to break-in. (4) It is chemically and thermally stable and has good oxidation and corrosion resistance. (5) It has excellent workability and reworkability.

これらの要求特性を材料への要求特性として置換えると
、下記のような材料要求特性の内容になる。
When these required characteristics are replaced with the required characteristics of the material, the contents of the required material characteristics are as follows.

(1)結晶に異方性、がなく、単相組織をもっこと、(
2)結晶の方位2粒形および粒度が揃っていること、 (3)析出物、介在物、空孔、偏析が少ないこと、(4
)内部歪、格子欠陥、乱れなどが少ないこと、である。
(1) The crystal has no anisotropy and has a single phase structure (
2) The crystal orientation, grain shape, and grain size are uniform; (3) there are few precipitates, inclusions, pores, and segregation; (4)
) There are few internal strains, lattice defects, disturbances, etc.

前記材料への要求特性を満たす金属ミラーとして、本発
明者は、Wの単結晶であれば、光レーザー波長に対し反
射率が高く吸収が少ないなど、前述した金属ミラーの要
求特性を充分に満たすものと考え、本発明を完成するに
至った。
As a metal mirror that satisfies the characteristics required for the material, the present inventor believes that a single crystal of W satisfies the characteristics required for the metal mirror described above, such as high reflectance and low absorption at the optical laser wavelength. With this in mind, we have completed the present invention.

本発明は、W製の単結晶体からなる金属ミラーを提供す
ることで、加工が容易で、熱伝導性がよく、低熱膨張、
傷が着きにくい等の優れた利点をもつW製ミラーを提供
することを目的とする。
The present invention provides a metal mirror made of a single crystal made of W, which is easy to process, has good thermal conductivity, low thermal expansion,
The purpose is to provide a mirror made of W which has excellent advantages such as being resistant to scratches.

(課題を解決するための手段) 本発明の金属ミラーは、電子ビーム溶解品であって、W
の単結晶からなることを特徴とする。
(Means for Solving the Problems) The metal mirror of the present invention is an electron beam melted product,
It is characterized by consisting of a single crystal.

電子ビーム溶解品としたのは、■他の製法による製品、
例えば粉末焼結晶であると、Wの融点が相対的に高温で
あるため、高密度の焼結晶を得ることが困難なためであ
る。■また。サイズの大きな単結晶の製造が可能だから
である。単結晶体の製法としては、2次再結晶法、ゾー
ンメルティング法等による製法があるが、これらの製法
の場合には単結晶体のサイズが小さいという欠点がある
Products made by electron beam melting include ■Products made using other manufacturing methods,
For example, if the powder is a sintered crystal, the melting point of W is relatively high, so it is difficult to obtain a high-density sintered crystal. ■Also. This is because it is possible to manufacture large-sized single crystals. Methods for producing single crystals include methods such as secondary recrystallization and zone melting, but these methods have the disadvantage that the size of the single crystal is small.

これに対し、電子ビーム溶解法によると、溶解条件を変
更し、特に溶解速度を調節し例えば結晶成長速度をlo
cm/hr以下にすることにより、結晶粒を粗大化し、
サイズの大きな単結晶体に成長させ、その粗大化した単
結晶から所定のサイズのミラーに切削加工することが比
較的容易だからである。
On the other hand, according to the electron beam melting method, the melting conditions are changed and the melting rate is adjusted, for example, the crystal growth rate is lowered.
cm/hr or less, coarsening the crystal grains,
This is because it is relatively easy to grow a large single crystal and cut the coarse single crystal into a mirror of a predetermined size.

Wの単結晶としたのは、次の理由による。多結晶である
と、粒界強度が弱く、塑性加工や研磨が困難であるため
である。これに対し、W単結晶体であると、高靭性かつ
高強度で粘性があり、塑性加工や研磨が比較的容易で、
粒界破壊等が発生しないからである。
The reason for using a W single crystal is as follows. This is because polycrystalline materials have weak grain boundary strength, making plastic working and polishing difficult. On the other hand, W single crystal has high toughness, high strength, and viscosity, and is relatively easy to plastic work and polish.
This is because grain boundary destruction etc. do not occur.

またW製ミラーであると、Mo製ミラーに比べ、熱伝導
度が良好で、線膨張ケースも低く、しかも高硬度である
という利点がある。しかも、W°製の単結晶体であれば
、塑性加工が容易であり、研磨後の表面粗さも良好であ
り、光レーザー波長の反射率も良好である。
Further, a mirror made of W has the advantage that it has good thermal conductivity, a low linear expansion case, and high hardness compared to a mirror made of Mo. Moreover, if it is a single crystal made of W°, plastic processing is easy, the surface roughness after polishing is good, and the reflectance of the optical laser wavelength is also good.

(実施例) 本発明の実施例を図面にもとづいて説明する。(Example) Embodiments of the present invention will be described based on the drawings.

まず、Wの単結晶を製造する電子ビーム溶解法について
第1図および第2図にもとづいて説明する。
First, the electron beam melting method for producing a single crystal of W will be explained based on FIGS. 1 and 2.

第1図に示すように、母材としてのWの棒材】の鉛直下
方にW凝固材5を保持する水冷モールド2を配置する。
As shown in FIG. 1, a water-cooled mold 2 holding a W solidified material 5 is placed vertically below a W bar serving as a base material.

水冷モールド2の斜め上方には、電子ビーム(E B)
を射出する電子銃3.4を配置する。電子銃3.4から
発射される電子ビームE B +は、棒材1の先端部1
 a”に入射される。これにより、棒材先端部1aから
加熱溶解されるW液滴は、第2図に示すように、冷却モ
ールド2のほぼ中心部に落下し、W溶解ブール6を形成
する。
An electron beam (EB) is placed diagonally above the water-cooled mold 2.
An electron gun 3.4 that emits . The electron beam E B + emitted from the electron gun 3.4 hits the tip 1 of the bar 1.
As a result, the W droplet heated and melted from the bar tip 1a falls almost at the center of the cooling mold 2, forming a W melting boule 6, as shown in FIG. do.

電子ビームEB、は、水冷モールド2内の溶融部5aに
も入射される。
The electron beam EB is also incident on the molten part 5a within the water-cooled mold 2.

第2図に示すように、水冷モールド2は、例えばCu製
であり、導入バイブ8から流入される水により冷却され
、溶融部5a、凝固材5等がら熱を奪って温水となって
導出バイブ9から外部に排出される。W凝固材5の温度
は、水冷モールド2の鉛直下方に降りるにしたがい次第
に低下し、溶融部5aがら鉛直下方向に結晶成長して単
結晶10が作製される。結晶成長速度は、例えば10c
m/hr以下の低速とすることにより、第2図に示すよ
うに、粒径の大きな単結晶10を作製することができる
As shown in FIG. 2, the water-cooled mold 2 is made of, for example, Cu, and is cooled by water flowing in from the inlet vibrator 8, absorbs heat from the melting part 5a, the coagulating material 5, etc., and becomes hot water, which is then passed through the outlet vibrator. 9 is discharged to the outside. The temperature of the W solidified material 5 gradually decreases as it descends vertically below the water-cooled mold 2, and the single crystal 10 is produced by crystal growth in the vertically downward direction from the molten portion 5a. The crystal growth rate is, for example, 10c
By setting the speed to be as low as m/hr or less, a single crystal 10 with a large grain size can be produced as shown in FIG.

前述した実施例では、溶解原料を垂直方向から送り出す
電子ビーム溶解法について説明したが、本発明のWミラ
ーを製造する方法としては5滴下溶解であれば電子ビー
ム溶解法を用いることができる。
In the above-mentioned embodiment, an electron beam melting method was described in which the melted raw material is sent out in a vertical direction, but as a method for manufacturing the W mirror of the present invention, the electron beam melting method can be used as long as it is 5-drop melting.

得られた凝固材5から切削加工により単結晶体を取り出
す。この単結晶体から金属ミラー形状のミラー本体を切
削加工により採取する。この場合。
A single crystal is taken out from the obtained solidified material 5 by cutting. A metal mirror-shaped mirror body is obtained from this single crystal by cutting. in this case.

単結晶体であるから塑性加工が極めて容易である。Since it is a single crystal, plastic working is extremely easy.

得られた単結晶Wミラーについてレーザー光の反射率を
比較テストした。比較例は、W製の多結晶粉末焼結晶で
ある。
The laser beam reflectance of the obtained single crystal W mirror was compared and tested. A comparative example is a polycrystalline powder sintered crystal made of W.

テストの結果によると、W製多結晶粉末焼結品のレーザ
ー光反射率が98.2%であったのに対し、電子ビーム
溶解法による単結晶電子ビーム溶解品のレーザー光反射
率は98.496であった。
According to the test results, the laser light reflectance of the W polycrystal powder sintered product was 98.2%, while the laser light reflectance of the single crystal electron beam melted product made by the electron beam melting method was 98.2%. It was 496.

次にW製ミラー(実施例)とMo製ミラー(比較例)を
その特性の点で比較すると、第1表に示すとおりとなる
Next, when comparing the W mirror (example) and the Mo mirror (comparative example) in terms of their characteristics, the results are as shown in Table 1.

(以下、余白) 第1表 WとMOの特性表 第1表から明らかなように、Wは、Moに比べ、熱伝導
度、低熱膨張、高硬度である点で優れていることが解る
。しかも、単結晶体であれば高靭性かつ加工性が良好で
あるという利点がある。
(Hereinafter, blank space) As is clear from Table 1 W and MO characteristic table Table 1, W is superior to Mo in terms of thermal conductivity, low thermal expansion, and high hardness. Moreover, a single crystal has the advantage of high toughness and good workability.

このように、Wは、高硬度、高融点であるという特徴を
もつことから、光の高出力のものにも耐久性の点で優れ
ており、高負荷に耐えられるため、W単結晶ミラーは、
レーザー用ミラーとしてM。
In this way, since W has the characteristics of high hardness and high melting point, it has excellent durability even with high output light, and can withstand high loads, so W single crystal mirrors ,
M as a laser mirror.

装車結晶ミラーに比べ、かなり優れているものと考えら
れる。またW装車結晶ミラーによると、W製多結晶粉末
焼結品ミラーに比べ、ミラーの鏡面が滑らかである等の
点からレーザー波長に対し反射率も良好である。
It is considered to be considerably superior to vehicle-mounted crystal mirrors. Furthermore, the W-mounted crystal mirror has a smooth mirror surface and has a better reflectance at the laser wavelength than a W-made polycrystalline powder sintered mirror.

(発明の効果) 以上説明したように、本発明の金属ミラーによれば、製
造が比較的容易な電子ビーム溶解法により高融点、高硬
度の特性をもつW製の単結晶体から金属ミラーを構成し
たことから、光出力の高負荷に耐えられ、レーザー光に
対する反射率がかなり高いという効果がある。また、W
装車結晶体ミラーであれば、加工性が容易であり、酸化
性、耐食性に優れ、高靭性であるという利点がある。
(Effects of the Invention) As explained above, according to the metal mirror of the present invention, the metal mirror is manufactured from a single crystal made of W, which has a high melting point and high hardness, by the electron beam melting method, which is relatively easy to manufacture. Because of this structure, it has the effect of being able to withstand a high load of optical output and having a fairly high reflectance to laser light. Also, W
A vehicle-mounted crystalline mirror has the advantages of easy workability, excellent oxidation resistance and corrosion resistance, and high toughness.

・・・W棒材、 ・・・水冷モールド、 ・・・電子銃、 ・・・凝固材。...W bar material, ...water-cooled mold, ...electron gun, ...Coagulation material.

Claims (1)

【特許請求の範囲】[Claims] (1)電子ビーム溶解品であって、Wの単結晶からなる
ことを特徴とする金属ミラー。
(1) A metal mirror that is an electron beam melted product and is made of a single crystal of W.
JP337789A 1989-01-10 1989-01-10 Metallic mirror Pending JPH02183202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP337789A JPH02183202A (en) 1989-01-10 1989-01-10 Metallic mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP337789A JPH02183202A (en) 1989-01-10 1989-01-10 Metallic mirror

Publications (1)

Publication Number Publication Date
JPH02183202A true JPH02183202A (en) 1990-07-17

Family

ID=11555665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP337789A Pending JPH02183202A (en) 1989-01-10 1989-01-10 Metallic mirror

Country Status (1)

Country Link
JP (1) JPH02183202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288574A (en) * 1992-09-14 1994-02-22 Xerox Corporation Phthalocyanine imaging members and processes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180301A (en) * 1986-02-04 1987-08-07 Toshiba Corp Reflecting mirror
JPS62229103A (en) * 1986-03-31 1987-10-07 Toshiba Corp Reflecting mirror
JPS6353501A (en) * 1986-08-25 1988-03-07 Mitsubishi Metal Corp Composite brazing member for reflection mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180301A (en) * 1986-02-04 1987-08-07 Toshiba Corp Reflecting mirror
JPS62229103A (en) * 1986-03-31 1987-10-07 Toshiba Corp Reflecting mirror
JPS6353501A (en) * 1986-08-25 1988-03-07 Mitsubishi Metal Corp Composite brazing member for reflection mirror

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288574A (en) * 1992-09-14 1994-02-22 Xerox Corporation Phthalocyanine imaging members and processes

Similar Documents

Publication Publication Date Title
US3608050A (en) Production of single crystal sapphire by carefully controlled cooling from a melt of alumina
US4382838A (en) Novel silicon crystals and process for their preparation
CN111455216B (en) TC 4-like titanium alloy for laser additive manufacturing application
CN108624959A (en) The method for preparing single crystal super alloy using the seed crystal through solution treatment
JP2011080152A (en) Method of forming molded article of amorphous alloy with high elastic limit
JPH07300667A (en) Aluminum alloy single crystal target and its production
US4961818A (en) Process for producing single crystals
EP1093872B1 (en) Controlling grain spacing in directional solidified castings
JP2003267800A (en) Oxide ion-conducting crystal and method for producing the same
JPH02183202A (en) Metallic mirror
EP0608213A1 (en) Apparatus for growing hollow crystalline bodies from the melt
Tatartchenko 10 Sapphire Crystal Growth and Applications
KR100232537B1 (en) Rutile single crystals and their growth processes
JPH02183201A (en) Metallic mirror
JP4061468B2 (en) Single crystal for laser oscillator and laser oscillator using this as laser medium
JP3264508B2 (en) Method for producing magnesia single crystal
Song et al. Characteristics of large-sized ruby crystal grown by temperature gradient technique
Locher et al. Large diameter sapphire dome: fabrication and characterization
JP2002146521A (en) Method for manufacturing gold target
JPH08319198A (en) Production of spinel single crystal fiber
RU2802604C1 (en) Method for manufacturing single-crystal sapphire seed and also single-crystal sapphire with preferred crystallographic orientation and external details and functional components for watch and jewelery
JPH0848599A (en) Production of zirconia single crystal body
JP2814325B2 (en) Rutile single crystal growth method
JP3127310B2 (en) Manufacturing method of amorphous alloy
JP2754634B2 (en) Method for producing single crystal of refractory metal