JPH02176440A - Monitoring method for pipe - Google Patents

Monitoring method for pipe

Info

Publication number
JPH02176440A
JPH02176440A JP33028388A JP33028388A JPH02176440A JP H02176440 A JPH02176440 A JP H02176440A JP 33028388 A JP33028388 A JP 33028388A JP 33028388 A JP33028388 A JP 33028388A JP H02176440 A JPH02176440 A JP H02176440A
Authority
JP
Japan
Prior art keywords
valve
pressure
valves
piping
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33028388A
Other languages
Japanese (ja)
Inventor
Toshio Ogauchi
小河内 俊雄
Yasuisa Yamamoto
山本 恭功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP33028388A priority Critical patent/JPH02176440A/en
Publication of JPH02176440A publication Critical patent/JPH02176440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To confirm leakage from a piping system accurately by decreasing the pressure of fluid in a divided pipe which is separated with values lower than the pressure on the upstream side from an upstream-side valve, confirming the presence or absence of the leakage from the upstream-side valve, thereafter filling the divided pipe with the fluid again, closing all valves, and judging the presence or absence of the leakage. CONSTITUTION:When a pump 31 is started and fuel is supplied into a burning furnace 9 from a tank 1, valve from front and rear valves 16 and 17 to begin with upto a shutoff valve 8 in one system are all opened. At this time, oil leakage between the valves 17 and 8 is confirmed as follows. At first, each valve is opened, and a pipe 5 is filled with the oil. Then, the valves 17 and 8 are closed, and a divided section is formed. Thereafter, valves 12 and 27 which are communicated to a low pressure system are opened, and the pressure in the divided section is decreased to a specified value. Then the valves 12 and 27 are closed. When the pressure in the pipe 5 between the valves 17 and 8 is not increased, it is confirmed that there is no leakage in the valve 17. Then, the valve 17 is opened, and the pipe is filled with the oil. All valves are closed again, and the decrease in pressure in the pipe 5 is confirmed. In this way, the presence or absence of the leakage between the valves can be confirmed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種のプラントの配管系の監視方法に係り、特
に配管系統中の弁と弁の間で締切られた範囲の圧力変化
を検出して配管・弁を含む系統の漏洩監視を行なう方法
および上記範囲の過大な圧力上昇を監視する方法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for monitoring piping systems in various plants, and in particular to a method for detecting pressure changes within a range closed between valves in a piping system. The present invention relates to a method for monitoring leakage in a system including piping and valves, and a method for monitoring excessive pressure rise in the above range.

〔従来の技術〕[Conventional technology]

従来の配管系統にあっては、使用される弁構造も手動弁
が多く、適切な漏洩の監視装置もなかった。配管内流体
が原油や重油などの燃料油の場合には、漏洩時の危険性
が大きいため、′liA′/!i検出装置を開発して使
用する必要性が太き(なってきた。
In conventional piping systems, many of the valve structures used were manual valves, and there was no proper leakage monitoring device. If the fluid in the pipe is fuel oil such as crude oil or heavy oil, there is a high risk of leakage, so 'liA'/! There is a growing need to develop and use i-detection devices.

また、大型のボイラにあっては、燃料系統の配管および
弁の漏洩確認として、起動時や系統使用開始時にバーナ
までの配管に油を満たした後に、弁を全閉して、一定時
間保持する間の圧力降下幅が一定値以内であれば漏洩は
ないものと判定する方式が採用されているものもある。
In addition, for large boilers, to check for leaks in the fuel system piping and valves, after filling the piping to the burner with oil at startup or when the system begins to use, fully close the valve and hold it for a certain period of time. Some systems employ a method in which it is determined that there is no leakage if the pressure drop width between them is within a certain value.

すなわち、第4図において、ボイラの燃焼炉9には多数
のバーナ10が配置されており、バーナ10に燃料を供
給する配管には入口部に遮断弁8、出口部にはバーナ循
環弁25が設けられ、この燃料配管で行なわれている漏
洩チエツクは、弁25を閉止したのち弁8を開は燃料を
配管内に供給したのち弁8を閉じる、すなわち、一定圧
力で流体燃料を封じ込め、一定時間内にある値以上の減
圧があれば漏洩ありと判定していた。しかしながら、上
記漏洩チエツクでは遮断弁8自身の漏洩チエツクは行な
われておらず、遮断弁8に漏洩がある場合は、その下流
側の配管部や循環弁25にリークがあったとしても、配
管内の圧力降下は生ぜずリークなしの誤った判定結果と
なっていた。
That is, in FIG. 4, a large number of burners 10 are arranged in a combustion furnace 9 of a boiler, and a pipe that supplies fuel to the burners 10 has a shutoff valve 8 at its inlet and a burner circulation valve 25 at its outlet. The leakage check performed in this fuel pipe is to close the valve 25, then open the valve 8, supply fuel into the pipe, and then close the valve 8. In other words, the fluid fuel is contained at a constant pressure, and the leakage check is performed at a constant pressure. It was determined that there was a leak if the pressure decreased by more than a certain value within a certain period of time. However, in the above leakage check, the leakage check of the shutoff valve 8 itself is not performed, and if there is a leakage in the shutoff valve 8, even if there is a leakage in the piping section on the downstream side or the circulation valve 25, there will be a leakage check in the piping. No pressure drop occurred, resulting in an erroneous determination that there was no leak.

一方、配管内流体の凍結防止や、凝固防止用の加温装置
として、スチーム・トレースまたはヒーティング・ケー
ブル等が用いられてきた。このような配管系統では、弁
と弁によって締切られた範囲が加熱されることによって
昇圧し、配管系統の設計圧力以上になる等の不都合があ
り、圧力逃し系統の設置や加熱上限の監視制御などによ
り対応していた。
On the other hand, steam traces, heating cables, and the like have been used as heating devices to prevent the fluid in piping from freezing or coagulating. In such a piping system, there are inconveniences such as the pressure rising due to the heating of the area closed off by the valves and exceeding the design pressure of the piping system, so it is necessary to install a pressure relief system and monitor and control the heating upper limit. It was handled by

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、配管系統内の弁と弁によって締切られ
た範囲の圧力変化を捉えるものであるために、前記した
誤判定が生じる場合があるほか、配管内流体圧力の温度
による影響が考慮されてお・らず、低温の配管に流体を
満たすと、流体温度と配管温度の差によって圧力は降下
し、正確に漏洩ある場合との区別はできなかった。流体
の種類によっては温度変化を無視することはできず、特
に危険な流体の場合には問題となる。また、流体がガス
の場合(例えばガス燃料の場合)には特に温度変化に対
して、比体積変化が大きいので、この対策が必要であっ
た。
Since the above-mentioned conventional technology captures pressure changes within a range closed off by valves in the piping system, the above-mentioned erroneous judgments may occur, and the influence of temperature on the fluid pressure in the piping is not taken into account. When a fluid is filled in a low-temperature pipe, the pressure drops due to the difference between the fluid temperature and the pipe temperature, making it impossible to accurately distinguish between a leak and a leak. Temperature changes cannot be ignored depending on the type of fluid, and are particularly problematic when the fluid is dangerous. Further, when the fluid is a gas (eg, gas fuel), the change in specific volume is large especially with respect to temperature change, so this measure is necessary.

本発明の第1の目的は、配管系統内の正確な漏洩監視を
行なうことにある。
A first object of the present invention is to perform accurate leakage monitoring within a piping system.

次に、上記従来技術は、配管系統内に弁と弁によって完
全な締切り範囲ができることに配慮されておらず、加熱
されて圧力が設計圧力以上に上昇するなどの問題があっ
た。ごく短時間であれば配管の耐力は、設計圧力の11
6%まで許容される場合もあるが、配管系統中には計器
類も設置されており、破損するなどの問題もあった。ま
た圧力逃し弁を設置している配管系統にあっても、流体
の種類によっては高価なものであったり、危険な流体の
場合には、逃し弁を作動させる機会をできる限り少なく
したいとの要望は強い。
Next, the above-mentioned conventional technology does not take into consideration the fact that a complete shutoff range is created by the valves in the piping system, and there are problems such as heating and pressure rising above the design pressure. For a very short period of time, the proof stress of the piping will be 11% of the design pressure.
In some cases, up to 6% is allowed, but there are problems such as damage to instruments installed in the piping system. Additionally, even if a piping system is equipped with a pressure relief valve, depending on the type of fluid, it may be expensive or dangerous, and there is a desire to minimize the chances of the relief valve being activated. is strong.

本発明の第2の目的は、弁と弁で締切られた場合の配管
系統の異常な圧力上昇をなくすことにある。
A second object of the present invention is to eliminate abnormal pressure increases in the piping system when the valves are shut off.

〔課題を解決するための手段] 上記した従来技術の課題は、流体を上流側から下流側に
流動させる配管路内に設けられた上流弁と下流で区切ら
れた配管路内の漏洩を監視する方法で゛あって、上記配
管路内に流体を満たした状態で上流弁と下流弁を閉止し
たのち、分割配管内の圧力と上流弁の上流側流体圧力と
の差を求め、所望圧力差に達していない場合は、当該配
管内の外部に通じている上記上流弁以下の弁を開き、該
配管路内の流体を外部に排出して所望圧力差としたのち
該排出弁を閉じ、所望圧力差に達している場合は管路内
の流体を外部に排出することなくそのままの状態で、上
記区切られた配管内の圧力を測定して所定時間内の圧力
変化が規定値以内であるか否かにより、上記上流弁の漏
洩の有無を判断することを特徴とする配管路の監視方法
により解決される。
[Means for Solving the Problems] The problem of the above-mentioned conventional technology is to monitor leakage in a piping path separated by an upstream valve provided in a piping path that causes fluid to flow from an upstream side to a downstream side. In this method, after closing the upstream and downstream valves with the pipe filled with fluid, the difference between the pressure in the divided pipe and the fluid pressure on the upstream side of the upstream valve is determined, and the desired pressure difference is obtained. If the pressure difference has not been reached, open the valves below the above-mentioned upstream valve that communicate with the outside in the pipe, discharge the fluid in the pipe to the outside to reach the desired pressure difference, then close the discharge valve to reduce the desired pressure. If the difference has been reached, measure the pressure inside the divided pipes without discharging the fluid inside the pipes to the outside, and check whether the pressure change within the specified time is within the specified value. Accordingly, the problem is solved by a pipe line monitoring method characterized by determining the presence or absence of leakage from the above-mentioned upstream valve.

〔作用〕[Effect]

配管系統は必ず流体が流れるように構成されている。し
たがって運転条件により弁と弁によって、ある範囲が締
切られた状態になったということは、少なくとも2個以
上の弁で系統分割されたものと考えてよく、系統の運転
状態から判断していずれか1個の弁を開くことが可能で
ある。1個の弁を規定の開度に開くことにより、締切り
範囲内の圧力を低減してから全閉すれば、締切り範囲内
の圧力変化により高圧側の弁に漏洩のないことがわかる
。そこで高圧側の弁を開いて流体を満たし、再度全閉し
て圧力変化により漏洩の有無を判定する。
Piping systems are constructed so that fluid always flows through them. Therefore, if a certain range is closed off by valves depending on the operating conditions, it can be considered that the system has been divided by at least two valves, and judging from the operating state of the system, one of the It is possible to open one valve. If one valve is opened to a specified opening degree to reduce the pressure within the shutoff range and then fully closed, it can be seen that there is no leakage in the high pressure side valve due to pressure changes within the shutoff range. Therefore, the high-pressure side valve is opened, filled with fluid, and then fully closed again to determine whether there is a leak based on the pressure change.

これを系統を区切る弁ごとに順次操作して、系統全体の
漏洩判定するものである。この場合、流体の温度変化の
圧力に及ぼす影響を補正する。
This is sequentially operated for each valve that separates the system to determine leakage in the entire system. In this case, the effect of fluid temperature changes on pressure is corrected.

一方、2個以上の弁で系統分割された配管系統は、系統
の運転状態から判断していずれか11[1の弁を開くこ
とが可能であり、1個の弁を規定の開度に開くことによ
り、締切り範囲はなくなるので、加熱による圧力上昇す
ることがなくなる。
On the other hand, in a piping system that is divided into two or more valves, it is possible to open any one of the 11 [1 valves], judging from the operating state of the system, and one valve can be opened to a specified opening degree. As a result, there is no cut-off range, so there is no increase in pressure due to heating.

〔実施例〕〔Example〕

第2図は、本発明の第1の実施例を示す配管系統図であ
る。燃料は燃料タンク1からポンプ31および32によ
り昇圧して、加熱器41.42で加熱して、配管5によ
って燃焼炉9のバーナ10へ供給される。一方、燃料タ
ンク2からの燃料は、ポンプ33.34により昇圧して
配管5に合流される。供給流量計6、流量調整弁7、遮
断弁8を経てバーナ10へ供給される。配管5の圧力は
、圧力コントローラ11により検出した圧力により、圧
力調整弁12で一定に制御される。戻り流量は戻り流量
計13により計測されて、供給流量計6から戻り流量計
13の計測値を差引きすると、バーナ10の燃料消費量
が求まる。
FIG. 2 is a piping system diagram showing the first embodiment of the present invention. Fuel is pressurized from the fuel tank 1 by pumps 31 and 32, heated by heaters 41 and 42, and then supplied to burner 10 of combustion furnace 9 through pipe 5. On the other hand, the fuel from the fuel tank 2 is pressurized by the pumps 33 and 34 and merged into the pipe 5. It is supplied to the burner 10 via a supply flow meter 6, a flow rate adjustment valve 7, and a cutoff valve 8. The pressure in the pipe 5 is controlled to be constant by a pressure regulating valve 12 based on the pressure detected by a pressure controller 11. The return flow rate is measured by a return flow meter 13, and by subtracting the measured value of the return flow meter 13 from the supply flow meter 6, the fuel consumption amount of the burner 10 is determined.

いま、ポンプ31を起動して、油を満たす操作に入ると
すると、各弁はポンプ31の前後弁16および17を初
め遮断弁8までの最低1系統を全開して、油を供給する
ことになるが、弁17から8までの間の漏洩を確認する
必要がある。弁17を全閉して、配管5内の圧力変化を
計測すれば、一定時間内の圧力降下を求めることにより
判定可能である。ごときの圧力変化と同時に温度変化を
計測して容積の変化を補正する。
Now, if we start the pump 31 and start filling it with oil, each valve will fully open at least one system from the front and rear valves 16 and 17 of the pump 31 to the shutoff valve 8 to supply oil. However, it is necessary to check for leaks between valves 17 and 8. If the valve 17 is fully closed and the pressure change in the pipe 5 is measured, determination can be made by determining the pressure drop within a certain period of time. At the same time as pressure changes, temperature changes are measured to compensate for changes in volume.

弁17と8の間の区域の漏洩チエツクは、まず弁17か
ら8に到るまでの弁18.19.20.21.23.7
.24を開き、管路5内に流体を満たす。次いで弁17
と8を閉じ、分割された区域を形成する。しかるのち、
低圧系統に通じる弁12および27を開けて、上記区域
内の圧力を所定値に下げたのち弁12.27を閉じる。
A leak check in the area between valves 17 and 8 begins with valves 18, 19, 20, 21, 23, 7 from valves 17 to 8.
.. 24 is opened and the pipe line 5 is filled with fluid. Then valve 17
and 8 to form divided areas. Afterwards,
Valves 12 and 27 leading to the low pressure system are opened and after the pressure in the area has been reduced to a predetermined value, valve 12.27 is closed.

次いで、弁17と8の間の配管5内の圧力の上昇がなけ
れば弁17の漏洩がないことが確認できる。そこで、弁
17を開いて流体を満たし、再度全閉して配管5内の圧
力の低下がないか確認する。一定時間経過しても低下が
なければ漏洩なしと判断される。
Next, if there is no increase in the pressure in the pipe 5 between the valves 17 and 8, it can be confirmed that there is no leakage in the valve 17. Therefore, the valve 17 is opened, filled with fluid, and completely closed again to check whether the pressure inside the pipe 5 has decreased. If there is no decrease after a certain period of time, it is determined that there is no leakage.

圧力変化のチエツクに際しては、流体温度による補正は
もちろん行なう。なお、弁17と8の間の配管内の圧力
を下げるのは弁8を少しく開いて行なうことも可能であ
る。ここで、もし圧力降下が太き(て漏洩があると判定
されれば、例えば弁17から19間、弁19から20間
、弁20から23間、弁23から8間を順次確認するこ
とにより、配管系統中の漏洩個所を特定することができ
る。
When checking pressure changes, corrections based on fluid temperature are of course performed. Note that the pressure in the pipe between the valves 17 and 8 can also be lowered by opening the valve 8 a little. Here, if the pressure drop is large (and it is determined that there is a leak), for example, by sequentially checking between valves 17 and 19, between valves 19 and 20, between valves 20 and 23, and between valves 23 and 8. , leak points in piping systems can be identified.

第1図に、漏洩確認操作ブロック線図を示す。FIG. 1 shows a block diagram of the leakage confirmation operation.

条件の組合わせにより、判定結果を表示する。ポンプ3
1により配管内に所定圧力の流体を満たしたのち弁17
と8を全閉する。このとき、この配管系より分岐してい
る回路の弁は閉止されている。
Judgment results are displayed based on the combination of conditions. pump 3
After filling the pipe with fluid at a predetermined pressure by 1, the valve 17
and 8 fully closed. At this time, the valves of the circuits branching from this piping system are closed.

次に配管内の流体温度の測定値と、温度による容積の変
化する割合である容積係数を掛算したもので、実測した
圧力を補正して配管5内の真の圧力を求め、これが所定
時間内規定圧力値以上であれば漏洩なしの判定をし、そ
うでない場合は弁17と8の間の配管に漏洩ありの判定
表示を行ない、漏洩個所特定回路動作中の表示を出して
、漏洩個所を特定するための操作を行なう。すなわち、
弁17と19間について前述と同じ操作を行なう。
Next, the measured value of the fluid temperature in the pipe is multiplied by the volume coefficient, which is the rate at which the volume changes due to temperature, and the actual pressure is corrected to obtain the true pressure in the pipe 5. If the pressure is above the specified pressure value, it is determined that there is no leakage, and if not, a leakage determination display is displayed on the piping between valves 17 and 8, and a display indicating that the leakage location identification circuit is operating is displayed to locate the leakage location. Perform operations to identify. That is,
The same operation as above is carried out between valves 17 and 19.

弁17と19間においての漏洩のあるなしにかかわらず
、弁19と20.20と23.23と8の間について漏
洩確認操作を行なう。これは、弁17と19間で漏洩あ
りと確認されたとしても、弁17と8間の漏洩が弁17
と19間の漏洩のみに原因しているとは限らず、弁19
と8間において漏洩がないとはいえないからである。
Regardless of whether there is a leak between valves 17 and 19, a leak check operation is performed between valves 19, 20, 20, 23, and 23 and 8. This means that even if it is confirmed that there is a leak between valves 17 and 19, there is a leak between valves 17 and 8.
The cause is not necessarily due to leakage between valve 19 and valve 19.
This is because it cannot be said that there is no leakage between

次に、本願発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第2図の配管系において、燃料油として凝固し易い油を
使用している場合、上記の配管および機器の全てについ
て、スチームトレース配管14を、幾つかの区分に分割
して沿わせるとともに、蒸気を通して加熱する。スチー
ムトレースによる加熱温度は、サーモトラップ15の設
定値によって決まる。
In the piping system shown in Fig. 2, if oil that solidifies easily is used as fuel oil, the steam trace piping 14 should be divided into several sections for all of the above piping and equipment, and the steam trace piping 14 should be divided into several sections. Heat it through. The heating temperature by steam tracing is determined by the set value of the thermotrap 15.

いまポンプ32を使用中で、ポンプ31は停止していて
前止め弁16、後止め弁17ともに全閉していた場合に
は、スチームトレース14による加熱によって、配管内
の圧力が上昇してしまうので、前止め弁16を全開させ
ておくのがよいことがわかる。同様に弁18と19、弁
20と21、弁20.22と23、弁23と8.24と
23、弁20.22と8等々、種々の組合わせを考慮し
て完全な締切り状態にならぬように監視して、必要な場
合には警報やガイド表示により運転員に知らせる。
If the pump 32 is currently in use and the pump 31 is stopped and both the front stop valve 16 and the rear stop valve 17 are fully closed, the pressure in the piping will increase due to heating by the steam trace 14. Therefore, it can be seen that it is better to keep the front stop valve 16 fully open. Similarly, various combinations of valves 18 and 19, valves 20 and 21, valves 20, 22 and 23, valves 23 and 8, 24 and 23, valves 20, 22 and 8, etc., can be considered to achieve a complete shut-off state. If necessary, we will notify the operator through an alarm or guide display.

なお、弁の開閉状態およびポンプの運転状態を示す情報
を電子計算機などの演算機能を有する制御盤に伝達し、
配管系統のいずれかの弁と弁の間が締切り状態となって
いないかどうかを判断、監視させ、もし締切り状態にな
っている区域があれば、配管系統全体の運転状態から判
断される安全な側の弁を開いて、配管系統内に逃し弁が
ある範囲内で区域を区分するか、または運転中の配管系
統と圧力的に連通したりするように弁操作の修正を行な
う。
In addition, information indicating the opening/closing status of the valve and the operating status of the pump is transmitted to a control panel with arithmetic functions such as an electronic computer.
Determine and monitor whether any valves in the piping system are closed, and if there are any areas that are closed, check whether the area is safe as determined from the operating status of the entire piping system. Open side valves to demarcate areas within the piping system with relief valves or modify valve operation to provide pressure communication with the operating piping system.

なお、本実施例の1つとして、締切り状態となっただけ
では作動せず、締切り状態が継続し、かつ締切られた配
管路内の圧力が設定値を超えた場に、同配管路内の1つ
の弁を開放することも有効である。
In addition, as one example of this embodiment, the operation does not occur only when the shut-off state occurs, but when the shut-off state continues and the pressure in the shut-off pipe exceeds the set value, the It is also effective to open one valve.

第3図に、上記実施例を異常判定ブロック線図として示
す。条件の組合わせにより、ガイド項目が表示される。
FIG. 3 shows the above embodiment as an abnormality determination block diagram. Guide items are displayed depending on the combination of conditions.

なお、さきに説明した第1の実施例において、第2図の
系統における弁17から8に漏洩がある場合に、弁17
から23、次に弁17から201.17から19の順に
範囲を狭めていって、漏洩個所を特定することも可能で
あり、本発明の思想の適用範囲内に入るものである。
In addition, in the first embodiment described above, if there is a leak from valves 17 to 8 in the system shown in FIG.
It is also possible to narrow the range from 17 to 23, then from valve 17 to 201, and from 17 to 19 to identify the leakage location, which is within the scope of the idea of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配管系統の正確な漏洩確認が行なえる
ようになり、信頼性を向上できる。また、配管系の凍結
防止や凝固防止として配管の加熱を行なっても、配管の
圧力を設計値以内に維持することが可能となった。
According to the present invention, it is possible to accurately check for leaks in a piping system, and reliability can be improved. Furthermore, even if the piping is heated to prevent freezing or solidification of the piping system, it is now possible to maintain the pressure in the piping within the design value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明になる配管路の漏洩監視方法を説明す
るブロック線図、第2図は、本発明を通用する燃料油配
管系統図、第3図は、本発明の第2の実施例を説明する
ための配管内圧力上昇防止方法ブロック線図、第4vI
!Jは、従来技術の説明図である。 1.2・・・燃料油タンク、5・・・配管路、6・・・
供給流量計、7・・・流量調整弁、8・・・遮断弁、9
・・・燃焼炉、lO・・・バーナ、11・・・圧力コン
トローラ、12・・・圧力調整弁、13・・・戻り流量
針、16・・・ポンプ入口弁、17・・・ポンプ出口弁
、18・・・加熱器人口弁、19・・・加熱器出口弁、
20・・・流量計入口弁、21・・・流量計出口弁、2
2・・・流量針バイパス弁、23・・・流量調整弁大口
止弁、24・・・流1mm整弁口止弁、25・・・バー
ナ循環弁、27・・・タンク戻り弁、30・・・油温度
針、31.32.33.34・・・ポンプ、41.42
・・・加熱器。 出願人 バブコック日立株式会社 代理人 弁理士 川 北 武 長 燃料油タンク(A) 燃料油タンク(B) 配管路 供給流量計 流量調整弁 遮断弁 燃焼炉 バーナ 圧力コントローラ 圧力調整弁 戻り流量計 ポンプ入口弁 ポンプ出口弁 加熱器人口弁 加熱器出口弁 流量計入口弁 流量計出口弁 流量計バイパス弁 流量調整弁入口止弁 流量調整弁出口止弁 バーナ循環弁 タンク戻り弁 油温度肝 ポンプ 加熱器
FIG. 1 is a block diagram illustrating the leakage monitoring method for piping according to the present invention, FIG. 2 is a fuel oil piping system diagram applicable to the present invention, and FIG. 3 is a second embodiment of the present invention. Block diagram of method for preventing pressure rise in piping for explaining examples, 4th vI
! J is an explanatory diagram of the prior art. 1.2... Fuel oil tank, 5... Piping path, 6...
Supply flow meter, 7...Flow rate adjustment valve, 8...Shutoff valve, 9
... Combustion furnace, lO ... Burner, 11 ... Pressure controller, 12 ... Pressure adjustment valve, 13 ... Return flow rate needle, 16 ... Pump inlet valve, 17 ... Pump outlet valve , 18... Heater population valve, 19... Heater outlet valve,
20...Flowmeter inlet valve, 21...Flowmeter outlet valve, 2
2...Flow rate needle bypass valve, 23...Flow rate adjustment valve large stop valve, 24...Flow 1mm regulating valve stop valve, 25...Burner circulation valve, 27...Tank return valve, 30... ...Oil temperature needle, 31.32.33.34...Pump, 41.42
···Heater. Applicant Babcock Hitachi Co., Ltd. Agent Patent Attorney Takeshi Kawakita Fuel oil tank (A) Fuel oil tank (B) Piping line supply flow meter flow adjustment valve Shut-off valve Combustion furnace burner pressure controller Pressure adjustment valve Return flow meter Pump inlet valve pump outlet valve heater population valve heater outlet valve flow meter inlet valve flow meter outlet valve flow meter bypass valve flow control valve inlet stop valve flow control valve outlet stop valve burner circulation valve tank return valve oil temperature liver pump heater

Claims (3)

【特許請求の範囲】[Claims] (1)流体を上流側から下流側に流動させる配管路内に
設けられた上流弁と下流で区切られた配管路内の漏洩を
監視する方法であって、上記配管路内に流体を満たした
状態で上流弁と下流弁を閉止したのち、分割配管内の圧
力と上流弁の上流側流体圧力との差を求め、所望圧力差
に達していない場合は、当該配管内の外部に通じている
上記上流弁以下の弁を開き、該配管路内の流体を外部に
排出して所望圧力差としたのち該排出弁を閉じ、所望圧
力差に達している場合は管路内の流体を外部に排出する
ことなくそのままの状態で、上記区切られた配管内の圧
力を測定して所定時間内の圧力変化が規定値以内である
か否かにより、上記上流弁の漏洩の有無を判断すること
を特徴とする配管路の監視方法。
(1) A method for monitoring leakage in a piping line separated by an upstream valve provided in a piping line that causes fluid to flow from an upstream side to a downstream side, and a downstream side, in which the piping line is filled with fluid. After closing the upstream and downstream valves in this state, calculate the difference between the pressure in the divided pipe and the fluid pressure on the upstream side of the upstream valve, and if the desired pressure difference has not been reached, check whether the pipe is connected to the outside. Open the valves below the above upstream valve and discharge the fluid in the pipeline to the outside to reach the desired pressure difference, then close the discharge valve, and if the desired pressure difference has been reached, the fluid in the pipeline is discharged to the outside. The pressure inside the separated piping is measured without being discharged, and the presence or absence of leakage from the upstream valve is determined based on whether the pressure change within a predetermined time is within a specified value. A characteristic method for monitoring piping.
(2)請求項(1)において、圧力および圧力差の測定
に際し、測定個所の流体温度による圧力補正を行なうこ
とを特徴とする配管路の監視方法。
(2) A method for monitoring piping according to claim (1), characterized in that when measuring the pressure and pressure difference, pressure is corrected based on the fluid temperature at the measurement location.
(3)流体流路の開閉を行なう複数個の弁を有し、かつ
、流路内の流体を加熱する加熱装置を備えて流体を上流
側から下流側へ流動させる配管路の監視方法において、
上記弁の開閉状況を検知し登録する工程と、この登録結
果に基づき上記配管路が上流弁と下流弁で閉止されて密
閉路を形成するか否かを判断する工程と、上記判断の結
果密閉路を形成する配管路については、該配管路内に設
けた弁の少なくとも1個の弁を開放して、該配管路内の
異状圧力上昇を防止する工程とからなることを特徴とす
る配管路の監視方法。
(3) A method for monitoring a piping path that has a plurality of valves that open and close the fluid flow path, and a heating device that heats the fluid in the flow path to flow the fluid from the upstream side to the downstream side,
A step of detecting and registering the opening/closing status of the valve, a step of determining whether or not the piping path is closed by the upstream valve and the downstream valve to form a sealed path based on the registration result, and a step of sealing as a result of the above judgment. With respect to the piping path forming the pipe path, the piping path is characterized by comprising the step of opening at least one valve of the valves provided in the piping path to prevent an abnormal pressure increase in the piping path. monitoring method.
JP33028388A 1988-12-27 1988-12-27 Monitoring method for pipe Pending JPH02176440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33028388A JPH02176440A (en) 1988-12-27 1988-12-27 Monitoring method for pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33028388A JPH02176440A (en) 1988-12-27 1988-12-27 Monitoring method for pipe

Publications (1)

Publication Number Publication Date
JPH02176440A true JPH02176440A (en) 1990-07-09

Family

ID=18230920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33028388A Pending JPH02176440A (en) 1988-12-27 1988-12-27 Monitoring method for pipe

Country Status (1)

Country Link
JP (1) JPH02176440A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027576A (en) * 1999-07-13 2001-01-30 Nkk Corp Method for detecting leak in pipeline and its device
US6851298B2 (en) 2002-11-22 2005-02-08 Toyota Jidosha Kabushiki Kaisha Fluid leakage detection apparatus and fluid leakage detection method
JP2007278730A (en) * 2006-04-03 2007-10-25 Hajime:Kk Leakage inspection method of piping
US7608354B2 (en) 2004-03-16 2009-10-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302340A (en) * 1987-03-16 1988-12-09 ゲー・クロムシユロエデル・アクチイエンゲゼルシヤフト Method and apparatus for implementing airtightness test of two valves arranged in fluid pipeline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302340A (en) * 1987-03-16 1988-12-09 ゲー・クロムシユロエデル・アクチイエンゲゼルシヤフト Method and apparatus for implementing airtightness test of two valves arranged in fluid pipeline

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027576A (en) * 1999-07-13 2001-01-30 Nkk Corp Method for detecting leak in pipeline and its device
US6851298B2 (en) 2002-11-22 2005-02-08 Toyota Jidosha Kabushiki Kaisha Fluid leakage detection apparatus and fluid leakage detection method
US7608354B2 (en) 2004-03-16 2009-10-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of same
JP2007278730A (en) * 2006-04-03 2007-10-25 Hajime:Kk Leakage inspection method of piping

Similar Documents

Publication Publication Date Title
US7940189B2 (en) Leak detector for process valve
US5072621A (en) Pipeline leak detector apparatus and method
KR940009575A (en) Gas supply equipment abnormality detection device and detection method
US8725434B2 (en) Wellhead hips with automatic testing and self-diagnostics
WO2012153454A1 (en) Pressure-based flow control device with flow monitor, fluid-supply-system anomaly detection method using same, and method for handling monitor flow anomalies
US4883087A (en) Central heating system and water system and method for controlling the tightness thereof
US20120324985A1 (en) Fluid leak detection system
RU2012158359A (en) FUEL LEAKAGE DETECTION SYSTEM AND TURBINE SUPPLIED WITH SUCH SYSTEM
EA014265B1 (en) Apparatus and method for wellhead high integrity protection system
JP2010210528A (en) Mass flow controller inspection system, testing method, and testing program
JP7084155B2 (en) Tube leak detection device and tube leak detection method
US20100132813A1 (en) Valve leakby diagnostics
KR20100022609A (en) Water heater having a water leakage sensing device
TW201802438A (en) Gas supply device capable of measuring flow rate, flowmeter, and flow rate measuring method
CN209014221U (en) Pipeline pressure testing device
JPH02176440A (en) Monitoring method for pipe
GB2491153A (en) System for leakage prevention and pressure regulation in fluid pipe systems
KR100958939B1 (en) Fuel gas moisture monitoring apparatus and method of monitoring fuel gas moisture
CN110887621A (en) Electromagnetic valve simulation fault detection method
RU2758876C1 (en) Method for determining level of leakage through leaky gate of ball valve of shut-off and control valve in operating mode and device for its implementation
CN110940500A (en) Measuring chamber and measuring rack
KR20170123550A (en) Gas Leakage Sensing System of 3-Way Valve
JPH02141637A (en) Valve-leak detector
KR100201218B1 (en) Efficiency tester for oil pressure pump
CN218971563U (en) Solenoid valve detection device and equipment