JPH021669B2 - - Google Patents

Info

Publication number
JPH021669B2
JPH021669B2 JP59273200A JP27320084A JPH021669B2 JP H021669 B2 JPH021669 B2 JP H021669B2 JP 59273200 A JP59273200 A JP 59273200A JP 27320084 A JP27320084 A JP 27320084A JP H021669 B2 JPH021669 B2 JP H021669B2
Authority
JP
Japan
Prior art keywords
film
ethylene
vinyl acetate
layer
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59273200A
Other languages
Japanese (ja)
Other versions
JPS61152450A (en
Inventor
Juichi Ishihara
Tatsuya Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP59273200A priority Critical patent/JPS61152450A/en
Publication of JPS61152450A publication Critical patent/JPS61152450A/en
Publication of JPH021669B2 publication Critical patent/JPH021669B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は包装時にフイルムを引き伸ばし乍ら包
装するストレツチ包装用フイルムに関する。更に
詳しくは、パレツト積みされた荷物の周りにフイ
ルムを引き伸ばし乍ら巻きつけて包装するパレツ
トストレツチ包装に好適な多層フイルムに関す
る。 〔従来の技術〕 パレツト積みされた荷物の包装方法として従来
シユリンク包装がとられて来たが最近パレツト積
みされた荷物の周りにフイルムを引き伸ばし乍ら
巻き付けて包装するパレツトストレツチ包装方法
が注目される様になつて来た。その理由はストレ
ツチ包装がシユリンク包装に比較して以下の特長
があるためである。 (1) 加熱源を必要としないので省エネルギーであ
る。 (2) フイルムの使用量が少なくて済む。 (3) 熱に対して敏感な製品の包装も可能である。 (4) 荷物の形状、寸法に対する自由度が高い。 パレツトストレツチ包装用フイルムは包装作業
時に引き伸ばされながら使用されることと、被包
装物をタイトに結束することとが要求されるた
め、従来包装用フイルムに求められていた物性例
えばフイルムの抗張力、伸び、落球衝撃強度、ヒ
ートシール強度等とは異なつた性能が要求され
る。 例えばモダン・マテリアルズ・ハンドリング
(MODERN MATERIALS HANDLING)34巻
10号92〜99頁(1979年)ジ、イーラ氏等(G.
EALOR ET AL)モダンプラスチツク
(MODERN PLASTICS・USA)55巻8号52〜
54および57頁(1978年)にパレツトストレツチ包
装用フイルムに対する要求性能が記載されている
が、それらを纏めると以下の通りである。 (1) フイルムを引き伸ばした状態で被包装物の周
りを巻きつけることにより結束力を得るのであ
るから、この結束力が解梱されるまで保持され
ることが必要である。従つてフイルムとしては
応力の保持率、即ち結束力の保持率の大きいこ
と換言すればゴム弾性を有していることが必要
である。 (2) そしてこの結束力には適度な領域がある。結
束力自体が弱過ぎると被包装物の運搬時等で荷
崩れを起こすことがあるので好ましくない。又
結束力が強すぎると被包装物の変形や破損を引
き起こすことがあるため好ましくない。従つて
フイルムは適度な「初期結束力」を有している
ことが要求される。 (3) この結束力を安定して得るためには包装作業
時に以下の事が必要となる。フイルムを引き伸
ばした状態で被包装物の周りを囲む工程をとる
が、この段階で被包装物の角や突起物等による
フイルムの突き破り及び破れ部分からのフイル
ムの裂け目の拡大やフイルム端からのフイルム
の裂けが、フイルムが引き伸ばされていない場
合に比較して起き易い。そこでこれ等に対する
抵抗性が高い事、即ち「突き破り強度」や「引
裂強度」がすぐれていることが必要である。 (4) そして包装後外部からの鋭利な角や金属等で
フイルムの一部が突き破られたり、裂けた場
合、裂け目が結束力により更に広がつて解梱し
てしまうことがない事、即ち「耐引裂伝播性」
特にフイルムの長手方向に対して直交する方向
でのそれが良い事が必要である。 (5) 包装終了時フイルムを切断し、たの端部を既
に被包装物に巻き付けたフイルムに単に押さえ
つけるだけでとまる、所謂「自己粘着性」のあ
るフイルムであることが望ましい。フイルムの
端部をヒートシールしたり、別途用意した粘着
テープ等でとめることも考えられるが手間が二
次コストがかかる。端部をとめておかないと
徐々に解梱したり、一部分の結束力が足りなく
なるので好ましくない。 (6) 被包装物の表面印刷やラベルの文字等が透視
し得る透明性を有すること。 (7) 使用フイルム量が少なくて済む事すなわち薄
いフイルムをさらに包装作業時に強く延伸して
使用できるフイルムである事が経済性、及び解
梱後の産業廃棄物の発生の抑制の両観点から望
ましい。 かかる性能を満足するフイルムとしてはポリエ
チレン系樹脂を原料として使用した各種フイルム
が市販されているが一部の品質を満足することは
出来ても全ての品質を満足するものは未だ見出さ
れていない。 例えば現在市販されている低密度ポリエチレン
のインフレーシヨン成形フイルムは前述の7項目
の評価ですべて不合格であつたが、特に「初期結
束力」「突き破り強度」「耐引裂伝播性」の3点が
著しく劣つた。 上記包装に必要な「結束力」は、例えば
Package Eng.(USA)24(7)38−41(79)に記載さ
れている様にエチレン−酢酸ビニル共重合体を主
成分としたフイルムを、組成樹脂の酢酸ビニル含
量、MFR等を適切に選択した上で使用すれば改
良することが出来る。しかし引裂強度、突き破り
強度が弱く、耐引裂伝播性が悪いと言う問題は解
消出来ない。 又包装に必要な引裂強度、突き破り強度は、
Mod.Plas.Int.Nov.1980、26に記載されている様
に、線状低密度ポリエチレンを主成分とした樹脂
を組成樹脂のα−オレフイン含量、MFR等を適
当に選択した上で使用すれば得ることができる。 しかし本発明者らが検討したところによると、
引裂強度が強いにも拘らず上記「耐引裂伝播性」
の不良は解消出来ず、その上初期の結束力が強す
ぎると言う新たな問題が生じる。さらに特にイン
フレーシヨン成形されたフイルムでは包装に必要
な応力保持率が得られないと言う新たな問題が生
じる。 又従来トレイ上に乗せた果物、野菜、魚肉等の
オーバーラツプに使用されているポリ塩化ビニル
あるいは例えば特開昭51−91953記載のポリブタ
ジエン系フイルムの何れも結束力の経時低下が著
しく荷崩れの問題がある。 〔発明が解決しようとする問題点〕 そこで本発明者らは前記(1)〜(7)の特性を持つフ
イルムを得べくエチレン−酢酸ビニル共重合体及
び線状低密度ポリエチレン材料を用いて鋭意検討
した。 先ず、特開昭53−31751号公報や特開昭57−
182341号公報に準じてエチレン−酢酸ビニル共重
合体と線状ポリエチレンのブレンド系のインフレ
ーシヨン成形フイルムについて評価した。その結
果各々単層フイルムで問題のあつた耐引裂伝播性
が大幅に改良されることが分つた。 次に、特開昭58−24450号公報に準じてエチレ
ン−酢酸ビニル共重合体と線状低密度ポリエチレ
ンとの、二層インフレーシヨンフイルムについて
も評価し、同様な効果を確認した。 しかし何れに場合とも結束力が大きすぎると、
結束力の保持率が低い、及び突き破り強度が弱い
と言う各問題点が残つた。 このため結束力の低減を図るべく、前記と同様
なブレンド組成フイルム及び二層フイルムをキヤ
スト成形した(後者については公開実用昭56−
74737号公報に準ずる)。その結果、ブレンド系で
初期結束力、結束力の保持率及び突き破り強度の
満足するフイルムが見出された。しかしこのブレ
ンドフイルムは尚粘着力不足及び引裂強度が不充
分であつた。 また積層フイルムについては突き破り強度と自
己粘着力は満たされたが、結束力の保持率が不充
分であつた。そこで更に線状低密度ポリエチレ
ン、線状低密度ポリエチレンとエチレン−酢酸ビ
ニル共重合体とのブレンド物及びエチレン−酢酸
ビニル共重合体よりなる三層キヤストフイルムを
検討し本発明を完成するに至つた。 〔問題点を解決するための手段〕および〔作用〕 従つて、本発明は、パレツトストレツチ包装に
適した3層フイルムに係り、このフイルムは外層
の一つが線状低密度ポリエチレンを主成分とする
層よりなり、外層の他の一つがエチレン−酢酸ビ
ニル共重合体を主成分とする層よりなり、中間層
が線状低密度ポリエチレンとエチレン−酢酸ビニ
ル共重合体のブレンド物を主成分とする層よりな
る3層キヤストストレツチ包装用フイルムであ
る。 そしてこのフイルムはフイルムの長手方向の収
縮率が30%以下、長手方向と直交する方向の収縮
率が5%以下の特性を有する。 本発明において外層の一つを形成するために用
いられる線状低密度ポリエチレンとは遷移金属化
合物を含む触媒(いわゆるケーグラ法)、アルミ
ナ又はシリカ−アルミナに担持させた酸化クロム
触媒(フイリツプス法)、アルミナに担持させた
酸化モリブデン触媒(スタンダード法)などの存
在下、液相又は気相で、エチレンとC4〜C20好ま
しくはC4〜C16のα−オレフインあるいはこれら
の混合物を共重合させたポリエチレンで、メルト
フローレート(下MFRと略す、単位g/10min)
は0.15〜15、好ましくは1〜10、密度は0.940
g/cm3以下好ましくは0.935g/cm3以下である。 C4〜C20のα−オレフインとしてはブテン−1、
ペンテン−1、ヘキサン−1、4−メチル−ペン
テン−1、オクテン−1等を例示できる。 密度が0.940g/cm3以上であると結束力保持率
が低下する問題、結束力が大きすぎる問題、及び
引裂強度が低下する問題があり好ましくない。 又MFRが0.15未満となるとフイルムの成形性
が乏しくなり成形歪の大きいフイルムとなり引裂
強度および耐引裂伝播性が低下するので好ましく
ない。 一方MFRが15以上になるとフイルムの強度が
弱く、包装時にフイルムが破れ易くなり好ましく
ない。 上記エチレン−酢酸ビニル共重合体としては酢
酸ビニル3〜28重量%好ましくは10〜20重量%の
MFR0.5〜30好ましくは1〜20のエチレン−酢酸
ビニル共重合体を主成分とする。 酢酸ビニルの含有量が少ないと結束力の保持率
および粘着力が急激に低下する。 酢酸ビニルの含有量が28重量%を超えた場合は
粘着力が大きすぎる及び高温雰囲気下での結束力
の保持率が低下下するので好ましくない。 又MFRが0.5未満になるとフイルム成形による
成形歪が大きく成形性も乏しくなるので好ましく
ない。 一方MFRが20以上になるとフイルムの強度が
弱くなるので好ましくない。 エチレン−酢酸ビニル共重合体と線状低密度ポ
リエチレンのブレンド物には上記エチレン−酢酸
ビニル共重合体及び上記線状低密度ポリエチレン
が用いられ、且つエチレン−酢酸ビニル共重合体
と線状低密度ポリエチレンの組成比が8/2〜
2/8好ましくは75/25〜30/70であることが好
ましい。 エチレン−酢酸ビニル共重合体と線状低密度ポ
リエチレンの組成比がこの範囲を外れると耐引裂
伝播性が悪くなり好ましくない。 中間層を形成するために用いられるエチレン−
酢酸ビニル共重合体と線状低密度ポリエチレンの
ブレンド物を主成分とする組成物は、外層に用い
たエチレン−酢酸ビニル共重合体および線状低密
度ポリエチレンを使用するのがよい。 エチレン−酢酸ビニル共重合体を主成分とする
層と線状低密度ポリエチレンを主成分とする層に
はフイルムの表面の滑り性、アンテブロツキング
性及び自己粘着力を調整する必要がある場合、そ
れらの組成物を組成する樹脂100重量部に対して
夫々0.01〜5重量部の滑剤、無機充填剤、界面活
性剤、粘着剤などを添加することもできる。 上記滑剤としてはオレイン酸アミド、ステアリ
ン酸アミド、エルカ酸アミド等の脂肪酸アミドが
挙げられる。 又無機充填剤としては軽質及び重質炭酸カルシ
ウム、タルク、シリカ等の無機物質が挙げられ
る。 界面活性剤としてはグリセリン、ソルビタン、
ペンタエリスリトールなどの多価アルコール類と
アルキル基の炭素数6〜18の直鎖飽和脂肪酸ある
いはアルキル基の炭素数18〜22直鎖不飽和脂肪酸
とのエステルなどの多価アルコール脂肪酸エステ
ル、ポリオキシエチレンノニルフエニルエーテ
ル、ポリオキシエチレンオクチルフエニルエーテ
ルなどのポリオキシエチレンアルキルフエニルエ
ーテル、前述の多価アルコール脂肪酸エステルに
5〜20単位のエチレンオキサイドを付加したポリ
オキシエチレン多価アルコール脂肪酸エステル、
エチレンオキサイド3〜10単位ポリオキシエチレ
ンと前述の脂肪酸とのエステルであるポリオキシ
エチレン脂肪酸エステル、エチレンオキサイド5
〜10単位のポリオキシエチレンラウリルエーテ
ル、ポリオキシエチレンオレイルエーテル、ポリ
オキシエチレンオレイルセチルエーテル、ポリオ
キシエチレンドデシルエーテルなどのポリオキシ
エチレンアルキルエーテルなどが挙げられる。 粘着剤としてはヒマシ油誘導体、ポリブデン等
の低分子粘稠物質ロジンまたはその誘導体、テル
ペン樹脂、テルペン−フエノール樹脂、芳香族
系、脂肪族系、脂環族系又は共重合系の石油樹
脂、クマロン−インデン樹脂、スチレン系樹脂及
びそれらの水添樹脂が挙げられる。相溶性及び耐
熱性の点から脂環族系又は共重合系の水添石油樹
脂が好ましい。 又線状低密度ポリエチレン層、エチレン−酢酸
ビニル共重合体、或いはこれらのブレンド物層に
は、上記添加物が含まれていてもよく、また耳ロ
ス回収再利用の結果として上記添加剤が含まれて
も構わない。 積層するエチレン−酢酸ビニル共重合体を主成
分とする層、エチレン−酢酸ビニル共重合体と線
状低密度ポリエチレンのブレンド組成を主成分と
する層、及び線状低密度ポリエチレンを主成分と
する層の各層の厚みは通常各々2〜50μ好ましく
は、エチレン−酢酸ビニル共重合体を主成分とす
る層、及び線状低密度ポリエチレンを主成分とす
る層が4〜30μであり、エチレン−酢酸ビニル共
重合体と線状低密度ポリエチレンのブレンド組成
を主成分とする層が6〜30μであることが好まし
い。線状低密度ポリエチレンを主成分とする層が
この範囲より少ないと引裂強度が低く好ましくな
い。一方同層がこの範囲より大きいと結束力が大
きすぎるので好ましくない。 エチレン−酢酸ビニル共重合体を主成分とする
層がこの範囲より小さいと自己粘着力が小さくな
り好ましくない。 エチレン−酢酸ビニル共重合体と線状低密度ポ
リエチレンのブレンド物を主成分とする層がこの
範囲より小さいと耐引裂伝播性及び応力保持率が
低下するので好ましくない。又この範囲より大き
くなると結束力が大きくなりすぎて好ましくな
い。 なお各層の厚み比は次の通りであるが全体厚み
によりその比は必ずしも一定である必要はない。 エチレン−酢酸ビニル共重合体を主成分とする
層を1として、エチレン−酢酸ビニル共重合体と
線状低密度ポリエチレンのブレンド組成を主成分
とする層の厚みが0.2〜7.5好ましくは0.5〜4、線
状低密度ポリエチレンを主成分とする層の厚みが
0.13〜7.5好ましくは0.5〜2のものである。 なお積層フイルムの全体の厚さは通常20〜80μ
位である。 又本発明の包装フイルムは線状低密度ポリエチ
レンを主体とする層を外層としエチレン−酢酸ビ
ニル共重合体を主成分とする層を被包装物に面し
た側となる様にして使用する場合が多い。 エチレン−酢酸ビニル共重合体を主成分とする
層と、エチレン−酢酸ビニル共重合体と線状低密
度ポリエチレンのブレンドを主成分とする層及び
線状低密度ポリエチレンを主成分とする層の積層
は、同時押出しキヤスト成形法によつて行なう。 同時押出しキヤスト成形法としてはダイ内積層
及びダイ外積層に大別されるがいずれの方式でも
よい。又ダイ内積層方式はブラツクボツクス方
式、マルチマニホールド方式などがあるが特にそ
の方式を問わない。 又ダイから延伸固化の過程はフイルムの収縮率
が所定の範囲内であればその条件を問わない。一
般に延伸速度が大きい程及び延伸温度が低い程フ
イルムの収縮率は大きくなり好ましくない。 ここで収縮率とはフイルム成形時の残留歪の指
標であり、110℃のエチレングリコール中にフイ
ルムを5秒間浸漬した場合のフイルムの収縮量を
αとし、浸漬前のフイルムの寸法をβとすると収
縮率γは下記で示される量である。 γ=αβ-1×100〔%〕 収縮率がフイルムの長手方向(加工引取り方
向)に30%を超えた場合は結束力保持率の低下、
及び初期結束力が強くなり過ぎるので好ましくな
い。フイルムの長手方向と直交する方向の収縮が
5%を超えた場合は耐引裂伝播性が悪くなる、初
期結束力が強過ぎる様になる、応力保持率が低く
なる及び突き破り強度が低くなるなどの問題が生
じるので好ましくない。 〔発明の効果〕 本発明に係る3層フイルムは適度な結束力を経
時を含めて安定して得ることが出来、引裂強度、
耐引裂伝播性、自己粘着性にすぐれている。 一般に熱可塑性フイルムは引き伸ばしを大きく
する程初期結束力が大きくなり、その結束力の経
時による低下率も大きくなる。又引裂強度、耐引
裂伝播性も低下する。このため引き伸ばし率はこ
れ等の性能を考慮して選定される。 本発明に係る3層フイルムは従来のフイルムに
比較してこれ等の性能が向上したので包装作業時
の引き伸ばし度合いを大きくすることが可能とな
つた。換言すれば包装後のフイルムの厚みが従来
に比較して薄くすることが可能となつた。従つて
フイルムの消費量を減少することが出来た。この
事は同時に包装物全体の軽量化及び解梱後のフイ
ルムの発生即ち産業廃棄物の発生の抑制にも寄与
することになる。 〔実施例〕 次に、実施例について本発明を説明する。 実施例 1 単軸スクリユー押出機A(スクリユー径40mm
φL/D=28)から線状低密度ポリエチレン
(MFR=2、密度=0.920)を単軸スクリユー押
出機B(スクリユー径40mmφ、L/D=28)から
上記線状低密度ポリエチレン50重量%及びエチレ
ン−酢酸ビニル共重合体(MFR=3.5、密度=
0.93、酢酸ビニル含有量14(重量)%)を50重量
%の組成をもつ混合樹脂を、及び単軸スクリユー
押出機C(スクリユー径65mmφ、L/D=28)か
ら上記エチレン−酢酸ビニル共重合樹脂98.8重量
%、水添石油樹脂系脂環粘着剤(環球法軟化点90
℃)1.2重量%を、200℃にてマルチマニホールド
ダイに同時押出し、キヤスト成形機にてフイルム
巻き取り速度50m/minの条件によつて線状低密
度ポリエチレン、線状低密度ポリエチレンとエチ
レン−酢酸ビニル共重合樹脂のブレンド、エチレ
ン−酢酸ビニル共重合樹脂を主成分とする各層厚
みが各各7μ、11μ、7μのフイルムを得た。 実施例 2 実施例1において押出機Aへ投入する線状低密
度ポリエチレンとしてMFR=2、密度=0.915の
線状低密度ポリエチレンを用い、また押出機Cへ
投入するエチレン−酢酸ビニル共重合樹脂として
MFR=15、密度=0.94、酢酸ビニル含量19(重
量)%を用いた以外全て実施例1と同様にして三
層フイルムを得た。 〔フイルムの評価方法〕 実施例1、2で得られたフイルムをJISK−
6781−77(引張り速度200mm/min)に準拠した方
法でフイルムの引裂強度を、及びJISK−6301に
準拠した方法でフイルムを30%伸長した直後及び
保持20分間後の各応力を測定し次式より応力保持
率を求めた。 応力保持率 =(保持20分間後の応力)(直後の応力)-1 ×100〔%〕 尚以下に述べるパレツトストレツチ機による実
包物での結束力保持率との相関をとつたところフ
イルム伸長度を30%と同一にして応力保持率と同
一値の結束力保持率は実包後5日後であることが
分つた。 次に甲南電機製パレツトストレツチ包装機
Infra Pak SW−4000を用いて被包装物として段
ボール箱の集積物(タテ、ヨコ、高さが各々1290
×1550×1380mm)を選び実包テストを行つた。 尚段ボール箱の一部にはバネ秤(面積160×210
mm)の試料のせ面が、段ボール面より10cm突出す
る様な状態で段ボール内に組み込んだ。 段ボール箱集積物をフイルム伸長度30%で包装
した直後にバネ秤の目盛を読み取り初期結束力と
した。 次にバネ秤の試料のせ面と段ボール平面との傾
斜フイルム面をエンピツ状の鋭利な工具で突き破
り、その時の最大応力を同様にしてバネ秤から読
み取つた。突き破り強度は次式より算出した。 突き破り強度 =突き破り時にバネ秤が示した最大応力 −初期結束力 更に段ボールの別の平面に巻きつけられたフイ
ルムに、フイルムの巻き付け方向と直交する方向
にナイフで100mmの切り口を入れ、20分後の切り
口の拡大の程度を物差しで測定し、引裂伝播量と
した。 これとは別にフイルムを100×20mmの幅に切り
出し、10枚重ねにしたのち100g/cm2の荷重下、
23℃2日静置後フイルム間の粘着強度を測定し
た。剥離速度は200mm/minとした。 又フイルムを5×65mmに切り出し110℃のエチ
レングリコール中に5秒間浸漬した場合のフイル
ムの収縮率を測定した。 以上の測定結果を表1にまとめて記載する。 比較例 1 実施例1においていずれの押出機にも線状低密
度ポリエチレンが98.8重量%および水添石油樹脂
系が1.2重量%よりなる組成物を入れ実施例1と
同様にして線状低密度ポリエチレンを主成分とす
る厚み25μのキヤストフイルムを得た。このフイ
ルムを実施例と同様に評価し表1に示す結果を得
た。 比較例 2 比較例1において線状低密度ポリエチレンの代
りに実施例1に用いたエチレン−酢酸ビニル共重
合樹脂を用いた以外全て比較例1と同様にして表
1に示す結果を得た。 比較例 3 実施例1において単軸スクリユーAに溶融押出
しを行なわずして線状低密度ポリエチレン、エチ
レン−酢酸ビニル共重合樹脂のブレンド物層が
15μ、エチレン−酢酸ビニル共重合樹脂を主成分
とする層が10μ以外全て実施例1に準じて、二層
フイルムを作り実施例3に準じて表1に示す結果
を得た。 比較例 4 実施例1において単軸スクリユーCの溶融押出
しを行なわずして、単軸スクリユーBに線状低密
度ポリエチレン49.4重量%、エチレン−酢酸ビニ
ル共重合樹脂49.4重量%、水添石油樹脂系粘着剤
1.2重量%を溶融押出しして、線状低密度ポリエ
チレン層の厚みが10μ、線状低密度ポリエチレン
とエチレン−酢酸ビニル共重合樹脂のブレンド物
の層厚みが15μである以外全て実施例1に準じて
二層フイルムを作り、実施例に準じて表1に示す
結果を得た。 比較例 5 比較例1において線状低密度ポリエチレンと脂
環族系粘着剤の代りに線状低密度ポリエチレン
49.4重量%、エチレン−酢酸ビニル共重合樹脂
49.4重量%、水添石油樹脂系粘着剤1.2重量%を
用いた以外全て比較例1に準じて単層フイルム
25μを得、表1に示す結果を得た。 比較例 6 実施例1において押出機Bに樹脂を通さずにし
た以外は全て実施例1に準じて12.5μの線状低密
度ポリエチレン層と12.5μのエチレン−酢酸ビニ
ル共重合樹脂を主成分とする層よりなる二層フイ
ルムを得た。実施例に準じてフイルムを評価し表
1に示す結果を得た。 比較例 7 実施例1においてマルチマニホールドタイプの
T−ダイの代りに、ダイ内合流方式の円形ダイを
用いて樹脂温度190℃、ブロー比2.0の引取速度15
m/minでインフレーシヨン成形した以外全て実
施例1と同様にしてフイルムを得た。このフイル
ムを実施例に準じて評価して表1に示す結果を得
た。
[Industrial Application Field] The present invention relates to a stretch packaging film in which the film is stretched while being wrapped during packaging. More specifically, the present invention relates to a multilayer film suitable for pallet stretch packaging, in which the film is stretched and wrapped around palletized cargo. [Prior art] Shrink packaging has traditionally been used as a packaging method for palletized packages, but recently the pallet stretch packaging method, in which a film is stretched and wrapped around the palletized packages, has attracted attention. I've come to feel like I'm being treated like that. The reason for this is that stretch packaging has the following features compared to shrink packaging. (1) Energy saving as no heating source is required. (2) The amount of film used can be reduced. (3) It is also possible to package products that are sensitive to heat. (4) There is a high degree of freedom in the shape and dimensions of luggage. Pallet stretch packaging films are used while being stretched during packaging work, and are required to tightly bind the packaged items. , elongation, drop impact strength, heat seal strength, etc. are required. For example, MODERN MATERIALS HANDLING, Volume 34.
No. 10, pp. 92-99 (1979) Ji, Ila et al. (G.
EALOR ET AL) MODERN PLASTICS (USA) Volume 55 No. 8 52~
Pages 54 and 57 (1978) describe the required performance for pallet stretch packaging films, which can be summarized as follows. (1) Cohesive force is obtained by wrapping the stretched film around the packaged item, so this cohesive force must be maintained until the package is unpacked. Therefore, the film needs to have a high stress retention rate, that is, a high binding force retention rate, in other words, it must have rubber elasticity. (2) And this cohesion has a moderate range. If the binding force itself is too weak, it is not preferable because the packaged items may collapse during transportation. Furthermore, if the binding force is too strong, it is not preferable because it may cause deformation or damage to the packaged items. Therefore, the film is required to have an appropriate "initial cohesion". (3) In order to stably obtain this cohesive force, the following must be done during packaging work. The process of stretching the film and encircling the object to be packaged is carried out, but at this stage there are cases where the film is pierced by corners or protrusions of the object, the tear in the film is enlarged from the torn part, and the film is separated from the edge of the film. tearing is more likely to occur than when the film is not stretched. Therefore, it is necessary to have high resistance to these, that is, to have excellent "piercing strength" and "tearing strength." (4) If a part of the film is pierced or torn by a sharp corner or metal from the outside after packaging, the tear will not spread further due to the binding force and the package will not be unpacked. "Tear propagation resistance"
In particular, it is necessary that it be good in the direction perpendicular to the longitudinal direction of the film. (5) It is desirable that the film has so-called "self-adhesive" properties, which can be secured by simply cutting the film at the end of packaging and pressing the other end onto the film already wrapped around the packaged object. It is conceivable to heat-seal the edges of the film or fasten them with separately prepared adhesive tape, but this is time-consuming and requires secondary costs. If you do not fasten the ends, it is not preferable because it will gradually unpack or the binding force in some parts will be insufficient. (6) It must be transparent enough to allow the surface printing of the packaged item and the letters on the label to be seen through. (7) It is desirable to use a film that requires less amount of film, that is, a thin film that can be further strongly stretched during packaging work, both from the viewpoint of economy and from the viewpoint of suppressing the generation of industrial waste after unpacking. . Various films that use polyethylene resin as a raw material are commercially available as films that satisfy such performance, but although it is possible to satisfy some of the qualities, no film that satisfies all of the qualities has yet been found. . For example, the low-density polyethylene inflation-molded film currently on the market failed in all of the seven evaluations mentioned above, but especially in three points: "initial cohesion,""piercingstrength," and "tear propagation resistance." was significantly inferior. The "cohesive strength" required for the above packaging is, for example,
As described in Package Eng. (USA) 24(7)38-41(79), a film mainly composed of ethylene-vinyl acetate copolymer is prepared by adjusting the vinyl acetate content, MFR, etc. of the resin composition appropriately. You can improve it by selecting it and using it. However, the problems of low tear strength, low puncture strength, and poor tear propagation resistance cannot be resolved. In addition, the tear strength and puncture strength required for packaging are
As described in Mod.Plas.Int.Nov.1980, 26, resins whose main component is linear low-density polyethylene should be used after appropriately selecting the α-olefin content, MFR, etc. of the resin composition. You can get it if you want. However, according to the inventors' investigation,
Despite the strong tear strength, the above-mentioned "tear propagation resistance"
It is not possible to solve the problem of defects, and on top of that, a new problem arises that the initial cohesion is too strong. Furthermore, a new problem arises in that the stress retention rate necessary for packaging cannot be obtained especially with films formed by inflation. In addition, polyvinyl chloride, which is conventionally used for overlapping fruits, vegetables, fish, etc. placed on trays, or the polybutadiene film described in JP-A-51-91953, for example, has a problem in that the cohesive strength decreases over time and the load collapses. There is. [Problems to be Solved by the Invention] Therefore, the present inventors have made extensive efforts using ethylene-vinyl acetate copolymer and linear low-density polyethylene material in order to obtain a film having the characteristics (1) to (7) above. investigated. First, JP-A-53-31751 and JP-A-57-
An inflation-molded film made of a blend of ethylene-vinyl acetate copolymer and linear polyethylene was evaluated in accordance with Publication No. 182341. As a result, it was found that the tear propagation resistance, which was a problem with single-layer films, was significantly improved. Next, a two-layer blown film of ethylene-vinyl acetate copolymer and linear low-density polyethylene was also evaluated in accordance with JP-A-58-24450, and similar effects were confirmed. However, in any case, if the cohesive force is too large,
Problems such as low cohesive strength retention and weak puncture strength remained. Therefore, in order to reduce the cohesive force, a film with the same blend composition and a two-layer film as described above were cast-molded (the latter was published in 1983).
(According to Publication No. 74737). As a result, a blend-based film was found that had satisfactory initial cohesive strength, cohesive strength retention, and puncture strength. However, this blend film still had insufficient adhesive strength and tear strength. The laminated film had sufficient puncture strength and self-adhesive strength, but the retention of cohesive strength was insufficient. Therefore, we further investigated three-layer cast films made of linear low-density polyethylene, blends of linear low-density polyethylene and ethylene-vinyl acetate copolymer, and ethylene-vinyl acetate copolymer, and finally completed the present invention. . [Means for Solving the Problems] and [Operation] Accordingly, the present invention relates to a three-layer film suitable for pallet stretch packaging, in which one of the outer layers is mainly composed of linear low-density polyethylene. The other outer layer consists of a layer mainly composed of ethylene-vinyl acetate copolymer, and the middle layer mainly consists of a blend of linear low-density polyethylene and ethylene-vinyl acetate copolymer. This is a three-layer cast stretch packaging film consisting of the following layers. This film has a shrinkage rate of 30% or less in the longitudinal direction of the film, and a shrinkage rate of 5% or less in the direction orthogonal to the longitudinal direction. The linear low-density polyethylene used to form one of the outer layers in the present invention includes a catalyst containing a transition metal compound (so-called Kegler process), a chromium oxide catalyst supported on alumina or silica-alumina (Philips process), Copolymerizing ethylene with a C4 to C20 , preferably C4 to C16 α-olefin or a mixture thereof in the liquid or gas phase in the presence of a molybdenum oxide catalyst supported on alumina (standard method). Melt flow rate (abbreviated as MFR, unit: g/10min)
is 0.15-15, preferably 1-10, density is 0.940
g/cm 3 or less, preferably 0.935 g/cm 3 or less. C 4 to C 20 α-olefins include butene-1,
Examples include pentene-1, hexane-1, 4-methyl-pentene-1, and octene-1. If the density is 0.940 g/cm 3 or more, it is not preferable because there are problems in that the cohesive force retention rate decreases, the cohesive force is too large, and the tear strength decreases. Furthermore, if the MFR is less than 0.15, the film will have poor formability, resulting in a film with large forming distortion, resulting in a decrease in tear strength and tear propagation resistance, which is not preferable. On the other hand, if the MFR is 15 or more, the strength of the film will be weak and the film will be easily torn during packaging, which is not preferable. The above ethylene-vinyl acetate copolymer contains 3 to 28% by weight of vinyl acetate, preferably 10 to 20% by weight.
The main component is an ethylene-vinyl acetate copolymer having an MFR of 0.5 to 30, preferably 1 to 20. If the content of vinyl acetate is low, the retention of cohesion and adhesive strength will decrease rapidly. If the content of vinyl acetate exceeds 28% by weight, it is not preferable because the adhesive strength is too high and the retention of cohesive strength in a high-temperature atmosphere decreases. Furthermore, if the MFR is less than 0.5, molding distortion due to film molding will be large and moldability will be poor, which is not preferable. On the other hand, if the MFR exceeds 20, the strength of the film becomes weak, which is not preferable. The above-mentioned ethylene-vinyl acetate copolymer and the above-mentioned linear low-density polyethylene are used for the blend of ethylene-vinyl acetate copolymer and linear low-density polyethylene, and the ethylene-vinyl acetate copolymer and linear low-density polyethylene are used. The composition ratio of polyethylene is 8/2~
The ratio is preferably 2/8, preferably 75/25 to 30/70. If the composition ratio of the ethylene-vinyl acetate copolymer and linear low-density polyethylene is out of this range, the tear propagation resistance will deteriorate, which is not preferable. Ethylene used to form the intermediate layer
For a composition mainly composed of a blend of vinyl acetate copolymer and linear low density polyethylene, it is preferable to use the ethylene-vinyl acetate copolymer and linear low density polyethylene used in the outer layer. When it is necessary to adjust the slipperiness, anteblocking property, and self-adhesiveness of the film surface for a layer mainly composed of ethylene-vinyl acetate copolymer and a layer mainly composed of linear low-density polyethylene. 0.01 to 5 parts by weight of lubricants, inorganic fillers, surfactants, adhesives, etc. may be added to 100 parts by weight of the resin constituting these compositions. Examples of the lubricant include fatty acid amides such as oleic acid amide, stearic acid amide, and erucic acid amide. Examples of inorganic fillers include inorganic substances such as light and heavy calcium carbonate, talc, and silica. As surfactants, glycerin, sorbitan,
Polyhydric alcohol fatty acid esters such as esters of polyhydric alcohols such as pentaerythritol and linear saturated fatty acids with an alkyl group of 6 to 18 carbon atoms or linear unsaturated fatty acids with an alkyl group of 18 to 22 carbon atoms, polyoxyethylene Polyoxyethylene alkyl phenyl ethers such as nonyl phenyl ether and polyoxyethylene octylphenyl ether, polyoxyethylene polyhydric alcohol fatty acid esters obtained by adding 5 to 20 units of ethylene oxide to the aforementioned polyhydric alcohol fatty acid esters,
Ethylene oxide 3 to 10 units Polyoxyethylene fatty acid ester, which is an ester of polyoxyethylene and the aforementioned fatty acid, ethylene oxide 5
-10 units of polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, polyoxyethylene oleyl cetyl ether, and polyoxyethylene dodecyl ether. Adhesives include castor oil derivatives, low-molecular viscous substances such as polybutene rosin or its derivatives, terpene resins, terpene-phenol resins, aromatic, aliphatic, alicyclic or copolymer petroleum resins, and coumaron. -Indene resins, styrene resins and hydrogenated resins thereof. From the viewpoint of compatibility and heat resistance, alicyclic or copolymerized hydrogenated petroleum resins are preferred. The linear low-density polyethylene layer, the ethylene-vinyl acetate copolymer, or a blend layer thereof may contain the above-mentioned additives, and the above-mentioned additives may be included as a result of ear loss recovery and reuse. I don't care if you get rejected. A layer mainly composed of an ethylene-vinyl acetate copolymer to be laminated, a layer mainly composed of a blend composition of an ethylene-vinyl acetate copolymer and linear low-density polyethylene, and a layer mainly composed of a linear low-density polyethylene The thickness of each layer is usually 2 to 50 μm, preferably 4 to 30 μm for the layer mainly composed of ethylene-vinyl acetate copolymer and the layer mainly composed of linear low-density polyethylene. It is preferable that the layer mainly composed of a blend composition of vinyl copolymer and linear low density polyethylene has a thickness of 6 to 30 microns. If the number of layers mainly composed of linear low density polyethylene is less than this range, the tear strength will be low, which is not preferable. On the other hand, if the thickness of the same layer is larger than this range, the cohesive force will be too large, which is not preferable. If the layer containing the ethylene-vinyl acetate copolymer as a main component is smaller than this range, the self-adhesive strength will be low, which is not preferable. If the layer mainly composed of a blend of ethylene-vinyl acetate copolymer and linear low-density polyethylene is smaller than this range, the tear propagation resistance and stress retention rate will decrease, which is not preferable. Moreover, if it is larger than this range, the cohesive force becomes too large, which is not preferable. The thickness ratio of each layer is as follows, but the ratio does not necessarily have to be constant depending on the overall thickness. The thickness of the layer mainly composed of a blend composition of ethylene-vinyl acetate copolymer and linear low density polyethylene is 0.2 to 7.5, preferably 0.5 to 4. , the thickness of the layer mainly composed of linear low-density polyethylene is
0.13-7.5 preferably 0.5-2. The overall thickness of the laminated film is usually 20 to 80μ.
It is the rank. In addition, the packaging film of the present invention may be used with a layer mainly composed of linear low-density polyethylene as the outer layer and a layer mainly composed of ethylene-vinyl acetate copolymer on the side facing the packaged object. many. Lamination of a layer mainly composed of ethylene-vinyl acetate copolymer, a layer mainly composed of a blend of ethylene-vinyl acetate copolymer and linear low-density polyethylene, and a layer mainly composed of linear low-density polyethylene. is carried out by a coextrusion cast molding method. Co-extrusion cast molding methods are broadly classified into in-die lamination and outside-die lamination, but either method may be used. Further, the intra-die stacking method includes a black box method, a multi-manifold method, etc., but the method is not particularly limited. Further, the conditions of the stretching and solidifying process from the die are not limited as long as the shrinkage rate of the film is within a predetermined range. Generally, the higher the stretching speed and the lower the stretching temperature, the higher the shrinkage rate of the film, which is not preferable. Here, the shrinkage rate is an index of residual strain during film molding, and α is the amount of film shrinkage when the film is immersed in ethylene glycol at 110°C for 5 seconds, and β is the dimension of the film before immersion. The shrinkage rate γ is the amount shown below. γ=αβ -1 ×100 [%] If the shrinkage rate exceeds 30% in the longitudinal direction of the film (processing and pulling direction), the cohesion retention rate will decrease,
Also, the initial binding force becomes too strong, which is not preferable. If the shrinkage in the direction perpendicular to the longitudinal direction of the film exceeds 5%, the tear propagation resistance will deteriorate, the initial binding force will become too strong, the stress retention rate will decrease, and the puncture strength will decrease. This is not desirable as it will cause problems. [Effects of the Invention] The three-layer film according to the present invention can stably obtain an appropriate cohesive force over time, and has high tear strength and
Excellent tear propagation resistance and self-adhesion. In general, the greater the stretching of a thermoplastic film, the greater the initial binding force, and the greater the rate of decline in the binding force over time. In addition, tear strength and tear propagation resistance also decrease. Therefore, the stretching ratio is selected in consideration of these performances. Since the three-layer film according to the present invention has improved performance compared to conventional films, it has become possible to increase the degree of stretching during packaging operations. In other words, the thickness of the film after packaging can be made thinner than before. Therefore, it was possible to reduce the amount of film consumed. This also contributes to reducing the weight of the package as a whole and suppressing the production of film after unpacking, that is, the production of industrial waste. [Example] Next, the present invention will be explained with reference to an example. Example 1 Single screw extruder A (screw diameter 40 mm
Linear low-density polyethylene (MFR=2, density=0.920) from φL/D=28) was processed by 50% by weight of the above linear low-density polyethylene from single-screw extruder B (screw diameter 40mmφ, L/D=28). Ethylene-vinyl acetate copolymer (MFR=3.5, density=
0.93, vinyl acetate content 14 (weight)%) and 50% by weight, and the above ethylene-vinyl acetate copolymerization was carried out using a single-screw extruder C (screw diameter 65 mmφ, L/D = 28). Resin 98.8% by weight, hydrogenated petroleum resin based alicyclic adhesive (ring and ball softening point 90)
℃)1.2% by weight was co-extruded into a multi-manifold die at 200℃, and processed into linear low-density polyethylene, linear low-density polyethylene and ethylene-acetic acid using a cast molding machine at a film winding speed of 50m/min. Films containing a vinyl copolymer resin blend and an ethylene-vinyl acetate copolymer resin as main components and having layer thicknesses of 7μ, 11μ, and 7μ, respectively, were obtained. Example 2 In Example 1, linear low density polyethylene with MFR = 2 and density = 0.915 was used as the linear low density polyethylene fed into extruder A, and as an ethylene-vinyl acetate copolymer resin fed into extruder C.
A three-layer film was obtained in the same manner as in Example 1 except that MFR = 15, density = 0.94, and vinyl acetate content was 19% (by weight). [Film evaluation method] The films obtained in Examples 1 and 2 were evaluated by JISK-
The tear strength of the film was measured according to JISK-6781-77 (pulling speed 200 mm/min), and each stress was measured immediately after stretching the film by 30% and after holding for 20 minutes using a method according to JISK-6301. The stress retention rate was determined. Stress retention rate = (stress after 20 minutes of holding) (stress immediately after) -1 × 100 [%] Correlation with the cohesion retention rate of packages using the pallet stretching machine described below was found. It was found that when the degree of elongation was set to 30%, the cohesion retention rate, which had the same value as the stress retention rate, was obtained 5 days after packaging. Next is the pallet stretch packaging machine made by Konan Denki.
Using Infra Pak SW-4000, a collection of cardboard boxes (vertical, horizontal, and height each 1290 mm) was used as an object to be packaged.
× 1550 × 1380 mm) and conducted a cartridge test. In addition, a spring scale (area 160 x 210
The sample was placed inside the cardboard in such a way that the surface on which the sample was placed (mm) protruded 10 cm from the cardboard surface. Immediately after wrapping the cardboard box collection with a film elongation of 30%, the scale of the spring scale was read to determine the initial cohesive strength. Next, a sharp pencil-like tool was used to pierce the inclined film surface between the surface on which the sample was placed on the spring scale and the cardboard plane, and the maximum stress at that time was similarly read from the spring scale. The puncture strength was calculated using the following formula. Puncture strength = Maximum stress shown by the spring scale at the time of puncture - Initial cohesion force Furthermore, a 100 mm cut was made with a knife in the direction perpendicular to the wrapping direction of the film on the film wrapped on another plane of the cardboard, and after 20 minutes. The degree of expansion of the cut end was measured using a ruler and was taken as the amount of tear propagation. Separately, the film was cut to a width of 100 x 20 mm, stacked 10 times, and then under a load of 100 g/cm 2 .
After standing at 23°C for 2 days, the adhesive strength between the films was measured. The peeling speed was 200 mm/min. Further, the film was cut into a size of 5 x 65 mm and immersed in ethylene glycol at 110°C for 5 seconds, and the shrinkage rate of the film was measured. The above measurement results are summarized in Table 1. Comparative Example 1 In Example 1, a composition consisting of 98.8% by weight of linear low-density polyethylene and 1.2% by weight of hydrogenated petroleum resin was added to each extruder, and linear low-density polyethylene was produced in the same manner as in Example 1. A cast film with a thickness of 25μ was obtained, the main component of which was . This film was evaluated in the same manner as in the examples, and the results shown in Table 1 were obtained. Comparative Example 2 The results shown in Table 1 were obtained in the same manner as in Comparative Example 1 except that the ethylene-vinyl acetate copolymer resin used in Example 1 was used instead of the linear low-density polyethylene. Comparative Example 3 In Example 1, a blend layer of linear low density polyethylene and ethylene-vinyl acetate copolymer resin was formed without melt extrusion on the single screw A.
A two-layer film was prepared in the same manner as in Example 1 except that the layer containing ethylene-vinyl acetate copolymer resin as the main component was 15 μm in thickness and 10 μm in thickness, and the results shown in Table 1 were obtained in accordance with Example 3. Comparative Example 4 In Example 1, uniaxial screw C was not melt-extruded, and uniaxial screw B contained 49.4% by weight of linear low density polyethylene, 49.4% by weight of ethylene-vinyl acetate copolymer resin, and hydrogenated petroleum resin. adhesive
1.2% by weight was melt extruded and the thickness of the linear low-density polyethylene layer was 10μ, and the layer thickness of the blend of linear low-density polyethylene and ethylene-vinyl acetate copolymer resin was 15μ. A two-layer film was prepared using the same method, and the results shown in Table 1 were obtained according to the example. Comparative Example 5 In Comparative Example 1, linear low density polyethylene was used instead of linear low density polyethylene and alicyclic adhesive.
49.4% by weight, ethylene-vinyl acetate copolymer resin
A single layer film was prepared in accordance with Comparative Example 1 except that 49.4% by weight and 1.2% by weight of hydrogenated petroleum resin adhesive were used.
25μ was obtained, and the results shown in Table 1 were obtained. Comparative Example 6 The same procedure was followed as in Example 1 except that the resin was not passed through extruder B in Example 1, except that the main components were a 12.5μ linear low-density polyethylene layer and a 12.5μ ethylene-vinyl acetate copolymer resin. A two-layer film consisting of two layers was obtained. The film was evaluated according to the example and the results shown in Table 1 were obtained. Comparative Example 7 In Example 1, instead of the multi-manifold type T-die, a circular die with an in-die merging method was used, and the resin temperature was 190°C, the blow ratio was 2.0, and the take-up speed was 15.
A film was obtained in the same manner as in Example 1 except that inflation molding was performed at m/min. This film was evaluated according to the example and the results shown in Table 1 were obtained.

【表】 例6 着剤12 〓キヤスト
比較 L〓 LDPE〓〓L〓 LDPE〓 96 100
65 7 1.6 5 1.9
35 33
例7 EVA11〓〓EVA〓ブロン
[Table] Example 6 Adhesive 12 5 〓Cast comparison L〓 LDPE 7 〓〓L〓 LDPE〓 96 100
65 7 1.6 5 1.9
35 33
Example 7 EVA 11 〓〓EVA 7 〓Bron

Claims (1)

【特許請求の範囲】 1 外層の一つが線状低密度ポリエチレンを主成
分とする層よりなり、外層の他の一つがエチレン
−酢酸ビニル共重合体を主成分とする層よりな
り、中間層が線状低密度ポリエチレンとエチレン
−酢酸ビニル共重合体のブレンド物を主成分とす
る層よりなる3層キヤストストレツチ包装用フイ
ルム。 2 フイルムの収縮率が長手方向に30%以下長手
方向と直交する方向に5%以下である特許請求の
範囲第一項記載の3層キヤストストレツチ包装用
フイルム。 3 エチレン−酢酸ビニル共重合体を主成分とす
る層の厚みを1として、エチレン−酢酸ビニル共
重合体と線状低密度ポリエチレンのブレンド組成
が8/2〜2/8の範囲内であるブレンド物を主
成分とする層の厚みが0.2〜7.5線状低密度ポリエ
チレンを主成分とする層の厚みが0.1〜7.5である
特許請求の範囲第二項記載の3層キヤストストレ
ツチ包装用フイルム。
[Claims] 1. One of the outer layers consists of a layer mainly composed of linear low-density polyethylene, the other outer layer consists of a layer mainly composed of ethylene-vinyl acetate copolymer, and the middle layer is composed of a layer mainly composed of ethylene-vinyl acetate copolymer. A three-layer cast stretch packaging film consisting of layers mainly composed of a blend of linear low-density polyethylene and ethylene-vinyl acetate copolymer. 2. The three-layer cast stretch packaging film according to claim 1, wherein the shrinkage rate of the film is 30% or less in the longitudinal direction and 5% or less in the direction perpendicular to the longitudinal direction. 3 A blend in which the blend composition of the ethylene-vinyl acetate copolymer and linear low-density polyethylene is within the range of 8/2 to 2/8, where the thickness of the layer containing the ethylene-vinyl acetate copolymer as the main component is 1. 2. The three-layer cast stretch packaging film according to claim 2, wherein the layer mainly composed of polyethylene has a thickness of 0.2 to 7.5, and the layer mainly composed of linear low density polyethylene has a thickness of 0.1 to 7.5.
JP59273200A 1984-12-26 1984-12-26 Film for stretching packaging Granted JPS61152450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273200A JPS61152450A (en) 1984-12-26 1984-12-26 Film for stretching packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273200A JPS61152450A (en) 1984-12-26 1984-12-26 Film for stretching packaging

Publications (2)

Publication Number Publication Date
JPS61152450A JPS61152450A (en) 1986-07-11
JPH021669B2 true JPH021669B2 (en) 1990-01-12

Family

ID=17524490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273200A Granted JPS61152450A (en) 1984-12-26 1984-12-26 Film for stretching packaging

Country Status (1)

Country Link
JP (1) JPS61152450A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174443A (en) * 1987-12-28 1989-07-11 Toyo Seikan Kaisha Ltd Separate sheet and pallet packing of vessel
JP2003019778A (en) * 2001-07-09 2003-01-21 Asahi Kasei Corp Polypropylene multilayer lap film

Also Published As

Publication number Publication date
JPS61152450A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
US5114763A (en) Tackified polyethylene layers in stretch/cling films
EP0317166B2 (en) Thermoplastic films for use in stretch/cling applications
US5407732A (en) Multi-layer coextruded polyolefin stretch wrap films
US4436788A (en) Composite stretch wrap film
US6045882A (en) Multilayer thin plastic film, useful for shrink overwrap packaging
US4504434A (en) Process and polymer blend composition for stretch wrap film
CA1335253C (en) Multi-layer plastic film and package
US20090317650A1 (en) Cross-laminated elastic film
US5116677A (en) Thermoplastic stretch-wrap material
JPH01105739A (en) Skin packaging film
JP5598334B2 (en) Adhesive tape
CN113748163B (en) Heat-shrinkable polyethylene film
US5147708A (en) Thermoplastic films for use in stretch/cling applications
JPH021669B2 (en)
JPH11129415A (en) Easy-to-cut laminated film and its use
JP3908372B2 (en) Polyethylene laminate for laminating
JP7259243B2 (en) Polyethylene-based resin composition for sealant film containing plant-derived polyethylene and sealant film
JP3096350B2 (en) Laminated stretch shrink film
JP2007062797A (en) Easy-to-unseal, integrally packaging shrinkable film made of polyethylene
JP2002347782A (en) Polyethylene bag
JP3146321B2 (en) Stretch packaging film
JPH0625620A (en) Self-tack film
US6495245B1 (en) Hand wrap multilayer film products
JPS60155210A (en) Stretch-packaging film
JPH0212187B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees