JPH02168658A - Apparatus for cooling electronic device - Google Patents

Apparatus for cooling electronic device

Info

Publication number
JPH02168658A
JPH02168658A JP1246314A JP24631489A JPH02168658A JP H02168658 A JPH02168658 A JP H02168658A JP 1246314 A JP1246314 A JP 1246314A JP 24631489 A JP24631489 A JP 24631489A JP H02168658 A JPH02168658 A JP H02168658A
Authority
JP
Japan
Prior art keywords
electronic device
cooling
thermally conductive
groove
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1246314A
Other languages
Japanese (ja)
Other versions
JP2728518B2 (en
Inventor
Takahiro Oguro
崇弘 大黒
Nobuo Kawasaki
川崎 伸夫
Noriyuki Ashiwake
芦分 範行
Keizo Kawamura
圭三 川村
Shizuo Zushi
頭士 鎮夫
Mitsuo Miyamoto
宮本 光男
Atsushi Morihara
淳 森原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1246314A priority Critical patent/JP2728518B2/en
Publication of JPH02168658A publication Critical patent/JPH02168658A/en
Priority to US07/839,071 priority patent/US5345107A/en
Application granted granted Critical
Publication of JP2728518B2 publication Critical patent/JP2728518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PURPOSE:To improve heat conductivity for realising efficient cooling performance by providing grooves having a function of holding and preventing heat conductive grease interposed between an electronic device and a cooling body in contact therewith from being pressed out of the contact face. CONSTITUTION:A water-cooling jacket 7 is attached to a cooling face 6 of a ceramic package 4 by clamps 8. On a heat exchanging face 9 of the water- cooling jacket 7, there are provided a multiplicity of grooves 10 communicating with the periphery of the heat exchanging face. A high heat conducting grease 11 is interposed between the cooling face 6 of the package 4 and the heat exchanging face 9 of the water-cooling jacket 7. Heat generated by an LSI chip is conducted to the ceramic package 4 by pressing flexible heat-conducting contacts 5 against the rears of microchip carriers 2, then conducted from the heat exchanging face 6 of the package 4 to the heat exchanging face of the water-cooling jacket 7 through the high heat conductive grease 11 and finally fetched by the cooling water. In this manner, the heat conductivity and the cooling performance as well can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体チップ、一つの半導体チップを収容し
たチップモジュールあるいは多数の半導体チップを収容
したマルチチップモジュールなどの電子デバイスを冷却
する電子デバイスの冷却装置に関すさせて、冷却するも
のは、特開昭62−268148などに記載されている
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electronic device for cooling an electronic device such as a semiconductor chip, a chip module containing one semiconductor chip, or a multi-chip module containing a large number of semiconductor chips. Regarding the cooling device, a cooling device is described in Japanese Patent Application Laid-Open No. 62-268148.

一方、米国特許第4,567,505号の明細書には、
そのFig、1に示すように、入口が狭く、底に行くほ
ど末広がる、いわゆるリエントラント状の微小な溝を多
数形成した冷却体の伝熱面と、発熱体である半導体チッ
プ平滑面との間に、シリコン油など個体表面を濡れ拡が
り易い液体を介在させ、上記液体表面張力による吸着力
によって、両伝熱面を密着させ、接触熱抵抗を小さくさ
せる技術が開示されている。
On the other hand, in the specification of U.S. Patent No. 4,567,505,
As shown in Fig. 1, between the heat transfer surface of the cooling body, which has a large number of so-called reentrant-like micro grooves that have a narrow entrance and widen toward the bottom, and the smooth surface of the semiconductor chip, which is the heating element. A technique has been disclosed in which a liquid that easily wets and spreads on the solid surface, such as silicone oil, is interposed, and the two heat transfer surfaces are brought into close contact with each other by the adsorption force due to the surface tension of the liquid, thereby reducing the contact thermal resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のうち前者のものには、チップと冷却体間
に介在された熱伝導物質の層を薄くして熱伝導性を向上
させる点については何も考慮されておらず、また多数の
半導体チップを収容してマルチチップモジュールとした
電子デバイスの冷却に関しても考慮されていない。
The former of the above-mentioned conventional techniques does not take into account the issue of thinning the layer of thermally conductive material interposed between the chip and the cooling body to improve thermal conductivity. There is also no consideration given to the cooling of electronic devices that accommodate chips and are made into multi-chip modules.

更に、米国特許節4,567,505号で開示されてい
る冷却構造の場合、冷却体は、液体の表面張力によって
のみ半導体デバイスに吸着されているだけなので、冷却
体あるいは半導体デバイスのいずれか一方の伝熱面に反
りが発生していると、冷却体あるいは半導体デバイスの
剛性の大きさのために、液体の吸着力による反り矯正は
十分に行えず二つの伝熱面間の液体層の厚さを一定に保
つことができない。
Furthermore, in the case of the cooling structure disclosed in U.S. Pat. If the heat transfer surfaces of the two heat transfer surfaces are warped, due to the rigidity of the cooling body or the semiconductor device, the warp cannot be corrected sufficiently by the adsorption force of the liquid, and the thickness of the liquid layer between the two heat transfer surfaces will decrease. It is not possible to keep the temperature constant.

外力を加えて変形を抑えているわけでないので、接触面
の反りの大きさによって液体層の厚さが変化する。従っ
て、接触熱抵抗を安定に保つことができない。
Since deformation is not suppressed by applying external force, the thickness of the liquid layer changes depending on the degree of warpage of the contact surface. Therefore, the contact thermal resistance cannot be kept stable.

また、半導体デバイスに吸着している冷却体を引き離そ
うとすると、溝形状がリエントラン状であるため、引き
離すにつれて、液体は溝の入口に引き寄せられると、液
体の凹状表面の曲率半径は一段と小さくなる。その結果
、液体の圧力は周囲圧力よりますます負圧になり、吸着
力が増大する。このため、引離す力は大きくなる。引離
し力を小さくすれば、吸着力が弱くなり、接触熱抵抗を
小さくすることができない6反対に吸着力を大きくすれ
ば、引離す時。
Furthermore, when an attempt is made to pull apart the cooling body adsorbed to the semiconductor device, since the groove shape is reentrant, as the cooling body is pulled away, the liquid is drawn toward the entrance of the groove, and the radius of curvature of the concave surface of the liquid becomes smaller. As a result, the pressure of the liquid becomes more and more negative than the ambient pressure, and the adsorption force increases. For this reason, the pulling force increases. If the separation force is reduced, the adsorption force will be weakened and the contact thermal resistance cannot be reduced.6 Conversely, if the adsorption force is increased, the adsorption force will be weakened and the contact thermal resistance will not be reduced.

半導体デバイス自身あるいは半導体デバイスの電気接触
部などに損傷を与えてしまう。
Damage may occur to the semiconductor device itself or to the electrical contacts of the semiconductor device.

以上、従来の技術はいずれも接触面の面圧を小さく抑え
ながら冷却性能を向上させ、かつ被冷却体から冷却体を
引離す際に分離し易さを同時に満足するような配慮がな
されていない。
As mentioned above, none of the conventional technologies has been designed to improve cooling performance while keeping the surface pressure on the contact surface low, and to simultaneously satisfy the requirements for ease of separation when separating the cooling element from the object to be cooled. .

本発明の目的は、熱伝導性を向上して効率よく冷却でき
る電子デバイスの冷却装置を得ることにある。
An object of the present invention is to obtain a cooling device for an electronic device that can improve thermal conductivity and efficiently cool the electronic device.

本発明の他の目的は、多数の半導体チップを収容してマ
ルチチップモジュールとした電子デバイスを効率よく冷
却することにある。
Another object of the present invention is to efficiently cool an electronic device that accommodates a large number of semiconductor chips and is made into a multi-chip module.

本発明の更に他の目的は、電子デバイスと冷却体間に薄
く一様に熱伝導性流体を介在させてなる電子デバイスの
冷却装置を得ることにある。
Still another object of the present invention is to obtain a cooling device for an electronic device in which a thin and uniform thermally conductive fluid is interposed between the electronic device and a cooling body.

本発明の更に他の目的は、電子デバイスに大きな圧力を
かけることなく、熱伝導グリースを電子デバイスと冷却
体間に薄く一様に介在させてなる電子デバイスの冷却装
置を得ることにある。
Still another object of the present invention is to obtain a cooling device for an electronic device in which thermally conductive grease is thinly and uniformly interposed between the electronic device and the cooling body without applying a large pressure to the electronic device.

本発明の他の目的は、製造、組立、分解が容易でかつ冷
却性能の良い電子デバイスの冷却装置を得ることにある
Another object of the present invention is to obtain a cooling device for electronic devices that is easy to manufacture, assemble, and disassemble, and has good cooling performance.

本発明の更に他の目的は、電子デバイスと冷却体との接
触面圧を小さく抑えながら冷却性能を向上でき、かつ電
子デバイスから冷却体を容易に引離すことのできる電子
デバイスの冷却装置を得ることにある。
Still another object of the present invention is to obtain a cooling device for an electronic device that can improve cooling performance while suppressing the contact surface pressure between the electronic device and the cooling body, and that can easily separate the cooling body from the electronic device. There is a particular thing.

本発明の更に他の目的は、電子デバイスと冷却体間に接
触介在する熱伝導グリースが接触面の外にはみ出さない
ように、熱伝導グリースの保持機能を有する溝を備えた
電子デバイスの冷却装置を得ることにある。
Still another object of the present invention is to cool an electronic device by providing a groove having a function of retaining thermally conductive grease so that the thermally conductive grease interposed in contact between the electronic device and the cooling body does not protrude outside the contact surface. It's about getting the equipment.

本発明の更に他の目的は、電子デバイスと冷却体間に介
在する熱伝導グリースが電子デバイスと冷却体間に常に
薄く一様に安定に介在されるように電子デバイスと冷却
体を締付けることのできる電子デバイスの冷却装置を得
ることにある。
Still another object of the present invention is to tighten an electronic device and a cooling body so that the thermally conductive grease interposed between the electronic device and the cooling body is always thinly, uniformly, and stably interposed between the electronic device and the cooling body. The objective is to obtain a cooling system for electronic devices that can be used.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明の特徴は、電子デバイス
と、この電子デバイスで発生する熱を除去する冷却体と
、前記電子デバイスの伝熱面と冷却体の伝熱面との間に
介在された高熱伝導率の熱伝導性流体と、前記冷却体を
前記電子デバイスに密着させるための締付手段と、前記
電子デバイスまたは冷却体の伝熱面に形成されかつ伝熱
面周囲の空間に連通された多数の溝とを備えたことにあ
る。
In order to achieve the above object, the present invention has an electronic device, a cooling body for removing heat generated in the electronic device, and an electronic device interposed between a heat transfer surface of the electronic device and a heat transfer surface of the cooling body. a thermally conductive fluid with a high thermal conductivity; a tightening means for tightly contacting the cooling body with the electronic device; and a tightening means formed on a heat transfer surface of the electronic device or the cooling body and communicating with a space around the heat transfer surface. It is equipped with a large number of grooves.

本発明の他の特徴は、固体表面を濡らしにくくかつ高熱
伝導率の熱伝導性流体を塗布した電子デバイスの放熱面
に、外力によって冷却体を密着接触させて電子デバイス
を冷却する構成とし、さらに前記電子デバイスあるいは
冷却体のいずれか一方の伝熱面を平滑面とし、他方の伝
熱面は平滑な伝熱面とこの平滑な伝熱面に形成され周囲
に連通された多数の溝とを有する溝付面とし、前記溝の
容積は隣接する溝ピッチ間に塗布された前記高熱伝導性
流体の体積よりも大としたことにある。
Another feature of the present invention is that the electronic device is cooled by bringing a cooling body into close contact with an external force on the heat dissipation surface of the electronic device, which is coated with a thermally conductive fluid that does not easily wet the solid surface and has high thermal conductivity. Either the electronic device or the cooling body has a smooth heat transfer surface, and the other heat transfer surface has a smooth heat transfer surface and a large number of grooves formed on the smooth heat transfer surface and communicating with the surroundings. The grooved surface has a grooved surface, and the volume of the groove is larger than the volume of the highly thermally conductive fluid applied between adjacent groove pitches.

本発明の更に他の特徴は、電子デバイスの放熱面に高熱
伝導率の熱伝導性流体を介して密着接触させた冷却体と
、前記電子デバイスまたは冷却体のいずれかの伝熱面に
形成され伝熱面外部へ連通する多数の溝とを備え、前記
溝の容積を前記伝熱面に介在させた熱伝導性流体の体積
よりも大として、前記伝熱面に介在させた熱伝導性流体
が前記溝内に収容されても該溝内に外部と連通ずる空間
が残るように構成した電子デバイスの冷却装置にある。
Still other features of the present invention include a cooling body that is in close contact with a heat dissipation surface of an electronic device via a thermally conductive fluid with high thermal conductivity, and a heat transfer surface of either the electronic device or the cooling body. A thermally conductive fluid interposed in the heat transfer surface, comprising a large number of grooves communicating with the outside of the heat transfer surface, the volume of the grooves being larger than the volume of the thermally conductive fluid interposed in the heat transfer surface. The cooling device for an electronic device is configured such that a space communicating with the outside remains in the groove even when the groove is accommodated in the groove.

本発明の更に他の特徴は、冷却されるべき電子デバイス
と、この電子デバイスの放熱部側に設けられた熱伝導性
流体と、この熱伝導性流体を介して前記電子デバイスの
放熱部側に密着され、その密着部に外部と連通ずる多数
の溝を有する冷却体とを備えた電子デバイスの冷却装置
にある。
Still other features of the present invention include an electronic device to be cooled, a thermally conductive fluid provided on the side of the heat sink of the electronic device, and a thermally conductive fluid provided on the side of the heat sink of the electronic device through the heat conductive fluid. A cooling device for an electronic device includes a cooling body that is closely attached and has a large number of grooves communicating with the outside in the tightly attached portion.

本発明の他の特徴は、パッケージ内に複数の半導体チッ
プを収容してなる電子デバイスと、この電子デバイスで
発生する熱を除去する冷却体と、前記電子デバイスの伝
熱面の全面と冷却体の伝熱面との間に介在された高熱伝
導率の熱伝導性流体と、前記冷却体を前記電子デバイス
に密着させるための締付手段とを備えた電子デバイスの
冷却装置。
Other features of the present invention include an electronic device that includes a plurality of semiconductor chips housed in a package, a cooling body that removes heat generated in the electronic device, and a cooling body that covers the entire heat transfer surface of the electronic device. A cooling device for an electronic device, comprising: a thermally conductive fluid with high thermal conductivity interposed between the cooling body and the heat transfer surface of the electronic device; and a tightening means for tightly contacting the cooling body with the electronic device.

本発明の更に他の特徴は、多数のLSIチップを搭載し
たセラミックス製多層配線基板をセラミック製パッケー
ジで気密封止し、前記LISチップで発生した熱を前記
セラミック製パッケージへ可撓性熱伝導接触子を介して
伝達するように構成したマルチチップモジュールとの、
このマルチチップモジュールの放熱部側の全面に、高熱
伝導率でかつ高粘性の熱伝導性流体を介在させて密着さ
れ、内部を冷却水が流れる水冷ジャケットと、前記熱伝
導性流体を溝層状態として前記水冷ジャケットとマルチ
チップモジュール間に介在させるために水冷ジャケット
をマルチチップモジュールに密着させるための手段とを
備えた電子デバイスの冷却装置にある。
Still another feature of the present invention is that a ceramic multilayer wiring board on which a large number of LSI chips are mounted is hermetically sealed with a ceramic package, and the heat generated in the LIS chips is transferred to the ceramic package through flexible heat conduction contact. with a multi-chip module configured to communicate through the child.
A water cooling jacket is closely attached to the entire surface of the heat dissipation side of this multi-chip module with a thermally conductive fluid having high thermal conductivity and high viscosity interposed therebetween, and a water cooling jacket through which cooling water flows, and the thermally conductive fluid is arranged in a groove layer. According to another aspect of the present invention, there is provided a cooling apparatus for an electronic device, comprising the water cooling jacket and means for bringing the water cooling jacket into close contact with the multichip module so as to be interposed between the multichip modules.

本発明の更に他の特徴は、多数のLSIチップを搭載し
たセラミックス製多層配線基板をパッケージキャップで
覆い、前記LSIチップで発生した熱を前記パッケージ
キャップへ可撓性熱伝導接触子を介して伝達すように、
前記LSIチップと前記可撓性熱伝導接触子との接触面
間に高熱伝導性流体を薄層状態に介在させ、前記接触面
を互いに密着させるための手段を備えた電子デバイスの
冷却装置にある。
Still another feature of the present invention is that a ceramic multilayer wiring board on which a large number of LSI chips are mounted is covered with a package cap, and heat generated in the LSI chips is transferred to the package cap via a flexible thermally conductive contact. So that
A cooling device for an electronic device, comprising means for interposing a highly thermally conductive fluid in a thin layer between the contact surfaces of the LSI chip and the flexible thermally conductive contact, and bringing the contact surfaces into close contact with each other. .

本発明の更に他の特徴は、前記可撓性熱伝導接触子の内
部の摺動接触面間にも高熱伝導性流体を介在させた電子
デバイスの冷却装置にある。
Still another feature of the present invention resides in an electronic device cooling device in which a highly thermally conductive fluid is also interposed between the sliding contact surfaces inside the flexible thermally conductive contact.

〔作用〕[Effect]

電子デバイスの冷却装置では、電子デバイスと冷却体と
の間に熱伝導性グリースを介在させ、前記両者間に空気
層をなくして熱伝導性を向上させることが有効である。
In a cooling device for an electronic device, it is effective to interpose thermally conductive grease between the electronic device and the cooling body to eliminate an air layer between the two and improve thermal conductivity.

冷却性能を更に高めるためには、前記熱伝導性グリース
に微細な酸化亜鉛粒子や高熱伝導セラミックス粒子など
を混入させ、熱伝導率を大きくし、かつ、電子デバイス
を冷却体にボルトなどの締結法で大きな圧力をかけて締
め付けることにより、熱伝導性グリースを出来るだけ薄
く一様に拡げ、かつ熱伝導性グリース内に気泡が残留し
ないようにするのがよい。
In order to further improve the cooling performance, it is possible to increase the thermal conductivity by mixing fine zinc oxide particles or highly thermally conductive ceramic particles in the thermally conductive grease, and to fasten the electronic device to the cooling body using bolts or other methods. It is best to spread the thermally conductive grease as thinly and uniformly as possible by tightening it with a large amount of pressure, and to prevent any air bubbles from remaining in the thermally conductive grease.

二つの平滑伝熱面間に介在する熱伝導性グリースを薄く
して、接触熱抵抗を小さくしようとすると、伝熱面間に
大きな面圧力を加えなければならない。
If an attempt is made to reduce the contact thermal resistance by thinning the thermally conductive grease interposed between two smooth heat transfer surfaces, a large surface pressure must be applied between the heat transfer surfaces.

特に、伝熱面が大きくなるほど、余分な熱伝導性グリー
スを流動させて伝熱面外に追い出す距離が長くなるので
、さらに大きな面圧力が必要となる。高熱伝導性グリー
スは、熱伝導率を高めるために高熱伝導率の微小粒子を
高密度に混入させているので、非常に粘性係数が大きく
、固体表面とは濡れにくい流体である。したがって、高
熱伝導性グリース内気泡が残らないようにかつ一様に薄
くするには、大きな面圧力を加えなければならない。こ
のため、シリコン結晶から成る半導体チップ、あるいは
、アルミナAQ、O,又は窒化アルミAQN又は高熱伝
導性SiCなどから構成されている半導体パッケージな
どの電子デバイスの場合、これらの材料は、金属などに
比べ著しく強度が低く、また電気接続部の強度も低いの
で、大きな面圧力を加えると、電子デバイスを損傷させ
る恐れがある。更に、半導体パッケージにネジ部を設け
て、冷却体をボルト締めにすると、ネジ周辺に局部的に
大きな力が発生し、電子デバイスを破壊することもある
In particular, as the heat transfer surface becomes larger, the distance over which excess thermally conductive grease is forced to flow and be expelled from the heat transfer surface becomes longer, and therefore even greater surface pressure is required. Highly thermally conductive grease is a fluid that has very high viscosity coefficients and is difficult to wet solid surfaces because it is mixed with high thermally conductive microparticles at a high density to increase thermal conductivity. Therefore, a large surface pressure must be applied to ensure that no air bubbles remain within the highly thermally conductive grease and to thin it uniformly. Therefore, in the case of electronic devices such as semiconductor chips made of silicon crystal or semiconductor packages made of alumina AQ, O, aluminum nitride AQN, or high thermal conductivity SiC, these materials are less expensive than metals. Since the strength is extremely low and the strength of the electrical connections is also low, applying large surface pressure may damage the electronic device. Furthermore, if a threaded portion is provided in a semiconductor package and the cooling body is tightened with bolts, a large force is generated locally around the thread, which may destroy the electronic device.

一方、上記の電子デバイスを冷却体に取り付けた後、電
子デバイスが故障した場合、冷却体を電子デバイスから
分離させる必要がある。この場合、−担強く密着した二
つの物体を引離そうとしても、熱伝導性グリースを簡単
に分断させることはできない。
On the other hand, if the electronic device fails after the electronic device is attached to the cooling body, it is necessary to separate the cooling body from the electronic device. In this case, the thermally conductive grease cannot be easily separated even if two objects that are tightly adhered to each other are separated.

電子デバイスから冷却体を強い力で引離そうとすると、
電子デバイス自身あるいは取り付は支持部又は電気接続
部を破損させてしまう、したがって、破損防止を考える
と、熱伝導性グリース層を薄くすることはできず、また
伝熱面の大きさも大きくすることができない。
If you try to pull the cooling body away from the electronic device with strong force,
The electronic device itself or its mounting may damage the supporting parts or electrical connections. Therefore, in order to prevent damage, the thermally conductive grease layer cannot be made thinner, and the size of the heat transfer surface must also be increased. I can't.

更に、単に、電子デバイスあるいは冷却体に熱伝導性グ
リースを塗布し、互いに接触加圧すると、互いの接触面
間から余分の熱伝導性グリースがはみ出してくる。した
がって、熱伝導性グリースのはみ出しを防止しようとす
ると、互いの接触面の反り精度を向上したり、接触面圧
力及び塗布量などのコントロールを厳しく行わなければ
ならない。
Furthermore, if electronic devices or cooling bodies are simply coated with thermally conductive grease and pressed into contact with each other, excess thermally conductive grease will ooze out from between the contact surfaces. Therefore, in order to prevent the thermally conductive grease from spilling out, it is necessary to improve the accuracy of the warping of the mutually contacting surfaces, and to strictly control the contact surface pressure, application amount, etc.

そこで、本発明では、電子デバイスあるいは冷却体のい
ずれか一方の平滑伝熱面上に、固体表面を濡らしにくい
高熱伝導性流体を塗布し、他方の伝熱面には伝熱面の周
囲と連通ずる多数の溝を設け、上記溝の大きさは、隣接
する溝間に塗布された高熱伝導性流体が溝の内部に押し
込められても、外部と連通し得る空間を残すような大き
さとした。
Therefore, in the present invention, a highly thermally conductive fluid that does not easily wet the solid surface is applied to the smooth heat transfer surface of either the electronic device or the cooling body, and the other heat transfer surface is connected to the surroundings of the heat transfer surface. A large number of communicating grooves are provided, and the grooves are sized to leave a space that can communicate with the outside even if the highly thermally conductive fluid applied between adjacent grooves is forced into the grooves.

このように、電子デバイスあるいは冷却体のいずれか一
方の伝熱面に多数の溝を設けることにより、高熱伝導性
流体と接触する伝熱面の幅は小さく分断される。溝間隙
がΩの伝熱面を高熱伝導性流体の初期塗布厚さがδであ
る伝熱面に密着加圧すると、高熱伝導性流体の内部圧力
が上昇し、上記流体は溝の方に流動し始める。この際、
流体の接触面に剪断力τ、が働くので、流体を流動させ
る伝熱面の面圧力Wは、次式で与えられる。
In this manner, by providing a large number of grooves on the heat transfer surface of either the electronic device or the cooling body, the width of the heat transfer surface that comes into contact with the highly thermally conductive fluid is divided into small pieces. When a heat transfer surface with a groove gap of Ω is closely pressed against a heat transfer surface with a highly thermally conductive fluid coated with an initial coating thickness of δ, the internal pressure of the highly thermally conductive fluid increases and the fluid flows toward the grooves. Begin to. On this occasion,
Since a shearing force τ acts on the fluid contact surface, the surface pressure W on the heat transfer surface that causes the fluid to flow is given by the following equation.

W〉τV・−・・・(1) δ 従って、上式から溝間隙Qが小さくなるほど、面圧力W
は小さくなる。溝の大きさは、隣接する溝間に塗布され
た高熱伝導性流体が溝の内に押し込められても、外部と
連通し得る空間を残す程度の大きさであるため、溝によ
る分断効果をそこなうことがない。また、上記流体が溝
の方に追し出されて行くにつれ、上記流体層内に混入し
ていた気泡も同時に押し出され、溝を通じて外部へと放
出される。以上の作用によって、小さな面圧力で、高熱
伝導性流体層を薄く介在させることができ、電子デバイ
スと冷却体間との接触熱抵抗を小さく、かつ安定に保つ
ことができる。
W〉τV・−・・・・(1) δ Therefore, from the above equation, the smaller the groove gap Q, the more the surface pressure W
becomes smaller. The grooves are large enough to leave a space that can communicate with the outside even if the highly thermally conductive fluid applied between adjacent grooves is forced into the grooves, so the dividing effect of the grooves is impaired. Never. Further, as the fluid is forced out toward the groove, air bubbles mixed in the fluid layer are also simultaneously pushed out and discharged to the outside through the groove. Due to the above-described effects, a thin layer of highly thermally conductive fluid can be interposed with a small surface pressure, and the thermal contact resistance between the electronic device and the cooling body can be kept small and stable.

更に、溝の大きさが塗布量より大きく形成されているの
で、接触面に塗布された上記流体が溝の方に追し出され
来ても、上記流体は固体表面を濡れ拡がりにくい流体で
あるので、溝の位置で流れが止められ、溝の位置より外
側にはみ出すことが防止される。
Furthermore, since the size of the groove is larger than the amount of coating, even if the fluid applied to the contact surface is forced out toward the groove, the fluid does not easily wet the solid surface and spread. Therefore, the flow is stopped at the groove position and is prevented from protruding outside the groove position.

次に、電子デバイスと冷却体とを引き離そうとすると、
高熱伝導性流体は、溝内より吸い出される。
Next, when trying to separate the electronic device and the cooling body,
The highly thermally conductive fluid is sucked out from within the groove.

一般に高熱伝導性グリースあるいは高熱伝導性接着剤な
どの熱伝導性流体は固体表面は濡れ拡がりにくい流体で
あるため、接触角度は90″′より大きくなり、溝内に
押しのけられた流体の気液界面は凸形の表面形状になる
。凸形界面を形成する溝内流体の圧力P1は1周囲の空
気圧力P8より(σ/r)だけ高い圧力を示す。ここで
、σは流体の表面張力、rは凸形界面の曲率半径である
。このように、溝内流体の圧力は周囲圧力より高いので
、互いに伝熱面を弓き離し始めると溝内の流体は溝の内
から接触平面間へと流動する。その際、高熱伝導性流体
の気液界面が変形し始め、空気が流体層内に侵入する。
In general, thermally conductive fluids such as highly thermally conductive grease or highly thermally conductive adhesives do not easily wet and spread on solid surfaces, so the contact angle is greater than 90'', and the gas-liquid interface of the fluid displaced into the groove. has a convex surface shape.The pressure P1 of the fluid in the groove forming the convex interface is higher than the surrounding air pressure P8 by (σ/r).Here, σ is the surface tension of the fluid, r is the radius of curvature of the convex interface.Thus, since the pressure of the fluid in the groove is higher than the ambient pressure, when you start bowing the heat transfer surfaces away from each other, the fluid in the groove will move from inside the groove to between the contact planes. At this time, the gas-liquid interface of the highly thermally conductive fluid begins to deform, and air enters the fluid layer.

−担空気が侵入すると、隣接溝間の流体層の幅が狭いの
で、液体層は容易に分断される。溝が多数形成されるほ
ど、溝面と接する流体界面の長さ、いわゆるぬれぶち長
さは非常に長くなる。このため、流体界面を破断させる
発生ケ所は確率的に非常に多くなる。更に、溝付伝熱面
が密着する面積も小さくなるので、引離し力も小さくな
る。
- When the carrier air enters, the liquid layer is easily disrupted due to the narrow width of the fluid layer between adjacent grooves. The more grooves are formed, the longer the length of the fluid interface in contact with the groove surface, the so-called wetted edge length. Therefore, the number of places where the fluid interface breaks is probabilistically increased. Furthermore, since the area in which the grooved heat transfer surfaces come into close contact becomes smaller, the separation force also becomes smaller.

以上のように、電子デバイスあるいは電子デバイスの接
続部に損傷を与えない小さな荷重で、電子デバイスに冷
却体を取り付けることができ、常に安定にかつ小さな接
触熱抵抗を確保できる。しかも、互いに分離する際にも
小さな力で引離すことができ、組立2分解、保守が容易
になる。
As described above, a cooling body can be attached to an electronic device with a small load that does not damage the electronic device or the connecting portion of the electronic device, and a stable and low contact thermal resistance can always be ensured. Furthermore, when they are separated from each other, they can be pulled apart with a small force, making assembly, disassembly, and maintenance easier.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明を適用したマルチチップモジュールの
全体構造を示す、マルチチップモジュール1は、LSI
チップを内蔵したマイクロチップキャリア2を多数搭載
したセラミックス製多層配線基板3をセラミック製パッ
ケージ4で気密封止することにより作られている。LS
Iチップから発生する熱は、マイクロチップキャリア2
の背面に可撓性熱伝導接触子5を押し当てることにより
セラミック製パッケージ4に伝わる。前記可撓性熱伝導
接触子5の具体例は、第2図に示すように、パッケージ
4の内面に設けられた多数の平板状のフィン30、マイ
クロチップキャリア2に設けられ、前記フィン3oと微
小な間隙31をもって互いにかみ合うフィン32を有す
る熱伝導体33、および熱伝導体33をマイクロチップ
キャリア2に押し付けるためのばね34から構成されて
いる。なお、マイクロチップキャリア2は多数の導体層
及び絶縁層からなる配線基板3上に微小なはんだ付ボー
ル35を介してフェイスダウンボンディングされ、配線
基板3の裏面の多数のピン36に電気接続されている。
FIG. 1 shows the overall structure of a multi-chip module to which the present invention is applied. Multi-chip module 1 is an LSI
It is made by hermetically sealing a ceramic multilayer wiring board 3 on which a large number of microchip carriers 2 with built-in chips are mounted with a ceramic package 4. L.S.
The heat generated from the I-chip is transferred to the microchip carrier 2.
The heat is transferred to the ceramic package 4 by pressing the flexible heat conductive contact 5 against the back surface of the ceramic package 4. As shown in FIG. 2, a specific example of the flexible thermally conductive contact 5 includes a large number of flat fins 30 provided on the inner surface of the package 4, a plurality of flat fins 30 provided on the microchip carrier 2, and the fins 3o and It is composed of a thermal conductor 33 having fins 32 that engage with each other with a small gap 31, and a spring 34 for pressing the thermal conductor 33 against the microchip carrier 2. The microchip carrier 2 is face-down bonded onto a wiring board 3 made up of a large number of conductor layers and insulating layers via minute solder balls 35, and is electrically connected to a large number of pins 36 on the back side of the wiring board 3. There is.

一方、セラミックス製パッケージ4の冷却面6には内部
に低温度の冷却水が流れる水冷ジャケット(冷却体)7
が締付は金具8によって取り付けられている。水冷ジャ
ケット7の伝熱面9には、第3図にも示すように伝熱面
周囲と連通ずる多数の溝10が設けられている。そして
、パッケージ4の冷却面6と水冷ジャケット7の伝熱面
9との間には高熱伝導性グリース11が介在している。
On the other hand, the cooling surface 6 of the ceramic package 4 has a water-cooling jacket (cooling body) 7 in which low-temperature cooling water flows.
However, it is fastened by a metal fitting 8. The heat transfer surface 9 of the water cooling jacket 7 is provided with a large number of grooves 10 communicating with the periphery of the heat transfer surface, as also shown in FIG. Highly thermally conductive grease 11 is interposed between the cooling surface 6 of the package 4 and the heat transfer surface 9 of the water cooling jacket 7.

配線基板3とパッケージ4で囲まれた密閉空間37には
へりウスガスが満たされている。LSIチップで発生し
た熱は、チップと接触している熱伝導体33に伝えられ
、この熱伝導体33のフィン32から微小間隙31のヘ
リウムガス層を介してパッケージ4のフィン30に伝え
られる。パッケージ4に伝わった熱は、パッケージ4の
伝熱面6から高熱ち去られる。
A sealed space 37 surrounded by the wiring board 3 and the package 4 is filled with Helius gas. Heat generated in the LSI chip is transferred to a thermal conductor 33 in contact with the chip, and is transferred from the fins 32 of the thermal conductor 33 to the fins 30 of the package 4 via the helium gas layer in the minute gap 31. The heat transferred to the package 4 is removed from the heat transfer surface 6 of the package 4.

次に、マルチチップモジュール1のパッケージ4の伝熱
面6に高熱伝導性グリース11を一様に塗布し、多数の
溝10が形成された水冷ジャケット7の伝熱面9を単に
密着接触させた状態を第4図(a)に、その後互いに加
圧した後の状態を第4図(b)に、水冷ジャケット7を
パッケージ4から引き離す途中の状態を、第4図(C)
に示す。第4図(a)では、はぼ−様にパッケージ4の
伝熱面上に塗布された高熱伝導性グリース11の表面に
、水冷シャケドアの伝熱面が溝10の所を除いて接触し
ている状態である。第4図(a)の状態から水冷ジャケ
ット7をパッケージ4に対し締付は金具8で押し付は始
めると、第4図(b)に示すように、溝10間の伝熱間
が高熱伝導性グリース11内に食い込み、グリース11
は溝10にはみ出し、凸形の気液界面12を形成する。
Next, highly thermally conductive grease 11 was uniformly applied to the heat transfer surface 6 of the package 4 of the multichip module 1, and the heat transfer surface 9 of the water cooling jacket 7, in which a large number of grooves 10 were formed, was simply brought into close contact. The state is shown in FIG. 4(a), the state after pressurizing each other is shown in FIG. 4(b), and the state in the middle of separating the water cooling jacket 7 from the package 4 is shown in FIG. 4(C).
Shown below. In FIG. 4(a), the heat transfer surface of the water-cooled salmon door is in contact with the surface of the highly thermally conductive grease 11 applied on the heat transfer surface of the package 4, except for the grooves 10. It is in a state of being. When the water-cooling jacket 7 is tightened against the package 4 from the state shown in FIG. 4(a) and begins to be pressed using the metal fitting 8, the heat transfer gap between the grooves 10 is high as shown in FIG. 4(b). The grease 11 bites into the inside of the grease 11.
protrudes into the groove 10 and forms a convex gas-liquid interface 12.

高熱伝導性グリース11はぬれ拡がりにくい液体である
ため、グリースの気液界面は凸形となる。この際、互い
に隣接する溝10間の幅が充分狭く、また、溝10内に
はみ出したグリース11が溝10内を全部埋めつくさず
、溝10の底部に外部と連通ずる空間13が残されてい
るなら、水冷ジャケット7の押し付は力が小さくても、
水冷ジャケット7とパッケージ4との間に介在する高熱
伝導性グリース11は非常に薄い層となる。なお、水冷
ジャケット7の伝熱面9がグリース11に接触する際、
たとえグリース11内に気泡が混入したり、伝熱面9と
の濡れが悪くしても、グリース11が溝の方に移動する
につれ、濡れがよくなり、気泡も溝11から外部へと放
出される。この結果、水冷ジャケット7とパッケージ4
間の接触熱抵抗は小さく、かつ安定に保つことができる
Since the highly thermally conductive grease 11 is a liquid that does not easily spread, the gas-liquid interface of the grease has a convex shape. At this time, the width between adjacent grooves 10 is sufficiently narrow, and the grease 11 protruding into the grooves 10 does not completely fill the inside of the grooves 10, leaving a space 13 at the bottom of the groove 10 that communicates with the outside. If there is, the pressing force of the water cooling jacket 7 is small,
The highly thermally conductive grease 11 interposed between the water cooling jacket 7 and the package 4 is a very thin layer. Note that when the heat transfer surface 9 of the water cooling jacket 7 comes into contact with the grease 11,
Even if air bubbles are mixed into the grease 11 or the wetting with the heat transfer surface 9 is poor, as the grease 11 moves toward the groove, the wetting becomes better and the air bubbles are also released from the groove 11 to the outside. Ru. As a result, water cooling jacket 7 and package 4
The contact thermal resistance between them can be kept small and stable.

次に、パッケージ4が故障した際、あるいはパッケージ
4を保守点検する際、パッケージ4から水冷ジャケット
7を分離することが必要になる。この場合でも、伝熱面
に溝が設けられていると、小さな力で分離することがで
きる。すなわち、第4図(b)の状態で密着している状
態では、グリースの溝内気液界面が凸形になっているの
で、グリース内の圧力は、グリース周囲の圧力より(σ
/r)だけ高くなっている。ここで、σはグリースの表
面張力、rは凸形気液界面の曲率半径を示す。このため
、水冷ジャケット7をパッケージ4から何らかの外力で
引き離し始めると、溝内のグリース11は、伝熱面9と
パッケージ4との間の隙間に向って容易に流動し始める
。そして、第4図(c)に示すように、溝内グリースは
吸い出され、グリースの溝内気液界面は凹形に形成され
る。ここで、高熱伝導性グリースはぬれ拡がりにくい流
体であるので、吸い出されたグリースの気液界面は必ず
しも−様な面を形成せず、不瑣 均−な面となる。この不≠−な所から、グリース層11
内に空気が侵入し始め、−担空気が侵入すれば溝間隔が
狭いため、グリース層11は容易に分断される。特に、
溝10の本数を多く設けるほど、互いに密着し合う幅が
小さくなり、かつ、ぬれ状態が不均一となる個所も増大
する。従って、小さな力で水冷ジャケット7をパッケー
ジ4から、パッケージ4に損傷を与えず容易に分離させ
ることができる。
Next, when the package 4 breaks down or when the package 4 is to be maintained or inspected, it becomes necessary to separate the water cooling jacket 7 from the package 4. Even in this case, if grooves are provided on the heat transfer surface, separation can be achieved with a small force. In other words, when they are in close contact as shown in Figure 4(b), the gas-liquid interface in the grease groove is convex, so the pressure inside the grease is smaller than the pressure around the grease (σ
/r). Here, σ represents the surface tension of the grease, and r represents the radius of curvature of the convex gas-liquid interface. Therefore, when the water cooling jacket 7 begins to be pulled away from the package 4 by some external force, the grease 11 in the groove begins to easily flow toward the gap between the heat transfer surface 9 and the package 4. Then, as shown in FIG. 4(c), the grease in the groove is sucked out, and the gas-liquid interface of the grease in the groove is formed into a concave shape. Here, since the highly thermally conductive grease is a fluid that does not easily spread, the gas-liquid interface of the sucked out grease does not necessarily form a flat surface, but rather an uneven surface. From this non≠− place, the grease layer 11
If air begins to enter the groove, the grease layer 11 will be easily separated because the groove spacing is narrow. especially,
As the number of grooves 10 increases, the width of the grooves 10 in which they are in close contact with each other becomes smaller, and the number of locations where the wet state becomes uneven increases. Therefore, the water cooling jacket 7 can be easily separated from the package 4 with a small force without damaging the package 4.

なお、上記実施例において、水冷ジャケット側に溝を設
けたが、パッケージ側に設けてもよい、また、高熱伝導
性グリースの代りに高熱伝導性接着剤でも同様の作用、
効果が得られる。
In the above embodiment, the grooves were provided on the water-cooling jacket side, but they may also be provided on the package side. Also, the same effect can be obtained by using a high thermal conductive adhesive instead of the high thermal conductive grease.
Effects can be obtained.

第5図は水冷ジャケット14面に格子状に溝15を形成
した場合の例を示したものである。溝15の形成模様は
、置溝15が必ず外部と連通ずるようにすれば、どのよ
うな形態であってもよい。
FIG. 5 shows an example in which grooves 15 are formed in a grid pattern on the surface of the water cooling jacket 14. The groove 15 may be formed in any pattern as long as the groove 15 always communicates with the outside.

第6図は、置溝16の形状を溝の底に行はど狭くなるよ
うに構成した場合の例を示すものである。この場合、高
熱伝導性グリース11が溝16の内に入るほど、形成さ
れるグリースの凸形気液界面の曲率半径が小さくなるの
で、一つの溝16の内にグリース11が入りすぎると隣
接する溝16内のグリース11より内圧力が高くなる。
FIG. 6 shows an example in which the groove 16 is configured such that the rows become narrower at the bottom of the groove. In this case, as the highly thermally conductive grease 11 enters into the groove 16, the radius of curvature of the convex gas-liquid interface of the grease that is formed becomes smaller. The internal pressure is higher than that of the grease 11 in the groove 16.

このため、グリースの溝への侵入が抑えられ、置溝に均
一にグリースが押し出される自動調節機能をもつ。
For this reason, it has an automatic adjustment function that prevents grease from entering the groove and pushes out grease uniformly into the groove.

第7図は、平坦な平面の水冷ジャケットに溝を形成する
のでなく、球面状の伝熱面である水冷ジャケット17に
多数の溝18を形成した場合の例を示したものである。
FIG. 7 shows an example in which a large number of grooves 18 are formed in the water cooling jacket 17, which is a spherical heat transfer surface, instead of forming grooves in a flat water cooling jacket.

このようにすると、反対側のパッケージなどの伝熱面が
例え反っていて密着しにくい場合でも、球面状の水冷ジ
ャケット17の周囲を締め付は治具で押し付けることに
より、互いに良く密着させることができる。
In this way, even if the heat transfer surfaces of the packages on the opposite side are warped and difficult to adhere to, it is possible to make them adhere well to each other by pressing the periphery of the spherical water cooling jacket 17 with a tightening jig. can.

第1図に示した本発明装置における押し付は効果と引離
し効果を確認するため、次の実験を行った。
In order to confirm the pressing effect and the separating effect in the apparatus of the present invention shown in FIG. 1, the following experiment was conducted.

平滑面を有するセラミック製パッケージに4種類の銅製
水冷ジャケットを組み合せた。水冷ジャケットAは溝を
設けていない平滑面、水冷ジャケットBは溝幅1*m、
溝ピッチ6mm、溝本数13本、水冷ジャケットCは溝
幅1mm、溝ピッチ4m+n、溝本数19本。
Four types of copper water cooling jackets were combined into a ceramic package with a smooth surface. Water cooling jacket A has a smooth surface with no grooves, water cooling jacket B has a groove width of 1*m,
The groove pitch is 6mm, the number of grooves is 13, and the water cooling jacket C has a groove width of 1mm, a groove pitch of 4m+n, and the number of grooves is 19.

水冷ジャケットDは溝幅0 、5 n+m、溝ピッチ1
.5mm。
Water cooling jacket D has groove width 0, 5 n+m, groove pitch 1
.. 5mm.

溝本数51本である。なお、水冷ジャケットの大きさは
1100a角で、溝深さはいずれもQ、5mmである。
The number of grooves is 51. The size of the water cooling jacket is 1100 mm square, and the groove depth is Q, 5 mm.

パッケージに塗布する高熱伝導性グリース層は20〜1
00μmの厚さとした。
The layer of highly thermally conductive grease applied to the package is 20 to 1
The thickness was 00 μm.

押し付けた場合のデータを第8図に示す。水冷ジャケッ
トAとBを用い、グリースを50μmの厚さのマスクを
用いて塗り、締付荷重を50kg、100眩とし、締付
は開始後のグリース層の厚さをギャップセンサーで測定
した結果を示す。この結果、溝を設けた水冷ジャケット
BはAに比べすばやくグリース層が薄くなっていること
が分かる。
Figure 8 shows the data when pressed. Using water-cooled jackets A and B, grease was applied using a mask with a thickness of 50 μm, the tightening load was 50 kg and 100 glare, and the tightening was performed using a gap sensor that measured the thickness of the grease layer after the start. show. As a result, it can be seen that the grease layer of water cooling jacket B with grooves becomes thinner more quickly than that of jacket A.

一方、表1は上記水冷ジャケットを用いて、引離し実験
を行った時の引離し荷重を示す。溝を多く設けるほど引
離し力が小さくなる。この傾向はグリース層の厚さによ
って影響を受けない。
On the other hand, Table 1 shows the pull-off load when a pull-off experiment was conducted using the above-mentioned water-cooled jacket. The more grooves are provided, the smaller the peeling force is. This trend is not affected by the thickness of the grease layer.

表1 押し付けと、分離を更に容易にできる水冷ジャケットの
例を以下説明する。すなわち、水冷ジャケットの伝熱面
上に設けた多数の溝を水冷ジャケットの外周縁を貫通し
ないようにし、伝熱面のほぼ中央には水冷ジャケットを
貫通する穴を設けて、この穴に前記溝のすべを連通させ
るようにしたものである。
Table 1 An example of a water-cooled jacket that can further facilitate pressing and separation will be described below. That is, a large number of grooves provided on the heat transfer surface of the water cooling jacket are made so that they do not penetrate the outer periphery of the water cooling jacket, and a hole passing through the water cooling jacket is provided approximately in the center of the heat transfer surface, and the grooves are inserted into this hole. It is designed so that all the parts are connected to each other.

この具体例を第9図及び第10図に示す。すなわち、水
冷ジャケット19の伝熱面20上中央部に設けられた縦
横に走る多数の溝21は、伝熱面2oの外周縁に沿って
一周する溝22と互いに連通し、伝熱面20の外周縁を
貫通していない、そして、水冷ジャケット19のほぼ中
央に設けられ、かつ水冷ジャケット19を貫通する穴2
3と上記溝21.22とが互いに連通している。このよ
うに、多数の溝21゜22が設けられた伝熱面20を高
熱伝導性グリースと密着接触させ、若干互いに押し付は
合った後、貫通穴23から、溝内の空気を真空ポンプな
どで吸引すると、水冷ジャケットは溝内外の圧力差で容
易に押し付けられる。一方、水冷ジャケットを引き離そ
うとする場合は、上記貫通穴より圧縮空気を押し込めば
、溝内は加圧さ九、他の外力など加えずに容易に水冷ジ
ャケットを引き離すことができる。その際、圧縮空気は
水冷ジャケットとパッケージとを引き離す作用と、グリ
ース層を分断させる作用をする。
A specific example of this is shown in FIGS. 9 and 10. That is, a large number of grooves 21 running vertically and horizontally provided in the upper center of the heat transfer surface 20 of the water cooling jacket 19 are in communication with grooves 22 that run around the outer periphery of the heat transfer surface 2o. A hole 2 that does not penetrate the outer periphery, is provided approximately at the center of the water cooling jacket 19, and penetrates the water cooling jacket 19.
3 and the grooves 21, 22 communicate with each other. In this way, the heat transfer surface 20 provided with a large number of grooves 21 and 22 is brought into close contact with the highly thermally conductive grease, and after they are slightly pressed against each other, the air in the grooves is pumped through the through hole 23 using a vacuum pump or the like. When suction is applied, the water-cooled jacket is easily pressed due to the pressure difference inside and outside the groove. On the other hand, when attempting to separate the water-cooling jacket, by forcing compressed air through the through hole, the inside of the groove is pressurized, and the water-cooling jacket can be easily separated without applying any other external force. At this time, the compressed air acts to separate the water cooling jacket from the package and to separate the grease layer.

第11図及び第12図もそれぞれ第9図及び第10図に
示した例と同様の他の例を示すもので、第11図のもの
は、半径方向の溝24を同心円状の溝25を形成したも
のであり、第12図の例は、放射状に延びる多数の溝2
6を形成したものである。
11 and 12 also show other examples similar to the examples shown in FIGS. 9 and 10, respectively. In the example shown in FIG. 11, the radial groove 24 is replaced with a concentric groove 25. The example shown in FIG. 12 has a large number of grooves 2 extending radially.
6 was formed.

なお、上記実施例において、冷却体は水で冷却する水冷
ジャケットとしたが、空気など他の手段で冷却するもの
であってもよい。
In the above embodiments, the cooling body is a water-cooled jacket that is cooled by water, but it may be cooled by other means such as air.

第13図は、第1図に示した実施例と同様の他の実施例
を示すもので、第13図の締付は金具は、締付は外わく
81.板ばね82.この板ばね82を締付は外わく81
に固定する固定ネジ83.板バネ82の荷重を水冷ジャ
ケット7の中心に伝える荷重支持具84から構成されて
いる。このような構成にすると、マイクロチップキャリ
ア2の発熱及び水冷ジャケット7の冷却によって、セラ
ミック製パンケージ4の伝熱面6が熱変形して、反って
しまっても、水冷ジャケット7の中心を板バネ83の弾
性力によって常に荷重を加えているので、水冷ジャケッ
ト7の伝熱面9は、上記伝熱面6の熱変位に追従するこ
とができる。このため、各伝熱面69間に介在する高熱
伝導性グリース11層を常に一定の層厚に安定に保持す
ることができる。また、第13図の熱伝導グリース11
は溝10と溝10との間に形成されている伝熱平面9に
だけ介在させ、水冷ジャケット7の伝熱面9の外周から
グリース11がはみ出させないようにしている。すなわ
ち、最外周の溝10によってグリース11のはみ出しを
防止している。
FIG. 13 shows another embodiment similar to the embodiment shown in FIG. 1, in which the tightening of the metal fittings in FIG. Leaf spring 82. This plate spring 82 is tightened by the outer frame 81.
Fixing screw 83. It consists of a load support 84 that transmits the load of the leaf spring 82 to the center of the water cooling jacket 7. With this configuration, even if the heat transfer surface 6 of the ceramic pancage 4 is thermally deformed and warped due to the heat generation of the microchip carrier 2 and the cooling of the water cooling jacket 7, the center of the water cooling jacket 7 can be connected to the plate spring. Since a load is always applied by the elastic force of 83, the heat transfer surface 9 of the water cooling jacket 7 can follow the thermal displacement of the heat transfer surface 6. Therefore, the layer of highly thermally conductive grease 11 interposed between each heat transfer surface 69 can always be stably maintained at a constant layer thickness. In addition, thermally conductive grease 11 in FIG.
is interposed only on the heat transfer plane 9 formed between the grooves 10 to prevent the grease 11 from protruding from the outer periphery of the heat transfer surface 9 of the water cooling jacket 7. That is, the outermost groove 10 prevents the grease 11 from running out.

次に、第14図から第20図に示す本発明の他の実施例
は、第1図、第2図あるいは第13図に示す可撓性熱伝
導接触子Sの伝熱接触面に溝を設けた場合を示す。なお
、第1図及び第2図と同一あるいは同等のものは同一番
号を付は説明及び表示を省略する。
Next, in another embodiment of the present invention shown in FIGS. 14 to 20, grooves are formed on the heat transfer contact surface of the flexible heat transfer contact S shown in FIGS. 1, 2, or 13. This shows the case where it is provided. Components that are the same as or equivalent to those in FIGS. 1 and 2 are designated by the same numbers, and explanations and representations thereof will be omitted.

第14図において、可撓性熱伝導接触子5は、パッケー
ジ4の内面に設けられた多数の平板状のフィン30と微
小な間隙31をもって互いにかみ合うフィン32を有し
熱伝導体33、及び熱伝導体33の伝熱平面100をマ
イクロチップキャリア2の伝熱平面101に押し付ける
ためのばね34、r伝導体33の伝熱平面100に伝熱
面周囲と連通ずる多数の溝40から構成されている。前
記溝40は、第15図に示すように伝熱平面100上の
溝41と互いに直交している。更に、これら溝40.4
1はマイクロチップキャリア2の伝熱平面101より内
側に形成されている。そして、前記840.41の大き
さは、溝で囲まれ、二つの伝熱平面100,101と間
に塗布された高熱伝導性グリース11の量より大きい。
In FIG. 14, the flexible heat conductive contact 5 has a large number of flat fins 30 provided on the inner surface of the package 4, and fins 32 that engage with each other with a minute gap 31, and a heat conductor 33 and a heat conductor 33. A spring 34 for pressing the heat transfer plane 100 of the conductor 33 against the heat transfer plane 101 of the microchip carrier 2, and a large number of grooves 40 in the heat transfer plane 100 of the r conductor 33 communicating with the surroundings of the heat transfer surface. There is. The grooves 40 are orthogonal to the grooves 41 on the heat transfer plane 100, as shown in FIG. Furthermore, these grooves 40.4
1 is formed inside the heat transfer plane 101 of the microchip carrier 2. The size of 840.41 is larger than the amount of high thermal conductive grease 11 surrounded by the groove and coated between the two heat transfer planes 100 and 101.

このような構成にすると、マイクロチップキャリア2に
熱伝導体33を常に安定した溝い高熱伝導性グリース1
1層を介して密着接触させることができ、マイクロチッ
プキャリア2の発熱を性能よく冷却することができる。
With such a configuration, the thermal conductor 33 is always placed in the microchip carrier 2 with the stable grooved high thermal conductive grease 1.
Close contact can be made through one layer, and heat generated by the microchip carrier 2 can be efficiently cooled.

更に、熱伝導体33の組立、取りはずしに際しても、微
小なはんだボール35を破損させることがない。
Further, even when the heat conductor 33 is assembled and removed, the minute solder balls 35 are not damaged.

第16図は、熱伝導体33の伝熱平面100に水平垂直
方向に各々2本づつ溝42.43が形成されている。こ
れら溝42.43はマイクロチップキャリア2の伝熱平
面101の最外周よりわずかに内側に設けられている。
In FIG. 16, two grooves 42 and 43 are formed in the heat transfer plane 100 of the heat conductor 33 in the horizontal and vertical directions. These grooves 42 and 43 are provided slightly inside the outermost periphery of the heat transfer plane 101 of the microchip carrier 2.

第15図の最外周の溝と同様に、上記溝42.43は介
在する熱伝導性グリース11が接触面の外側にはみ出す
ことを防止する役目を兼ねそなえている。
Similar to the outermost groove in FIG. 15, the grooves 42 and 43 serve to prevent the intervening thermally conductive grease 11 from protruding outside the contact surface.

第17図は、第14図に示した実施例の他の例を示す、
この実施例は、第14図の実施例に対して、更に微小な
間隙31にも高熱伝導性グリース11を介在させたもの
である1本実施例によれば、マイクロチップキャリア2
で発生した熱を周囲のガス等の影響をうけずに、効率よ
く伝えることができるので、パッケージ4を配線基板3
に気密封止する必要がなくなり、組立が簡単になる。
FIG. 17 shows another example of the embodiment shown in FIG. 14,
This embodiment differs from the embodiment shown in FIG. 14 in that a highly thermally conductive grease 11 is interposed even in the minute gap 31. According to this embodiment, the microchip carrier 2
The heat generated by the package 4 can be transferred efficiently without being affected by surrounding gas, etc., so the package 4 can be transferred to the wiring board 3.
There is no need for airtight sealing, which simplifies assembly.

なお、上記第14図から第17図に示す実施例において
は熱伝導体33側に溝を設けたが、マイクロチップキャ
リア2側に設けてもよい、また、高熱伝導性グリースの
代りに高熱伝導性接着剤でも同様の作用、効果が得られ
る。
In the embodiments shown in FIGS. 14 to 17, the grooves were provided on the thermal conductor 33 side, but they may also be provided on the microchip carrier 2 side. Similar actions and effects can be obtained with adhesives.

次に、第18図〜第2o図により、更に他の実施例を説
明する。
Next, still another embodiment will be described with reference to FIGS. 18 to 2o.

パッケージ401の内面にV字形で1図面に垂直なV溝
402が多数形成され、マイクロチップキャリア2とV
溝402との間に三角形状の可撓性熱伝導接触子である
熱伝導体501が設けられ、三角形状熱伝導体501の
表面は、マイクロチップキャリア2と接する面102が
平面、■溝402の平面4o3と接する面が円筒面10
3、■溝の他方の平面404と対向する面ば平面で構成
され、熱伝導体5o1に対して接触圧力を加えるばね4
05が設けられている。更に、上記円筒面103及び平
面102には、第19図に示すような直交する溝406
,407が設けられている。そして、■溝402の■溝
平面403と円筒面103間、及びマイクロチップキャ
リア2の伝熱平面101と熱伝導体501の接触平面1
02間には各々高熱伝導性グリース11が介在されてい
る。なお、熱伝導体501の一面が円筒面103である
ので、マイクロチップキャリア2が配線基板3に傾むい
て実装されても、上記円筒面103とV溝平面403と
が互いにすべりあって、常にV溝平面403に熱伝導体
501の円筒面1゜3が線状に接し合うことができる。
A large number of V-shaped grooves 402 are formed on the inner surface of the package 401 and are perpendicular to one drawing.
A heat conductor 501, which is a triangular flexible heat conduction contact, is provided between the groove 402, and the surface of the triangular heat conductor 501 is such that the surface 102 in contact with the microchip carrier 2 is flat; The surface in contact with the plane 4o3 is the cylindrical surface 10
3. Spring 4, which is composed of a flat surface facing the other flat surface 404 of the groove and applies contact pressure to the thermal conductor 5o1.
05 is provided. Further, the cylindrical surface 103 and the plane 102 are provided with orthogonal grooves 406 as shown in FIG.
, 407 are provided. and the contact plane 1 between the groove plane 403 of the groove 402 and the cylindrical surface 103, and the contact plane 1 between the heat transfer plane 101 of the microchip carrier 2 and the thermal conductor 501.
A highly thermally conductive grease 11 is interposed between each of the parts 02 and 02. Note that since one surface of the thermal conductor 501 is the cylindrical surface 103, even if the microchip carrier 2 is mounted on the wiring board 3 in an inclined manner, the cylindrical surface 103 and the V-groove plane 403 slide against each other, so that the The cylindrical surface 1° 3 of the heat conductor 501 can be in linear contact with the V-groove plane 403 .

上記の状態で、熱伝導性グリース11が介在すると、上
述した溝の作用、効果によって、常に薄いグリース層を
形成することができる。
When the thermally conductive grease 11 is interposed in the above state, a thin grease layer can always be formed due to the action and effect of the grooves described above.

第20図は、熱伝導体501の表面に形成する溝の他の
例を示すもので、各平面とも平行溝408゜409だけ
が設けられている。他の点は前記実施例と同一である。
FIG. 20 shows another example of grooves formed on the surface of the heat conductor 501, in which only parallel grooves 408 and 409 are provided on each plane. Other points are the same as in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ぬれにくく、拡がりにくい高熱伝導性
流体を介在させてLSIチップそのものや、LSIチッ
プを内蔵したマイクロチップキャリア、あるいはそれら
を内蔵したマルチチップモジュールなどの電子デバイス
に冷却体を押し当てて冷却する場合、冷却体を小さな力
で電子デバイスに密着させることができる。このため、
電子デバイスや電子デバイスの接続部などに損傷を与え
ず、互いの接続熱抵抗を小さく、かつ安定に保つことが
できる。一方、冷却体を電子デバイスから分離する際に
は、小さな力で引離すことができるので、損傷あるいは
変形などが起らない、さらに、組立、分解の機構も簡単
になるので、コスト低減、作業効率も向上するなどの効
果が得られる。
According to the present invention, a cooling body is pressed onto an electronic device such as an LSI chip itself, a microchip carrier containing an LSI chip, or a multichip module containing them by interposing a highly thermally conductive fluid that is difficult to wet and spread. When cooling by applying heat to the electronic device, the cooling body can be brought into close contact with the electronic device with a small force. For this reason,
It is possible to keep the mutual connection thermal resistance low and stable without damaging electronic devices or the connecting parts of electronic devices. On the other hand, when separating the cooling body from the electronic device, it can be separated with a small force, so no damage or deformation will occur.Furthermore, the mechanism for assembly and disassembly is simple, reducing costs and reducing work. Effects such as improved efficiency can also be obtained.

更に、高熱伝導性流体が介在接触面の外にはみ出すこと
を防止することができ、高熱伝導性流体の不必要な附看
を防ぐこともできる。
Furthermore, it is possible to prevent the highly thermally conductive fluid from protruding out of the intervening contact surface, and it is also possible to prevent unnecessary attachment of the highly thermally conductive fluid.

例を示す縦断面図、第2図は第1図の可撓性熱伝導接触
子の例を詳細に示す要部拡大断面図、第3図は第1図に
示す水冷ジャケットの底面図、第4図(a)、第4図(
b)及び第4図(c)はそれぞれ第1図の実施例におい
て高熱伝導性グリースを介在させ、水冷ジャケットを電
子デバイスに密着、締付け、引離しする場合の各状態を
示す縦断面図、第5図、第6図及び第7図はそれぞれ水
冷ジャケットの他の例を示す底面図、第8図は本発明の
実施例における押し付は実験結果を示す線図、第9図は
水冷ジャケラ・・・外わく。
2 is a longitudinal sectional view showing an example of the flexible thermally conductive contact shown in FIG. 1. FIG. 3 is a bottom view of the water cooling jacket shown in FIG. Figure 4 (a), Figure 4 (
b) and FIG. 4(c) are longitudinal cross-sectional views showing each state when the water-cooling jacket is brought into close contact with, tightened, and separated from an electronic device using highly thermally conductive grease in the embodiment shown in FIG. 5, 6, and 7 are bottom views showing other examples of water cooling jackets, FIG. 8 is a diagram showing the experimental results of pressing in the embodiment of the present invention, and FIG. ...Outside.

82・・・抜ばね、 83・・・固定ねじ、 ジャケットの他の例を示す底面図、第13図は電子デバ
イスの冷却装置の他の実施例を示す縦断面図、第14図
、第17図及び第18図はそれぞれ本発明の他の実施例
を示す要部拡大断面図、第15図は第14図に示す下部
フィンの斜視図、第16図は第14図に示した下部フィ
ンの更に他の例を示す斜視図。
82...Removal spring, 83...Fixing screw, Bottom view showing another example of the jacket, Fig. 13 is a vertical sectional view showing another example of the cooling device for electronic devices, Figs. 14, 17 18 are enlarged sectional views of main parts showing other embodiments of the present invention, FIG. 15 is a perspective view of the lower fin shown in FIG. 14, and FIG. 16 is a perspective view of the lower fin shown in FIG. 14. FIG. 7 is a perspective view showing still another example.

第19図は第18図に示す可撓性熱伝導接触子を示す斜
視図、第20図は第19図に示す可撓性熱伝導接触子の
更に他の例を示す斜視図である。
FIG. 19 is a perspective view showing the flexible thermally conductive contact shown in FIG. 18, and FIG. 20 is a perspective view showing still another example of the flexible thermally conductive contact shown in FIG. 19.

1・・・モジュール、2・・・マイクロチップキャリア
、3・・・セラミックス製多層配線基板、4,401・
・・パッケージ、6・・・パッケージ冷却面、7・・・
水冷ジャケット、8・・・締付は治具、9・・・水冷ジ
ャケット伝熱面、10.15,16,18,21,22
,24,25゜26.40〜43,406〜409・・
・溝、11・・・高熱伝導性グリース、12・・・凸形
気液界面、13・・・溝内空間、23・・・穴、33,
501・・・熱伝導体、81築 凪 //−αらそヘイス再4自二り゛ツー人3B=塾仏息榛 3+−(f払 ネ!;凪 第 図 ノS 慕 7肥 g2・・・抽げ臥 第90 第1o図 乙 40・−肴 第1丘昭 40.41・−・落 第160 第18;図 勿〆・に評囁→ 第j’70 //・・・をてf云゛年・)1グリ一ス第tq口 第20団 0g
DESCRIPTION OF SYMBOLS 1... Module, 2... Microchip carrier, 3... Ceramic multilayer wiring board, 4,401.
...Package, 6...Package cooling surface, 7...
Water cooling jacket, 8... Tightening jig, 9... Water cooling jacket heat transfer surface, 10.15, 16, 18, 21, 22
,24,25°26.40~43,406~409...
・Groove, 11...High thermal conductivity grease, 12...Convex gas-liquid interface, 13...Groove space, 23...Hole, 33,
501...Thermal conductor, 81 Tsukunagi//-αrasoheisu re 4 self 2 two people 3B = cram school Buddha's breath 3+-(f pay!; Nagi diagram no S 慕7 fertilization g2. ...Hakugewa No. 90 No. 1 o Figure Otsu 40 -- Appetizer No. 1 Okasho 40.41 --- Ochi No. 160 No. 18; 2019) 1 Grease 1st tq mouth 20th group 0g

Claims (18)

【特許請求の範囲】[Claims] 1.電子デバイスと、この電子デバイスで発生する熱を
除去する冷却体と、前記電子デバイスの伝熱面と冷却体
の伝熱面との間に介在された高熱伝導率の熱伝導性流体
と、前記冷却体を前記電子デバイスに密着させるための
加圧手段と、前記電子デバイスまたは冷却体の伝熱面に
形成されかつ伝熱面周囲の空間に連通された多数の溝と
を備えた電子デバイスの冷却装置。
1. an electronic device, a cooling body for removing heat generated in the electronic device, a thermally conductive fluid with high thermal conductivity interposed between a heat transfer surface of the electronic device and a heat transfer surface of the cooling body; An electronic device comprising a pressurizing means for bringing a cooling body into close contact with the electronic device, and a large number of grooves formed on a heat transfer surface of the electronic device or the cooling body and communicating with a space around the heat transfer surface. Cooling system.
2.請求項1において、熱伝導性流体は個体表面を濡ら
しにくい流体である電子デバイスの冷却装置。
2. 2. The cooling device for an electronic device according to claim 1, wherein the thermally conductive fluid is a fluid that does not easily wet the solid surface.
3.請求項2において、熱伝導性流体はグリースまたは
熱伝導性接着剤のいずれかである電子デバイスの冷却装
置。
3. 3. The apparatus for cooling an electronic device according to claim 2, wherein the thermally conductive fluid is either grease or a thermally conductive adhesive.
4.請求項3において、熱伝導性流体は高粘性グリース
である電子デバイスの冷却装置。
4. 4. The apparatus for cooling an electronic device according to claim 3, wherein the thermally conductive fluid is a highly viscous grease.
5.請求項1において、溝の容積は、各溝間の電子デバ
イスと冷却体との間に介在された熱伝導性流体の量より
も大として、溝間の熱伝導性流体が溝内に入っても該溝
内に空間が残るようにした電子デバイスの冷却装置。
5. In claim 1, the volume of the groove is larger than the amount of thermally conductive fluid interposed between the electronic device and the cooling body between each groove, and the thermally conductive fluid between the grooves enters the groove. A cooling device for an electronic device in which a space remains in the groove.
6.個体表面を濡らしにくくかつ高熱伝導率の熱伝導性
流体を塗布した電子デバイスの放熱面に、外力によって
冷却体を密着接触させて電子デバイスを冷却する構成と
し、さらに前記電子デバイスあるいは冷却体のいずれか
一方の伝熱面を平滑面とし、他方の伝熱面は平滑な伝熱
面とこの平滑な伝熱面に形成され周囲に連通された多数
の溝とを有する溝付面とし、前記溝の容積は隣接する溝
ピッチ間に塗布された前記高熱伝導性流体の体積よりも
大としたことを特徴とする電子デバイスの冷却装置。
6. The electronic device is cooled by bringing a cooling body into close contact with the heat dissipation surface of the electronic device by applying an external force to the heat dissipation surface of the electronic device coated with a thermally conductive fluid that does not easily wet the solid surface and has high thermal conductivity, and further includes a cooling body that cools the electronic device. One of the heat transfer surfaces is a smooth surface, and the other heat transfer surface is a grooved surface having a smooth heat transfer surface and a number of grooves formed on the smooth heat transfer surface and communicating with the surroundings, and the grooves are A cooling device for an electronic device, characterized in that the volume of the fluid is larger than the volume of the highly thermally conductive fluid applied between adjacent groove pitches.
7.請求項6において、溝の形状が冷却体表面から溝底
部に向かって徐々に狭くなる形状としたことを特徴とす
る電子デバイスの冷却装置。
7. 7. A cooling device for an electronic device according to claim 6, wherein the shape of the groove is gradually narrowed from the surface of the cooling body toward the bottom of the groove.
8.請求項6において、すべての溝を互いに連通させた
ことを特徴とする電子デバイスの冷却装置。
8. 7. The cooling device for an electronic device according to claim 6, wherein all the grooves are in communication with each other.
9.請求項8において、冷却体に該冷却体を貫通する穴
を形成し、前記溝を前記冷却体を貫通する穴に連通させ
ることにより、溝を冷却体周囲に連通させたことを特徴
とする電子デバイスの冷却装置。
9. 9. The electronic device according to claim 8, wherein the cooling body is formed with a hole passing through the cooling body, and the groove is communicated with the hole passing through the cooling body, so that the groove is communicated with the circumference of the cooling body. Device cooling.
10.請求項6において、電子デバイスは高熱伝導性セ
ラミック製パッケージで構成されるマルチチップモジュ
ールであることを特徴とする電子デバイスの冷却装置。
10. 7. The cooling device for an electronic device according to claim 6, wherein the electronic device is a multi-chip module composed of a package made of highly thermally conductive ceramic.
11.電子デバイスの放熱面に高熱伝導率の熱伝導性流
体を介して密着接触させた冷却体と、前記電子デバイス
または冷却体のいずれかの伝熱面に形成され伝熱面外部
へ連通する多数の溝とを備え、前記溝の容積を前記伝熱
面に介在させた熱伝導性流体の体積よりも大として、前
記伝熱面に介在させた熱伝導性流体が前記溝内に収容さ
れても該溝内に外部と連通する空間が残るように構成し
たことを特徴とする電子デバイスの冷却装置。
11. A cooling body that is in close contact with the heat radiation surface of the electronic device via a thermally conductive fluid with high thermal conductivity, and a large number of cooling bodies formed on the heat transfer surface of either the electronic device or the cooling body and communicating with the outside of the heat transfer surface. a groove, the volume of the groove is larger than the volume of the thermally conductive fluid interposed in the heat transfer surface, and the thermally conductive fluid interposed in the heat transfer surface is accommodated in the groove. A cooling device for an electronic device, characterized in that a space communicating with the outside remains in the groove.
12.請求項11において、熱伝導性流体はグリースま
たは熱伝導性接着剤のいずれかである電子デバイスの冷
却装置。
12. 12. The apparatus for cooling an electronic device according to claim 11, wherein the thermally conductive fluid is either grease or a thermally conductive adhesive.
13.冷却されるべき電子デバイスと、この電子デバイ
スの放熱部側に設けられた熱伝導性流体と、この熱伝導
性流体を介して前記電子デバイスの放熱部側に密着され
、その密着部に外部と連通する多数の溝を有する冷却体
とを備えた電子デバイスの冷却装置。
13. An electronic device to be cooled, a thermally conductive fluid provided on the heat radiating side of the electronic device, and a thermally conductive fluid that is closely attached to the heat radiating side of the electronic device via the thermally conductive fluid, and an external A cooling device for an electronic device, comprising a cooling body having a large number of communicating grooves.
14.請求項13において、溝の容積は、各溝間の電子
デバイスと冷却体との間に介在された熱伝導性流体の量
よりも大として、溝間の熱伝導性流体が溝内に入っても
該溝内に空間が残るようにした電子デバイスの冷却装置
14. In claim 13, the volume of the groove is larger than the amount of thermally conductive fluid interposed between the electronic device and the cooling body between each groove, and the thermally conductive fluid between the grooves enters the groove. A cooling device for an electronic device in which a space remains in the groove.
15.パッケージ内に一つないし複数の半導体チップを
収容してなる電子デバイスと、この電子デバイスで発生
する熱を除去する冷却体と、前記電子デバイスの伝熱面
の全面と冷却体の伝熱面との間に介在された高熱伝導率
の熱伝導性流体と、前記冷却体を前記電子デバイスに密
着させるための加圧手段とを備えた電子デバイスの冷却
装置。
15. An electronic device comprising one or more semiconductor chips housed in a package, a cooling body for removing heat generated by the electronic device, an entire heat transfer surface of the electronic device, and a heat transfer surface of the cooling body. A cooling device for an electronic device, comprising a thermally conductive fluid with high thermal conductivity interposed between the cooling body and a pressurizing means for bringing the cooling body into close contact with the electronic device.
16.多数のLSIチップを搭載したセラミックス製多
層配線基板をセラミック製パッケージで気密封止し、前
記LSIチップで発生した熱を前記セラミック製パッケ
ージへ可撓性熱伝導接触子を介して伝達するように構成
したマルチチップモジュールと、このマルチチップモジ
ュールの放熱部側の全面に、高熱伝導率でかつ高粘性の
熱伝導性流体を介在させて密着され、内部を冷却水が流
れる水冷ジャケットと、前記熱伝導性流体を溝層状態と
して前記水冷ジャケットとマルチチップモジュール間に
介在させるために水冷ジャケットをマルチチップモジュ
ールに密着させるための手段とを備えたことを特徴とす
る電子デバイスの冷却装置。
16. A ceramic multilayer wiring board on which a large number of LSI chips are mounted is hermetically sealed in a ceramic package, and the heat generated by the LSI chips is transmitted to the ceramic package via a flexible thermally conductive contact. a water-cooling jacket that is closely attached to the entire surface of the heat dissipation side of the multi-chip module with a thermally conductive fluid having high thermal conductivity and high viscosity interposed therein, and through which cooling water flows; and means for bringing a water cooling jacket into close contact with a multi-chip module in order to interpose a magnetic fluid in the form of a groove layer between the water cooling jacket and the multi-chip module.
17.請求項16において、熱伝導性流体はグリースで
ある電子デバイスの冷却装置。
17. 17. The apparatus of claim 16, wherein the thermally conductive fluid is grease.
18.多数のLSIチップを搭載したセラミックス製多
層配線基板を高熱伝導材で作られたパッケージキャップ
で覆い、前記LSIチップで発生した熱を前記パッケー
ジキャップへ可撓性熱伝導接触子を介して伝達するよう
に構成したマルチチップモジュールにおいて、前記LI
Sチップの伝熱面あるいは前記パッケージ内壁伝熱面と
互いに接する前記可撓性熱伝導接触子のいずれか一方の
接触面に、高熱伝導性流体を薄層状態として介在させ密
着させるための手段を備えたことを特徴とする電子デバ
イスの冷却装置。
18. A ceramic multilayer wiring board on which a large number of LSI chips are mounted is covered with a package cap made of a highly thermally conductive material, so that the heat generated by the LSI chips is transferred to the package cap via a flexible thermally conductive contact. In the multi-chip module configured as follows, the LI
Means for interposing a highly thermally conductive fluid in a thin layer state on the contact surface of either the flexible heat conductive contactor that is in contact with the heat transfer surface of the S chip or the heat transfer surface of the inner wall of the package to bring it into close contact. A cooling device for an electronic device characterized by comprising:
JP1246314A 1988-09-26 1989-09-25 Electronic device cooling system Expired - Fee Related JP2728518B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1246314A JP2728518B2 (en) 1988-09-26 1989-09-25 Electronic device cooling system
US07/839,071 US5345107A (en) 1989-09-25 1992-02-20 Cooling apparatus for electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-238721 1988-09-26
JP23872188 1988-09-26
JP1246314A JP2728518B2 (en) 1988-09-26 1989-09-25 Electronic device cooling system

Publications (2)

Publication Number Publication Date
JPH02168658A true JPH02168658A (en) 1990-06-28
JP2728518B2 JP2728518B2 (en) 1998-03-18

Family

ID=26533853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246314A Expired - Fee Related JP2728518B2 (en) 1988-09-26 1989-09-25 Electronic device cooling system

Country Status (1)

Country Link
JP (1) JP2728518B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112129A1 (en) * 2003-06-16 2004-12-23 Hitachi, Ltd. Electronic device
JP2009164508A (en) * 2008-01-10 2009-07-23 Nissan Motor Co Ltd Method of fabricating bonding member, and bonding structure
JP2010140937A (en) * 2008-12-09 2010-06-24 Anritsu Corp Semiconductor laser package and semiconductor laser module
JP2013138113A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Cooling structure
US8490681B2 (en) 2004-03-11 2013-07-23 Danfoss Silicon Power Gmbh Fluid cooling system
JP2013165202A (en) * 2012-02-13 2013-08-22 Toyota Motor Corp Heat dissipation structure
JP2015050262A (en) * 2013-08-30 2015-03-16 日立金属株式会社 Cooling device and signal transmission device having the same
WO2015097874A1 (en) * 2013-12-27 2015-07-02 三菱電機株式会社 Semiconductor device
JP2017027976A (en) * 2015-07-16 2017-02-02 富士通株式会社 Joint method of cooling component
JP2017220568A (en) * 2016-06-08 2017-12-14 日本精工株式会社 Case having groove for inducing heat transfer material for arranging substrate on which electronic components being implemented

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3769327A1 (en) 2018-03-19 2021-01-27 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833860A (en) * 1981-08-10 1983-02-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal bridge element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833860A (en) * 1981-08-10 1983-02-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal bridge element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112129A1 (en) * 2003-06-16 2004-12-23 Hitachi, Ltd. Electronic device
US8490681B2 (en) 2004-03-11 2013-07-23 Danfoss Silicon Power Gmbh Fluid cooling system
JP2009164508A (en) * 2008-01-10 2009-07-23 Nissan Motor Co Ltd Method of fabricating bonding member, and bonding structure
JP2010140937A (en) * 2008-12-09 2010-06-24 Anritsu Corp Semiconductor laser package and semiconductor laser module
JP2013138113A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Cooling structure
JP2013165202A (en) * 2012-02-13 2013-08-22 Toyota Motor Corp Heat dissipation structure
JP2015050262A (en) * 2013-08-30 2015-03-16 日立金属株式会社 Cooling device and signal transmission device having the same
WO2015097874A1 (en) * 2013-12-27 2015-07-02 三菱電機株式会社 Semiconductor device
JP2017027976A (en) * 2015-07-16 2017-02-02 富士通株式会社 Joint method of cooling component
JP2017220568A (en) * 2016-06-08 2017-12-14 日本精工株式会社 Case having groove for inducing heat transfer material for arranging substrate on which electronic components being implemented

Also Published As

Publication number Publication date
JP2728518B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
KR920008251B1 (en) Apparatus which cools an electro-device
TWI278976B (en) Integrated circuit package device and method for manufacturing the same
US7808781B2 (en) Apparatus and methods for high-performance liquid cooling of multiple chips with disparate cooling requirements
US7768121B2 (en) Apparatus and methods for cooling semiconductor integrated circuit package structures
US7683479B2 (en) Semiconductor package involving a rotary lock that connects a package substrate and a separate component
US5990552A (en) Apparatus for attaching a heat sink to the back side of a flip chip package
US5940271A (en) Stiffener with integrated heat sink attachment
JP3147087B2 (en) Stacked semiconductor device heat dissipation structure
US8693200B2 (en) Semiconductor device cooling module
US7190585B2 (en) Thermal heat spreaders designed for lower cost manufacturability, lower mass and increased thermal performance
US6774482B2 (en) Chip cooling
CN111211059B (en) Electronic package, manufacturing method thereof and heat dissipation part
US8017959B2 (en) Light source and liquid crystal display device using the same
JPH07106475A (en) Heat sink assembly
JP2008060172A (en) Semiconductor device
JPH02168658A (en) Apparatus for cooling electronic device
TWI770735B (en) Semiconductor package and method for making the same
JPH02267958A (en) Interconnection and cooling system for semiconductor device
US11282766B2 (en) Package structure
TWI773566B (en) Semiconductor package and printed circuit board assembly
US20230180379A1 (en) Micro device with adaptable thermal management device
JP2853666B2 (en) Multi-chip module
US6486540B2 (en) Three-dimensional semiconductor device and method of manufacturing the same
JPH1168360A (en) Cooling structure for semiconductor element
US20230011493A1 (en) Package assembly including a package lid having a step region and method of making the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees