JPH02155378A - Drive method for solid-state image pickup element - Google Patents

Drive method for solid-state image pickup element

Info

Publication number
JPH02155378A
JPH02155378A JP63310381A JP31038188A JPH02155378A JP H02155378 A JPH02155378 A JP H02155378A JP 63310381 A JP63310381 A JP 63310381A JP 31038188 A JP31038188 A JP 31038188A JP H02155378 A JPH02155378 A JP H02155378A
Authority
JP
Japan
Prior art keywords
voltage
pulse
light
substrate
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310381A
Other languages
Japanese (ja)
Inventor
Akihiro Kono
明啓 河野
Atsushi Mikoshiba
篤 御子柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC Corp
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC IC Microcomputer Systems Co Ltd filed Critical NEC Corp
Priority to JP63310381A priority Critical patent/JPH02155378A/en
Priority to DE68917872T priority patent/DE68917872T2/en
Priority to EP89122333A priority patent/EP0372456B1/en
Priority to US07/447,468 priority patent/US4963983A/en
Publication of JPH02155378A publication Critical patent/JPH02155378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors

Abstract

PURPOSE:To attain complete charge sweepout without using a high substrate voltage by applying a pulse switching a substrate voltage normally to a substrate at the same time of the leading of the light shield aluminum electrode application pulse or before the leading, and applying electronic shutter operation, CONSTITUTION:A voltage phiPS (light shield aluminum electrode voltage) as shown in figure (b) and a voltage phiSUB(substrate voltage) as shown in figure (c) are generated from a vertical drive pulse (hereinafter referred to as VD). The high level of the voltage phiPS is set to a voltage able to store the electric charge in a PD (photodiode) sufficiently such as +8V, the low level is set to a voltage decreasing the stored charge quantity such as -8V and it is fed to a PS (light shield aluminum) electrode. On the other hand, the voltage phiSUB forms a pulse switching a Vsub (high substrate voltage) in the horizontal blanking period including the leading of the voltage phiPS. In this case the leading period of the voltage phiSUB is selected at the same time of the leading period of the voltage phiPS or before the leading period, that is the start of storage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像素子による撮像方法に関し、特にイン
ターライン転送方式〇〇D撮像素子の電子シャッター駆
動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an imaging method using a solid-state imaging device, and particularly to an electronic shutter driving method for an interline transfer type 〇〇D imaging device.

〔従来の技術〕[Conventional technology]

従来のインターライン転送方式〇CD撮像素子はフォト
ダイオードで光電変換され、蓄積された電荷は垂直ブラ
ンキング期間毎に読み出されるため例えばNTSCの場
合1/60秒の蓄積時間を有する事になる。従って17
60秒期間で蓄積された電荷量で像を撮らえるため、速
く動く物を撮った場合、画面がポケるのが常であった。
Conventional interline transfer method CD image pickup device performs photoelectric conversion using a photodiode, and the accumulated charge is read out every vertical blanking period, so in the case of NTSC, for example, it has an accumulation time of 1/60 seconds. Therefore 17
Because images are taken using the amount of charge accumulated over a 60-second period, the screen often gets blurred when taking pictures of fast-moving objects.

この欠点を改善するため蓄積時間を短がくする電子シャ
ッター動作が最近提案され実用化されつつある。
In order to improve this drawback, an electronic shutter operation that shortens the storage time has recently been proposed and is being put into practical use.

例を挙げると写真工業出版社発行のビデオα1987年
8月号P145〜148に示す様に一般には第10図の
様に上部にドレイン4を設けたインターライン方式CC
D撮像素子を用い、第11図の様に垂直ブランキング期
間に2つのフォトダイオード(以後PDとする)読み出
しパルス8を設け、その間に高速道転送パルス14を加
えて最初のPD読み出しで読み出された電荷をドレイン
側に掃き出す。この間に蓄積された電荷が2回目のPD
読み出しで出力される。この期間t1がシャッター時間
となる。この場合垂直ブランキング10内で不要電荷読
み出し、高速掃き出し、信号電荷読み出しを行なわなけ
ればならずシャッター時間171000秒固定しか出来
ない。これの改良型として第12図の様に蓄積部12を
設ける事でシャッター時間17250秒〜171000
秒を実現さ1987年10月号F60〜64に示される
様な縦型オーバーフロードレインを利用して基盤側に不
要電荷を引き抜く方法があるがこの場合高い基盤電圧(
以後Vsubとする)が必要であり、この様な電圧で完
全にPD蓄積電荷を零とするためにはVsubに対する
PD最大蓄積電荷量のコントロール依存性を高くする必
要があり、この事はPDの静電容量の増加を意味し基盤
濃度むら等による静電容量のばらつきの影唇が大きくな
り、飽和むらの発生等を生ずる。
For example, as shown in Video α August 1987 issue P145-148 published by Shashin Kogyo Publishing Co., Ltd., an interline type CC with a drain 4 installed at the top as shown in Figure 10 is generally used.
Using a D image sensor, two photodiode (hereinafter referred to as PD) readout pulses 8 are provided during the vertical blanking period as shown in FIG. The generated charge is swept out to the drain side. The charge accumulated during this time is the second PD
Output on read. This period t1 becomes the shutter time. In this case, unnecessary charge reading, high-speed sweeping, and signal charge reading must be performed within the vertical blanking 10, and the shutter time can only be fixed at 171,000 seconds. As an improved version of this, by providing an accumulation section 12 as shown in Fig. 12, the shutter time can be reduced from 17,250 seconds to 171,000 seconds.
There is a method of drawing out unnecessary charge from the board side using a vertical overflow drain as shown in October 1987 issue F60-64, but in this case, the high board voltage (
(hereinafter referred to as Vsub), and in order to completely reduce the PD accumulated charge to zero with such a voltage, it is necessary to increase the control dependence of the PD maximum accumulated charge amount on Vsub. This means an increase in capacitance, and the influence of variations in capacitance due to uneven substrate concentration becomes larger, resulting in uneven saturation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の撮像方法による電子シャターは可変範囲
を広げようとするとそれだけメモリーの段数が必要とな
るので、必然的に撮像素子のチップ面積が大きくなって
しまう。又、メモリー段数が増えるとそれだけ早い時間
で転送しなければならないので周波数が高くなり垂直レ
ジスターの最大転送電荷量が減少してしまう欠点がある
In the electronic shutter according to the conventional imaging method described above, when trying to widen the variable range, the number of memory stages is required correspondingly, which inevitably increases the chip area of the image sensor. Furthermore, as the number of memory stages increases, data must be transferred at a faster time, which increases the frequency and reduces the maximum transfer charge amount of the vertical register.

また縦型オーバーフロードレインを利用する方法ではV
 s u bを高電圧にしなければならない。
In addition, in the method using a vertical overflow drain, V
SUB must be set to high voltage.

この様な電圧で完全にFD蓄積電荷を零とするためには
V s u bに対するPD最大蓄積電荷量のコントロ
ール依存性を高くする必要があり、この事はPDの静電
容量の増加を意味し、基盤濃度むら等による静電容量の
バラツキの影響が大きくなり飽和ムラの発生等を生ずる
という欠点がある。
In order to completely reduce the FD accumulated charge to zero at such a voltage, it is necessary to increase the control dependence of the PD maximum accumulated charge amount on Vsub, which means an increase in the PD capacitance. However, there is a drawback that the influence of variations in capacitance due to variations in substrate concentration, etc. increases, resulting in the occurrence of saturation variations.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の固体撮像素子の撮像方法は少なくとも読み出し
パルスを含み、所望の蓄積時間遮光アルミ電極印加電圧
を必要な電荷量をフォトダイオードに蓄積出来る電圧に
設定し、前記蓄積時間以外の期間遮光アルミ電極印加電
圧を前記電圧より低電圧にし、かつ電圧切換時点が水平
或いは垂直ブランキング期間であるパルスを遮光アルミ
電極に印加すると共に、前記低電圧期間の水平ブランキ
ング期間内に基板電圧を通常よりも高い電圧に切り換え
、前記遮光アルミ電極印加パルスの立ち上がりと同時或
いはそれ以前に基板電圧を通常に切り換えるパルスを基
板に加える事により電子シャッター動作を実現する。
The imaging method for a solid-state image sensor of the present invention includes at least a readout pulse, sets the voltage applied to the light-shielded aluminum electrode for a desired accumulation time to a voltage that allows the required amount of charge to be accumulated in the photodiode, and applies the voltage to the light-shielded aluminum electrode for a period other than the accumulation time. The applied voltage is lower than the above-mentioned voltage, and a pulse is applied to the light-shielding aluminum electrode during the horizontal or vertical blanking period when the voltage is switched, and at the same time, the substrate voltage is made lower than normal during the horizontal blanking period of the low-voltage period. The electronic shutter operation is realized by switching to a high voltage and applying a pulse to the substrate to switch the substrate voltage to normal at the same time as or before the rise of the pulse applied to the light-shielding aluminum electrode.

すなわち、従来の撮像方法による電子シャッターは蓄積
部を必要とし、シャッター時間を広げようとした場合、
それだけ早い時間で電荷転送を行なうため高速転送部の
周波数が高くなり転送電荷量の減少が生ずるのに対し、
本発明では蓄積部を必要とせず、高速転送パルスも必要
ないのでシャッター時間を広げても転送電荷量が減少す
ることもない。また高い基板電圧も必要としない。
In other words, electronic shutters used in conventional imaging methods require storage units, and when trying to extend the shutter time,
Because the charge is transferred in such a short time, the frequency of the high-speed transfer section increases and the amount of transferred charge decreases.
The present invention does not require an accumulation section and does not require high-speed transfer pulses, so the amount of transferred charge does not decrease even if the shutter time is extended. Also, high substrate voltage is not required.

〔実施例〕〔Example〕

次に、図面を参照して本発明をより詳細に説明する。・ 先ず本発明の詳細な説明する。第3図に示す様なN−型
フォトダイオードは完全空乏化させて使用しているため
PD以外を遮光している遮光アルミ (以後PSとする
)はフローティング状態だと電位が不安定なため、接地
或いは第3図の様に一定電圧(DC)を印加していた。
Next, the present invention will be explained in more detail with reference to the drawings. - First, the present invention will be explained in detail. Since the N-type photodiode shown in Figure 3 is used in a fully depleted state, the potential of the light-shielding aluminum (hereinafter referred to as PS) that blocks light other than the PD is unstable if it is in a floating state. Either it was grounded or a constant voltage (DC) was applied as shown in Figure 3.

実験によればPS電極に印加する電圧(以後VP9とす
る)とCOD出力電圧の関係は第5図の様になりCOD
出力電圧はVp3に大きく依存する。VF6を上げると
それに比例してCOD出力も増加し、逆にVpsを下げ
るとCOD出力電圧も減少する。この現象を第4図を用
いて説明する。現在PDの開口率が狭く、遮光アルミが
厚いため、アルミの側面から電気力線7がPD全全面作
用するため等測的には遮光アルミがPDを覆っているの
と同じになり、蓄積電荷量がvpsでフントロールされ
ると考えられている。一方、第6図の様にVp3でVs
ubのコントロール特性も変化する。
According to experiments, the relationship between the voltage applied to the PS electrode (hereinafter referred to as VP9) and the COD output voltage is as shown in Figure 5, and the COD
The output voltage is highly dependent on Vp3. When VF6 is increased, the COD output increases in proportion to it, and conversely, when Vps is decreased, the COD output voltage also decreases. This phenomenon will be explained using FIG. 4. Currently, the aperture ratio of the PD is narrow and the light-shielding aluminum is thick, so the electric lines of force 7 act on the entire surface of the PD from the side of the aluminum, so it is isometrically equivalent to the light-shielding aluminum covering the PD, and the accumulated charge It is believed that the amount is hunted by VPS. On the other hand, as shown in Figure 6, at Vp3, Vs
The control characteristics of ub also change.

第1図は本発明の一実施例のブロック図であり、第9図
はそのタイミングチャートを示す。垂直駆動パルス(以
後VDとする)から第9図(b)に示すφPSと第9図
(c)に示すφSUBを作る。この時φPSは第7図(
a)に示す様に画面に切り換えノイズが出ない様ローレ
ベルからハイレベルへの切り換えは必ず水平ブランキン
グ期間9内で行なう。同様にハイレベルからローレベル
への切り換えは第9図(a)の読み出しパルスをカバー
し、かつ垂直ブランキング期間10内かそれ以後の水平
ブランキング期間内で行なう。φPSのハイレベルはP
Dに十分電荷を蓄積出来る電圧、本発明では+8vに設
定し、ローレベルは蓄積電荷量が少なくなる電圧、本発
明では一8vに設定し、PS電極に印加する。一方φS
UBは第7図(b)に示す様にφPSの立ち上がりを含
む水平ブランキング内に於いてVsubを切り換えるパ
ルスを作る。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 9 shows its timing chart. φPS shown in FIG. 9(b) and φSUB shown in FIG. 9(c) are generated from the vertical drive pulse (hereinafter referred to as VD). At this time, φPS is as shown in Figure 7 (
As shown in a), the switching from the low level to the high level is always performed within the horizontal blanking period 9 so that switching noise does not appear on the screen. Similarly, the switching from the high level to the low level covers the read pulse shown in FIG. 9(a), and is performed within the vertical blanking period 10 or within the horizontal blanking period thereafter. The high level of φPS is P
In the present invention, a voltage that allows sufficient charge to be stored in D is set to +8V, and a low level voltage is set to a voltage that reduces the amount of accumulated charge, which is -8V in the present invention, and is applied to the PS electrode. On the other hand, φS
UB generates a pulse to switch Vsub during horizontal blanking including the rise of φPS as shown in FIG. 7(b).

この時、φSUBの立ち下がりは蓄積時間、Dレンジの
減少を防くためφPSの立ち上がりすなわち蓄積開始と
同時或いはそれ以前にする。φSUBのローレベルは通
常使用電圧、本発明ではIOVに設定し、ハイレベルは
φPSローレベル時の蓄積電荷量を全て基板に引ける電
圧本発明では20■に設定し基板に印加する。この様な
場合、実際にはφSUBの立ち下がりから読み出しパル
スまでの期間t2が蓄積時間となり、シャッター時間t
2秒の電子シャッター動作を行なう。
At this time, the falling edge of φSUB should be made at the same time as or before the rising edge of φPS, that is, the start of accumulation, in order to prevent the accumulation time and D range from decreasing. The low level of φSUB is set to the normally used voltage, which is IOV in the present invention, and the high level is set to 20V, which is a voltage capable of drawing all the accumulated charge when φPS is low level to the substrate, and is applied to the substrate. In such a case, the period t2 from the fall of φSUB to the readout pulse is actually the accumulation time, and the shutter time t
Performs a 2 second electronic shutter operation.

第2図は本発明の他の実施例のブロック図である。第1
図に於いてはV s u bをφPSの立ち上がりを含
む水平ブランキング内で切り換えるパルスを作ったのに
対し、第2図の回路では第8図(b)の様にφPSの立
ち上がりを含む水平ブランキングの1つ前の水平ブラン
キングに於いて同様にV s u bの切り換えを行な
うパルスを作る。この場合φSUBにより電荷を基板に
引いてからφPSが立ち上がるまでの時間t3に於いて
も電荷蓄積は行なわれるのでシャッター時間に加えても
影響しない。
FIG. 2 is a block diagram of another embodiment of the invention. 1st
In the figure, a pulse is created to switch V s u b within the horizontal blanking including the rising edge of φPS, whereas in the circuit of FIG. During horizontal blanking immediately before blanking, a pulse is generated to switch Vsub in the same way. In this case, since charge is accumulated even during the time t3 from when charge is drawn to the substrate by φSUB until φPS rises, adding it to the shutter time has no effect.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明による駆動方法によれば、少な
くとも読み出しパルスを含み、所望の蓄積期間遮光アル
ミ電極印加電圧を必要な電荷量をPDに蓄積出来る電圧
に設定し、前記蓄積時間以外の期間遮光アルミ電極印加
電圧を前記電圧より低電圧にし、かつ電圧切換時点が水
平或いは垂直ブランキング期間であるパルスを遮光アル
ミ電極に印加すると共に前記低電圧期間の水平ブランキ
ング期間内に基板電圧を通常よりも高い電圧に切り換え
、前記遮光アルミ電極印加パルスの立ち上がりと同時或
いはそれ以前に基板電圧を通常に切り換えるパルスを基
板に加える事により電子シャター動作をするので従来の
可変型の様にメモリーを必要としない。従って従来の可
変型CCD撮像素子のチップより小さくなる。一方不要
電荷読み出しパルスや掃き出しパルス、高速転送パルス
が不要なため垂直転送パルスがノーマル時のままで良い
のでシンプルになる。又、高速転送による転送電荷量の
減少もなく 1/60秒から従来の171000秒より
もっと短いシャッター時間が実現出来る効果がある。
As explained above, according to the driving method according to the present invention, the voltage applied to the light-shielding aluminum electrode is set to a voltage that can accumulate a necessary amount of charge in the PD for a desired accumulation period, including at least a readout pulse, and for a period other than the accumulation time. The voltage applied to the light-shielding aluminum electrode is made lower than the above voltage, and a pulse is applied to the light-shielding aluminum electrode in which the voltage switching time is during the horizontal or vertical blanking period, and the substrate voltage is set to normal within the horizontal blanking period of the low voltage period. Electronic shutter operation is performed by switching to a higher voltage and applying a pulse to the substrate that switches the substrate voltage to normal at the same time as or before the rise of the pulse applied to the light-shielding aluminum electrode, so it requires memory like the conventional variable type. I don't. Therefore, the chip is smaller than that of a conventional variable CCD image sensor. On the other hand, since unnecessary charge readout pulses, sweep pulses, and high-speed transfer pulses are not required, the vertical transfer pulse can remain as it is when it is normal, which simplifies the process. In addition, there is no reduction in the amount of transferred charge due to high-speed transfer, and the shutter time can be realized from 1/60 seconds to much shorter than the conventional 171,000 seconds.

この様にPSとSUBを同時に制御する事によって高い
基板電圧を用いずに完全な電荷掃出しが出来る。更にP
Dの静電容量を増加させる事も必要ないので飽和むらが
発生しないという効果がある。
By controlling PS and SUB simultaneously in this way, it is possible to completely sweep out the charge without using a high substrate voltage. Furthermore, P
Since it is not necessary to increase the capacitance of D, there is an effect that saturation unevenness does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による電子シャター駆動回路
のブロック図、第2図は本発明の他の実施例のブロン゛
り図、第3図は従来のPS、SUBの使用例を示す図、
第4図はPSの影響説明する図、第5図はCCD出力の
VPS依存性を示すグラフ、第6図はCCD出力のVs
ub依存性を示すグラフ、第7図は本発明の一実施例に
よる電子シャッターのタイミングチャート、第8図は本
発明の他の実施例のタイミングチャート、第9図は本発
明の一実施例でのタイミングチャート(1垂直期間)、
第10図はインターライン方式のCCD撮像素子構成を
示す平面模式図、第11図は従来の電子シャターのタイ
ミングチャート、第12図は可変シャッター機能を持つ
CCV)撮像素子の構成を示す平面模式図である。 1・・・・・・フォトダイオード(P D)、2・・・
・・・垂直レジスターff−CCD)、3・・・・・・
水平レジスター(H−COD)、4・・・・・・ドレイ
ン、5・・・・・・垂直転送パルス電極、6・・・・・
・フォトシールド電極(PS)、7・・・・・・電気力
線、8・・・・・・信号電荷読み出しパルス、9・・・
・・・水平ブランキング期間、10・・・・・・垂直ブ
ランキング期間、11・・・・・・撮像部、12・・・
・・・蓄積部、13・・・・・・メモリー 14・・・
・・・高速道転送パルス。 代理人 弁理士  内 原    晋 茅 哲 茅 泉 早 茅 乙 回 憂 舅 茅 閉 第 酊
Fig. 1 is a block diagram of an electronic shutter drive circuit according to one embodiment of the present invention, Fig. 2 is a block diagram of another embodiment of the present invention, and Fig. 3 shows an example of use of conventional PS and SUB. figure,
Fig. 4 is a diagram explaining the influence of PS, Fig. 5 is a graph showing the VPS dependence of CCD output, and Fig. 6 is a graph showing the VPS dependence of CCD output.
Graph showing ub dependence, FIG. 7 is a timing chart of an electronic shutter according to an embodiment of the present invention, FIG. 8 is a timing chart of another embodiment of the present invention, and FIG. 9 is a timing chart of an embodiment of the present invention. timing chart (1 vertical period),
Fig. 10 is a schematic plan view showing the configuration of an interline type CCD image sensor, Fig. 11 is a timing chart of a conventional electronic shutter, and Fig. 12 is a schematic plan view showing the configuration of a CCV image sensor with a variable shutter function. It is. 1...Photodiode (PD), 2...
...Vertical register ff-CCD), 3...
Horizontal register (H-COD), 4...Drain, 5...Vertical transfer pulse electrode, 6...
・Photoshield electrode (PS), 7... Lines of electric force, 8... Signal charge readout pulse, 9...
... Horizontal blanking period, 10 ... Vertical blanking period, 11 ... Imaging section, 12 ...
...Storage section, 13...Memory 14...
...highway transfer pulse. Agent: Patent Attorney Shinya Uchihara

Claims (1)

【特許請求の範囲】 PN接合型フォトダイオードとそれ以外を遮光する遮光
電極及び縦型オーバーフロードレインを有するCCD型
の固体撮像素子に於いて、少なくとも読み出しパルスを
含み、所望の蓄積時間遮光電極印加電圧を必要な電荷量
をフォトダイ オードに蓄積出来る電圧に設定し、前記蓄積時間以外の
期間遮光電極印加電圧を前記電圧よ り低電圧にし、かつ電圧切換時点が水平或いは垂直ブラ
ンキング期間であるパルスを遮光電 極に印加すると共に、前記低電圧期間の水平ブランキン
グ期間内に基板電圧を通常よりも高い電圧に切り換え、
前記遮光電極印加パルスの立 ち上がりと同時或いはそれ以前に基板電圧を通常に切り
換えるパルスを基板に加える事を特徴とした固体撮像素
子の駆動方法。
[Claims] In a CCD type solid-state imaging device having a PN junction photodiode, a light-shielding electrode that shields the rest from light, and a vertical overflow drain, the voltage applied to the light-shielding electrode includes at least a readout pulse and is applied to the light-shielding electrode for a desired accumulation time. is set to a voltage that allows the required amount of charge to be stored in the photodiode, the voltage applied to the light-shielding electrode is set to a lower voltage than the voltage for a period other than the accumulation time, and the pulse whose voltage switching time is the horizontal or vertical blanking period is light-shielded. applying it to the electrode, and switching the substrate voltage to a higher voltage than usual within the horizontal blanking period of the low voltage period,
A method for driving a solid-state image sensor, characterized in that a pulse for switching the substrate voltage to normal is applied to the substrate at the same time as or before the rise of the pulse applied to the light-shielding electrode.
JP63310381A 1988-12-07 1988-12-07 Drive method for solid-state image pickup element Pending JPH02155378A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63310381A JPH02155378A (en) 1988-12-07 1988-12-07 Drive method for solid-state image pickup element
DE68917872T DE68917872T2 (en) 1988-12-07 1989-12-04 CCD imager with vertical overflow drain.
EP89122333A EP0372456B1 (en) 1988-12-07 1989-12-04 CCD image sensor with vertical overflow drain
US07/447,468 US4963983A (en) 1988-12-07 1989-12-07 Ccd image sensor with vertical overflow drain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310381A JPH02155378A (en) 1988-12-07 1988-12-07 Drive method for solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH02155378A true JPH02155378A (en) 1990-06-14

Family

ID=18004566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310381A Pending JPH02155378A (en) 1988-12-07 1988-12-07 Drive method for solid-state image pickup element

Country Status (4)

Country Link
US (1) US4963983A (en)
EP (1) EP0372456B1 (en)
JP (1) JPH02155378A (en)
DE (1) DE68917872T2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601933B2 (en) * 1990-04-13 1997-04-23 株式会社東芝 Solid-state imaging device
JP3097121B2 (en) * 1990-09-27 2000-10-10 ソニー株式会社 Measurement method of charge / voltage conversion efficiency
JP2725714B2 (en) * 1991-01-04 1998-03-11 シャープ株式会社 CCD solid-state imaging device
US5528291A (en) * 1991-09-25 1996-06-18 Fuji Photo Film Co., Ltd. CCD image pickup device and method of driving which maintains sensitivity regardless of the operating mode
JPH0638111A (en) * 1992-07-16 1994-02-10 Nec Corp Drive method for two-dimension charge coupled image pickup element
JP3113406B2 (en) * 1992-08-13 2000-11-27 旭光学工業株式会社 Image sensor control device for still video camera
JPH06164826A (en) * 1992-11-24 1994-06-10 Toshiba Corp Solid-state image pickup device and its drive method
DE4329838B4 (en) * 1993-09-03 2005-09-22 Hynix Semiconductor Inc., Ichon Solid-state image sensor
US5598210A (en) * 1995-02-15 1997-01-28 Eastman Kodak Company On chip driver for electric shuttering
US7038723B1 (en) * 1999-04-26 2006-05-02 Matsushita Electric Industrial Co., Ltd. Solid state imaging device, method for driving the same and camera using the same
JP3838222B2 (en) * 2003-05-30 2006-10-25 コニカミノルタフォトイメージング株式会社 Imaging device
JP2005167665A (en) * 2003-12-03 2005-06-23 Sanyo Electric Co Ltd Image signal processor, image signal processing method, image signal processing program, controller and controlling method for solid-state imaging element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919480A (en) * 1982-07-26 1984-01-31 Olympus Optical Co Ltd Solid-state image pickup device
JPS5980069A (en) * 1982-10-29 1984-05-09 Toshiba Corp Image pickup system using solid state image pickup element
US4743778A (en) * 1985-03-25 1988-05-10 Nippon Kogaku K. K. Solid-state area imaging device having interline transfer CCD
JPS62265757A (en) * 1986-05-14 1987-11-18 Matsushita Electronics Corp Solid state image pickup device
US4851915A (en) * 1986-08-11 1989-07-25 Xian Northwest Telecommunication Engineering Inst. Method and apparatus for obtaining clear images of high speed moving objects
US4875100A (en) * 1986-10-23 1989-10-17 Sony Corporation Electronic shutter for a CCD image sensor
JP2576860B2 (en) * 1987-01-19 1997-01-29 キヤノン株式会社 Imaging device
NL8700282A (en) * 1987-02-06 1988-09-01 Philips Nv LOAD-COUPLED DEVICE AND CAMERA EQUIPPED WITH SUCH A DEVICE.
US4912560A (en) * 1988-01-29 1990-03-27 Kabushiki Kaisha Toshiba Solid state image sensing device
JPH02113678A (en) * 1988-10-21 1990-04-25 Nec Corp Solid state image pickup device

Also Published As

Publication number Publication date
US4963983A (en) 1990-10-16
DE68917872D1 (en) 1994-10-06
EP0372456A3 (en) 1991-12-27
EP0372456A2 (en) 1990-06-13
EP0372456B1 (en) 1994-08-31
DE68917872T2 (en) 1995-03-30

Similar Documents

Publication Publication Date Title
JPH02113678A (en) Solid state image pickup device
US4774585A (en) Image pickup apparatus
JPH02155378A (en) Drive method for solid-state image pickup element
US4868680A (en) Image pickup apparatus
US6778215B1 (en) Driving method of solid-state image pickup device and image pickup system
JPH0965217A (en) Solid-state image pickup device and its drive method
JPS62269357A (en) Solid-state image sensing device
JPH022793A (en) Two-dimensional ccd image pickup element driving method
US4500924A (en) Solid state imaging apparatus
US4985776A (en) Method of driving solid-state imaging element
KR20050053342A (en) Solid-state image-taking apparatus, solid-state image-taking system, and apparatus and method for driving the solid-state image-taking apparatus
US4734773A (en) Imaging apparatus having high-frequency electron purging circuit operable during an exposure time
JPH0237884A (en) Method for driving solid-state image pickup element
JPH0683399B2 (en) Solid-state imaging device
JPS6249787A (en) Driving system for solid-state image pickup device
JPH0244871A (en) Solid-state image pickup device
JPH03195278A (en) Photoelectric conversion control method for solid-state image pickup device
JP2526895B2 (en) Solid-state imaging device
JP2987844B2 (en) Solid-state imaging device and driving method thereof
JPH06261254A (en) Driving device of solid-state image pickup element
JPH0327682A (en) Drive method for solid-state image pickup device
JPS61219271A (en) Method for driving inter-line transfer type ccd
JPH11146282A (en) Driving method of solid-state image pickup device
JPH0777436B2 (en) Driving method for solid-state imaging device
JPH04207874A (en) Method of driving solid-state image sensor