JPH02154499A - Electromagnetic wave reflector - Google Patents

Electromagnetic wave reflector

Info

Publication number
JPH02154499A
JPH02154499A JP30815488A JP30815488A JPH02154499A JP H02154499 A JPH02154499 A JP H02154499A JP 30815488 A JP30815488 A JP 30815488A JP 30815488 A JP30815488 A JP 30815488A JP H02154499 A JPH02154499 A JP H02154499A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
reflecting material
particles
backup material
backup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30815488A
Other languages
Japanese (ja)
Inventor
Tatsuya Kanayama
達也 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP30815488A priority Critical patent/JPH02154499A/en
Publication of JPH02154499A publication Critical patent/JPH02154499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To enhance the bonding strength of both an electromagnetic wave reflecting material and a backup material by coupling the metal electromagnetic wave reflecting material to the synthetic resin backup material with binder containing many particles to interpose the particles in the binder layer between the reflecting material and the backup material. CONSTITUTION:A metal electromagnetic wave reflecting material 1 made of aluminum foil, etc. is coupled to particles 2 through thermosetting resin binder 3, and a composite sheet 5 formed with a surface protective layer 4 is preliminarily formed in a predetermined shape on the other side face of the reflecting material 1. This composite sheet 5 is set in a die, and preliminarily molded in a predetermined shape. This composite sheet 5 is set in a mold, SMC (sheet molding compound) 6 is poured in the mold, and pressure compression molded. The SMC 6 is cured to become an FRP backup material 7, and an electromagnetic wave reflector integrated with the reflecting material 1 is molded. Thus, the metallic reflecting material 1 is coupled to the backup material 7 by binder 2 containing many particles 2. Thus, the particles 2 partly sink in the backup material to increase adhering area to increase the adhering strength of the backup material 2 to the reflecting material 1, thereby inexpensively manufacturing it.

Description

【発明の詳細な説明】 〔産業−にの利用分野〕 この発明は、衛星放送受信用や通信用、或いはコンピュ
ータ、ファクシミリ、複写機、プリンタ、計測器等のシ
ールドケース用、さらには自動車のランプハウジング用
や外板用等の電磁波反射体に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to satellite broadcast reception, communications, shield cases for computers, facsimile machines, copiers, printers, measuring instruments, etc., and furthermore, for automobile lamps. Related to electromagnetic wave reflectors for housings, outer panels, etc.

〔従来の技術〕[Conventional technology]

アルミニウム、銅、鉄等の金属箔等から電磁波反射材を
成形し、この反射材の裏面に合成樹脂製のバックアップ
材を接着・結合したものが知られている。
It is known that an electromagnetic wave reflecting material is molded from metal foil such as aluminum, copper, iron, etc., and a backup material made of synthetic resin is bonded and bonded to the back side of this reflecting material.

例えば、パラボラアンテナの場合、熱可塑性樹脂フィル
ムを予め電磁波反射材にラミネートしておき、このラミ
ネートされたフィル11を加熱してバックアップ材に融
着させたものや、熱硬化性樹脂を電磁波反射材にコーテ
ィングし、この熱硬化性樹脂を半硬化状態に保つかプラ
イマー等によりバックアップ材と一体成形したもの、あ
るいは電磁波反射材とバックアップ材との結合にテトラ
−フィルムを使用したもの等が知られている。
For example, in the case of a parabolic antenna, a thermoplastic resin film is laminated with an electromagnetic wave reflecting material in advance, and this laminated film 11 is heated and fused to the backup material, or a thermosetting resin is laminated with an electromagnetic wave reflecting material. Some known methods include coating the thermosetting resin with a semi-cured state or integrally molding it with a backup material using a primer, or using Tetra film to bond the electromagnetic wave reflecting material and the backup material. There is.

〔解決しようとする課題〕[Problem to be solved]

パラボラアンテナやランプハウジング等のような三次元
形状を有する電磁波反射体では、電磁波反射体とバック
アップ材の一方又は両方を成形した後に両者の接着・結
合を図るため及び一方を予め成形した後に加熱圧着する
ときに成形された形状に均一に温度や圧力をかけること
が難しいために機械化・自動化が困難であった。
For electromagnetic wave reflectors that have a three-dimensional shape such as parabolic antennas and lamp housings, one or both of the electromagnetic wave reflector and the backup material are molded and then the two are bonded and bonded, and one of them is pre-formed and then heat pressure bonded. Mechanization and automation have been difficult because it is difficult to uniformly apply temperature and pressure to the formed shape during the process.

また、バックアップ材として熱硬化性樹脂を使用し、こ
れを熱可塑性樹脂のフィルムがラミネトされた電磁波反
射材に一体成形する場合、フィルムの溶融等により部分
的なフクレ、収縮によるムラ等が生じて体裁を損い、製
品価値を低下させていた。
In addition, when thermosetting resin is used as a backup material and it is integrally molded into an electromagnetic wave reflecting material laminated with a thermoplastic resin film, partial blisters due to melting of the film, unevenness due to shrinkage, etc. may occur. It spoiled the appearance and reduced the product value.

さらに、熱硬化性樹脂を電磁波反射材にコーティングし
たものでは、樹脂をル硬化状態に保つことはポットライ
フに制限があったり、やや硬化状態が進むと接着強度に
問題が生ずるという不都合があった。さらにまた、テト
ラ−フィルトの使用は、コスト的に高くついてしまうと
いう難点があった。
Furthermore, with thermosetting resin coated with an electromagnetic wave reflecting material, there are disadvantages such as the pot life being limited by keeping the resin in a cured state, and problems with adhesive strength occurring when the resin is cured a little further. . Furthermore, the use of tetrafilt has the disadvantage of being expensive.

そこで、この発明は安価に製造することができ、電磁波
反射材とバックアップ材(熱硬化性、熱可塑性のいずれ
の樹脂であっても良い)とが強固に接着・結合された電
磁波反射体を提供することを目的とする。
Therefore, the present invention provides an electromagnetic wave reflector that can be manufactured at low cost and in which an electromagnetic wave reflector and a backup material (which may be either thermosetting or thermoplastic resin) are firmly bonded and combined. The purpose is to

〔課題を解決するだめの手段] 」二連の目的を達成するため、この発明は、金属製の電
磁波反射材と合成樹脂製のバックアップ材とを多数の粒
体を含む結合剤で結合したものである。
[Means for Solving the Problems] In order to achieve the two objectives, the present invention combines a metal electromagnetic wave reflecting material and a synthetic resin backup material with a binder containing a large number of particles. It is.

〔作用〕[Effect]

電磁波反射材とバックアップ材との間の結合剤の層内に
は粒体が介在し、粒体を含むことにより投鋲効果が生じ
て画材の結合強度が高まる。粒体は、合成樹脂製のバッ
クアップ材に一部埋没して結合材とバックアップ材との
接着面積を増大させる。
Particles are present in the binder layer between the electromagnetic wave reflecting material and the backup material, and the inclusion of the particles produces a rivet effect and increases the bonding strength of the art material. The particles are partially embedded in the synthetic resin backup material to increase the adhesion area between the binding material and the backup material.

〔実施例〕〔Example〕

以下にこの発明の好適な実施例を図面を参照にして説明
する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図において、アルミニラ1.箔等の金属製の電磁波
反射材1に粒体2を熱硬化性樹脂の結合剤3を介して結
合させ、電磁波反射材1の他面側には表面保護層4を成
形した複合シート5を所定の形状に予備成形する。この
ように予備成形された複合シート5を第2図に示すよう
に金型10の一方の型10Aにセットし、この型10A
にセットされた複合シート5にSMC(シートモールデ
イングコンパウンド)6を金型10内に投入し7、型1
0A、IOBを閉じることにより加圧圧縮成形する。S
MC6は硬化してFRP製のバックアップ材7となり、
反射材1と一体化した電磁波反射体(この実施例ではパ
ラボラアンテナ)を成形する。
In FIG. 1, aluminum 1. Particles 2 are bonded to a metal electromagnetic wave reflecting material 1 such as foil via a thermosetting resin binder 3, and a composite sheet 5 on which a surface protective layer 4 is formed is formed on the other side of the electromagnetic wave reflecting material 1. Preform into a predetermined shape. The composite sheet 5 preformed in this way is set in one mold 10A of the mold 10 as shown in FIG.
SMC (sheet molding compound) 6 is put into the mold 10 on the composite sheet 5 set in the mold 10.
Pressure compression molding is performed by closing 0A and IOB. S
MC6 hardens and becomes FRP backup material 7,
An electromagnetic wave reflector (parabolic antenna in this embodiment) integrated with the reflector 1 is molded.

粒体2としては、水酸化アルミニウム、水酸化マグネシ
ウム、炭酸カルシラノ・、炭酸マグネシウム、塩化亜鉛
、酸化マグネシウム、珪酸アルミニウム(クレー)、珪
酸マグネシウム(タルク)。
The granules 2 include aluminum hydroxide, magnesium hydroxide, calcilanocarbonate, magnesium carbonate, zinc chloride, magnesium oxide, aluminum silicate (clay), and magnesium silicate (talc).

珪酸カルシウム、けい砂、珪藻土、含水ケイ酸化物、酸
化チタン、マイカ等またはバルン状粒体としてガラスバ
ルン、フライアッシュバルン、シラスバルン等があり、
粒体の平均粒径は1〜100ミクロンであることが好ま
しい。また、粒体2は単位面積当り50%以上の範囲内
が好適である。
Calcium silicate, silica sand, diatomaceous earth, hydrated silicic oxide, titanium oxide, mica, etc., and balloon-shaped particles such as glass balloons, fly ash balloons, shirasu balloons, etc.
The average particle size of the particles is preferably 1 to 100 microns. Further, it is preferable that the grain size 2 is within the range of 50% or more per unit area.

図示した実施例においては、結合剤3として熱硬化性樹
脂を用いたが熱可塑性樹脂であっても良G1oまた、バ
ックアップ材7の材料としてSMC6を用いたがBMC
(バルクモールディングコンパウンド)や熱可塑性樹脂
であっても良い。
In the illustrated embodiment, a thermosetting resin was used as the binder 3, but a thermoplastic resin may also be used.Also, SMC6 was used as the material for the backup material 7, but BMC
(bulk molding compound) or thermoplastic resin.

具体例1 平均粒径約40ミクロンの中空ガラスピーズをエポキシ
系バインダによって30ミクロン厚さの軟質アルミニウ
ム箔片面に接着したセラポリドD(商標名)を用い、ガ
ラスピーズを敷き詰めた面をバックアップ材7との接着
側とした。バックアップ材7としてはSMC6を用い、
45型オフセツ) IJフレクター金型内にて加熱圧縮
一体成形を行い、厚みが約3mmの成形品を得た。成形
条件は、面圧50kg/cd、温度140℃にて3分間
キープした。得られた成形品は、フクレやムラもなく表
面性に優れ、アルミニウム箔の接着剥離強度は約1kg
f/25mmであった。
Specific Example 1 Using Ceraporide D (trade name), in which hollow glass beads with an average particle size of approximately 40 microns are adhered to one side of a 30 micron thick soft aluminum foil using an epoxy binder, the surface covered with glass beads is used as backup material 7. The adhesive side was SMC6 is used as the backup material 7,
45 type offset) Heat compression integral molding was performed in an IJ flexor mold to obtain a molded product with a thickness of about 3 mm. The molding conditions were a surface pressure of 50 kg/cd and a temperature of 140° C., which were maintained for 3 minutes. The obtained molded product has excellent surface properties with no blisters or unevenness, and the adhesive peel strength of the aluminum foil is approximately 1 kg.
It was f/25mm.

具体例2 平均粒径約30ミクロンの砂をフェノール系バインダー
にて100ミクロンの厚さの軟質アルミニウム箔片面に
接着した。これは#320ザンドペーパー相当のアルミ
ニウム箔である。この砂を敷き詰めた面をバックアップ
材7との接着側とした。具体例1と同様にして45型オ
フセツ) IJフレフターを成形した。得られた成形品
は、表面性に優れ、アルミニウム箔の接着剥離強度は約
2kgf / 25 mm以上と良好であった。
Specific Example 2 Sand having an average particle size of about 30 microns was adhered to one side of a 100 micron thick soft aluminum foil using a phenolic binder. This is aluminum foil equivalent to #320 sand paper. The surface covered with this sand was used as the adhesive side with the backup material 7. A 45-type offset IJ flutter was molded in the same manner as in Example 1. The obtained molded product had excellent surface properties, and the adhesive peel strength of the aluminum foil was about 2 kgf/25 mm or more, which was good.

具体例3 平均粒径約3〜4ミクロンの炭酸カルシウムを含むポリ
プロ系のフィルl、 (約70ミクロン厚さ)をウレタ
ン系接着剤を用い軟質アルミニウム箔(約100ミクロ
ン厚さ)とドライラミネートした。このラミネート箔の
ポリプロ面をバックアップ材7との接着側とした。具体
例1と同様にして45型オフセットリフレクタ−を成形
した。得られた成形品は表面性に優れアルミニラl、箔
の接着剥離強度は約3 kg f / 25 mm以上
と良好であった。
Specific Example 3 A polypropylene film (about 70 microns thick) containing calcium carbonate with an average particle size of about 3 to 4 microns was dry laminated with a soft aluminum foil (about 100 microns thick) using a urethane adhesive. . The polypropylene surface of this laminate foil was used as the adhesive side to the backup material 7. A 45-type offset reflector was molded in the same manner as in Example 1. The obtained molded product had excellent surface properties and had a good adhesive peel strength of about 3 kg f/25 mm or more between aluminum foil and foil.

〔効果〕〔effect〕

以上説明したように、この発明によれば、金属性の電磁
波反射材と合成樹脂性のバックアップ材とを多数の粒体
を含む結合剤で結合したので、粒体がバックアップ材の
中に一部埋没し、接着面積を増大して、バックアップ材
と電磁波反射材との接着強度を増大させることができた
。また、極狛て容易に所定の立体形状を有する電磁波反
射体を安価に製造することができる。
As explained above, according to the present invention, the metallic electromagnetic wave reflecting material and the synthetic resin backup material are bonded together using a binder containing a large number of particles. It was possible to increase the adhesive strength between the backup material and the electromagnetic wave reflecting material by burying the adhesive and increasing the adhesive area. Further, an electromagnetic wave reflector having a predetermined three-dimensional shape can be manufactured very easily and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属性の電磁波反射材を含む複合シトにバック
アップ材の原料を接着する前の断面図、第2図は製造方
法の一例を示す断面図、第3図は成形品の断面図である
。 1・・・電磁波反射材、 2・・・粒体、 3−・・結合剤、 7・・・バックアップ材。
Figure 1 is a cross-sectional view of the material before the back-up material is bonded to a composite sheet containing a metallic electromagnetic wave reflecting material, Figure 2 is a cross-sectional view showing an example of the manufacturing method, and Figure 3 is a cross-sectional view of the molded product. be. DESCRIPTION OF SYMBOLS 1... Electromagnetic wave reflective material, 2... Particles, 3-... Binder, 7... Backup material.

Claims (2)

【特許請求の範囲】[Claims] 1.金属製の電磁波反射材と合成樹脂製のバックアップ
材とを多数の粒体を含む結合剤で結合したことを特徴と
する電磁波反射体。
1. An electromagnetic wave reflector characterized by combining a metal electromagnetic wave reflector and a synthetic resin backup material with a binder containing a large number of particles.
2.粒体を単位面積当り50%以上含むことを特徴とす
る請求項1記載の電磁波反射体。
2. The electromagnetic wave reflector according to claim 1, characterized in that the electromagnetic wave reflector contains 50% or more of particles per unit area.
JP30815488A 1988-12-06 1988-12-06 Electromagnetic wave reflector Pending JPH02154499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30815488A JPH02154499A (en) 1988-12-06 1988-12-06 Electromagnetic wave reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30815488A JPH02154499A (en) 1988-12-06 1988-12-06 Electromagnetic wave reflector

Publications (1)

Publication Number Publication Date
JPH02154499A true JPH02154499A (en) 1990-06-13

Family

ID=17977549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30815488A Pending JPH02154499A (en) 1988-12-06 1988-12-06 Electromagnetic wave reflector

Country Status (1)

Country Link
JP (1) JPH02154499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225966A (en) * 1991-07-24 1993-07-06 At&T Bell Laboratories Conductive adhesive film techniques
EP2254198A1 (en) 2009-05-18 2010-11-24 Eads Casa Espacio S.L. Process for improving the reflectivity of antenna reflecting surfaces.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225966A (en) * 1991-07-24 1993-07-06 At&T Bell Laboratories Conductive adhesive film techniques
EP2254198A1 (en) 2009-05-18 2010-11-24 Eads Casa Espacio S.L. Process for improving the reflectivity of antenna reflecting surfaces.
JP2010268467A (en) * 2009-05-18 2010-11-25 Eads Casa Espacio Sl Process for improving reflectivity of reflective surfaces of antennas
US8317960B2 (en) 2009-05-18 2012-11-27 Eads Casa Espacio S.L Process for improving the reflectivity of reflective surfaces of antennas

Similar Documents

Publication Publication Date Title
JPH02154499A (en) Electromagnetic wave reflector
WO2001023178A3 (en) Laminate, method for producing the same and thermoplastic foam adhesive
JPS6259649B2 (en)
KR101586369B1 (en) Car exterior are built cruise control sensor and Manufacturing method car exterior are built cruise control sensor
JPS61152104A (en) Electromagnetic wave reflector
CZ295554B6 (en) Sealing system with a sealing profile and adhesive strip
EP0206832A3 (en) Upgrading of composites
JPH05269787A (en) Production of housing of electronic machinery
JPS59167103A (en) Parabolic reflective plate for antenna
JPS60230704A (en) Manufacture of parabolic antenna reflector
JP5434244B2 (en) Ceiling material for vehicle and method for manufacturing the same
JPH01183199A (en) Electromagnetic wave reflector
JPH0380604A (en) Dielectric lens antenna
JPS6342863A (en) Manufacture of curved-surface stone panel
CN209987725U (en) Special coated type foaming vibration damping sheet for automobile door
CN216662953U (en) Heat dissipation pad pasting and heat dissipation cell-phone shell
JP2647634B2 (en) Molding manufacturing method
JP7334556B2 (en) METHOD FOR MANUFACTURING ORGANIC GLASS WITH HARD COAT LAYER
CN101941348A (en) Technology for manufacturing reflecting warning material by compounding flexible glaze on pattern
JPS60131234A (en) Method of molding sandwich structure
JP3370898B2 (en) Manufacturing method of non-contact data carrier
JP2003053756A (en) Method for manufacturing substrate
JPH0421361B2 (en)
JPH03173618A (en) Manufacture of reflector for parabola antenna
JPH01231405A (en) Manufacture of electromagnetic wave reflecting body