JPH02151061A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02151061A
JPH02151061A JP30542188A JP30542188A JPH02151061A JP H02151061 A JPH02151061 A JP H02151061A JP 30542188 A JP30542188 A JP 30542188A JP 30542188 A JP30542188 A JP 30542188A JP H02151061 A JPH02151061 A JP H02151061A
Authority
JP
Japan
Prior art keywords
resistance region
layer
resistor
shape
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30542188A
Other languages
Japanese (ja)
Inventor
Matsuo Takaoka
高岡 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30542188A priority Critical patent/JPH02151061A/en
Publication of JPH02151061A publication Critical patent/JPH02151061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To ensure a sufficient high resistance region and miniaturize a resistor by constructing the resistor nearly in U-shape in cross-section, and providing low resistance regions at the side parts of the U-shape and a high resistance region at the bottom part of the U-shape, and decreasing the spacing between both ends of the resistor. CONSTITUTION:A semiconductor substrate 50, an insulator 51, and a resistor 52 are comprised. The resistor 52 is constructed nearly in U-shape in cross-section, and provided with low resistance regions 52a at the side parts of the U-shape and a high resistance region 52b at the bottom part of the U-shape. In particular, the high resistance region 52b is formed at a position deeper than both ends of the low resistance regions of 52a, and both ends of the low resistance regions 52a are on the same plane nearly parallel to the plane of the semiconductor substrate 50 and in contact with electrodes 53 on the semiconductor substrate 50. Thus, the high resistance region 52b can sufficiently be ensured, and moreover, the spacing between both ends of the resistor 52 can be made small so that miniaturized construction can be achieved.

Description

【発明の詳細な説明】 〔概要〕 半導体基板に絶縁体で覆われた抵抗体を有する半導体装
置に関し、 高抵抗領域を十分に確保でき、しかも、抵抗体両端部の
間隔を小にできて小形化を可能にすることを目的とし、 抵抗体は断面が概略U字形に構成されてなり、U字形の
側部に低抵抗領域、U字形の底部に高抵抗領域を夫−々
具備した構成とする。
[Detailed Description of the Invention] [Summary] Regarding a semiconductor device having a resistor covered with an insulator on a semiconductor substrate, it is possible to secure a sufficient high resistance region, and furthermore, the distance between both ends of the resistor can be made small, resulting in a small size. The resistor has a roughly U-shaped cross section, with a low-resistance region on the side of the U-shape and a high-resistance region on the bottom of the U-shape. do.

(産業上の利用分野) 本発明は、半導体基板に絶縁体で覆われた抵抗体を有す
る半導体装置に関する。
(Industrial Application Field) The present invention relates to a semiconductor device having a resistor covered with an insulator on a semiconductor substrate.

従来、半導体基板中に抵抗体を形成する場合PN接合分
離を用いているので、PN接合部分に等価的に接合容量
が形成され、高速動作の妨げとなる。そこで、高速化が
重要な課題となっている現在では、基板上の絶縁体の上
に抵抗体を平面的に形成し、この周囲を絶縁体で覆うこ
とによってPN接合部分を形成しないように構成したも
のが主流になりつつある。
Conventionally, when forming a resistor in a semiconductor substrate, PN junction isolation is used, so that a junction capacitance is equivalently formed at the PN junction, which hinders high-speed operation. Therefore, now that high speed is an important issue, a resistor is formed in a plane on an insulator on a substrate, and its surroundings are covered with an insulator so that no PN junction is formed. What has been done is becoming mainstream.

このような抵抗体を有する半導体装置では、高抵抗領域
を十分に確保でき、又、抵抗体と電極とのコンタクトを
良好にとることができ、しかも、装置の微細化が望まれ
ている今日では抵抗体両端部の間隔を小にして小形に構
成することが必要である。
In a semiconductor device having such a resistor, a sufficient high-resistance region can be secured, and good contact can be made between the resistor and the electrode.Moreover, in today's world where miniaturization of devices is desired, It is necessary to reduce the distance between both ends of the resistor to make it compact.

(従来の技術) 第4図は従来装置の一例の構造断面図を示す。(Conventional technology) FIG. 4 shows a structural sectional view of an example of a conventional device.

同図において、シリコン基板1に酸化シリコン膜2が形
成され、その表面に多結晶シリコン層3が堆積されてい
る。多結晶シリコンW43にはドーピングによって高濃
度のN+層(低抵抗)3aが両端部に形成され、その間
に低濃度層(高抵抗)3bが形成されている。抵抗値は
主として高抵抗の低濃度層3bにて決定される。
In the figure, a silicon oxide film 2 is formed on a silicon substrate 1, and a polycrystalline silicon layer 3 is deposited on the surface thereof. High concentration N+ layers (low resistance) 3a are formed at both ends of the polycrystalline silicon W43 by doping, and a low concentration layer (high resistance) 3b is formed between them. The resistance value is mainly determined by the high resistance low concentration layer 3b.

多結晶シリコン層3の周囲は酸化シリコン膜4に覆われ
ており、コンタクト窓4aによって高濃度層3aはアル
ミニウム等の電極5とコンタクトを取っている。高濃度
層3a、低濃度層3bは、多結晶シリコン層3にコンタ
クト窓4aからドーピングを施した後の熱処理を行なう
ことによるドーパントの拡散で形成される。高濃度層3
aは低抵抗であるので、電極5とのコンタクトを良好に
とることができる。このものは、例えば、電極5が図示
しない隣接トランジスタのエミッタ領域やコレクタ領域
等と接続されて用いられる。
The periphery of the polycrystalline silicon layer 3 is covered with a silicon oxide film 4, and the high concentration layer 3a is in contact with an electrode 5 made of aluminum or the like through a contact window 4a. The high concentration layer 3a and the low concentration layer 3b are formed by doping the polycrystalline silicon layer 3 through the contact window 4a and then performing a heat treatment to diffuse dopants. High concentration layer 3
Since a has a low resistance, good contact with the electrode 5 can be made. This device is used, for example, with the electrode 5 connected to the emitter region, collector region, etc. of an adjacent transistor (not shown).

(発明が解決しようとする課題) 第4図に示す従来装置は、電極5とコンタクトをとるB
濃度層3aを形成する場合、多結晶シリコンl113に
ドーピングを施した後、導入されたドーパントを熱処理
にて活性化して形成する。この部分は電極5と良好なコ
ンタクトをとるために、十分なキャリア濃度が必要とさ
れる。
(Problems to be Solved by the Invention) The conventional device shown in FIG.
When forming the concentration layer 3a, after doping the polycrystalline silicon 113, the introduced dopant is activated by heat treatment. This portion requires a sufficient carrier concentration in order to make good contact with the electrode 5.

然るに、一般に、多結晶シリコン中はドーパントの拡散
が速く、上記熱処理による活性化の際に高濃度l!3a
のドーパントが横方向に拡散してしまう。このために、
本来、低濃度(高抵抗)でなければならない低濃度1i
3bは実際には図示の長さよりもかなり短くなってしま
い、実質的に高抵抗領域が殆どなくなり、十分な高抵抗
値を得ることができ鋭い問題点があった。
However, in general, dopants diffuse quickly in polycrystalline silicon, and when activated by the heat treatment described above, a high concentration l! 3a
dopant diffuses laterally. For this,
Low concentration 1i, which should originally be low concentration (high resistance)
3b is actually much shorter than the length shown in the figure, and there is virtually no high resistance region, which causes a sharp problem in that a sufficiently high resistance value cannot be obtained.

そこで、この問題点をなくすためには、画電極5fiの
長さを十分にとり、つまり、多結晶シリコン層3の長さ
を十分にとり、熱処理による活性化によって高濃度層3
aのドーパントが横方向に拡散しても低濃度113bに
影響がないような構成にしている。しかしながら、この
ようにすると画電極5間の長さが長くなり、小形に構成
できない、換言すれば集積化を妨げるという問題点があ
った。
Therefore, in order to eliminate this problem, the length of the picture electrode 5fi, that is, the polycrystalline silicon layer 3, must be set sufficiently long, and the high concentration layer 3 can be activated by heat treatment.
The configuration is such that even if the dopant a diffuses in the lateral direction, it does not affect the low concentration 113b. However, in this case, the length between the picture electrodes 5 becomes long, and there is a problem in that it cannot be constructed in a compact size, or in other words, it hinders integration.

又、前記熱処理による活性化の際、一般に、高濃度であ
ると拡散距離が大、低濃度であると拡散距離が小になる
という関係にあるため、前述の低濃度層3bを確保する
ためには初期の段階では高濃度層3aの部分も低濃度に
しなければならない。
In addition, in the activation by the heat treatment, there is generally a relationship that the diffusion distance is long when the concentration is high, and the diffusion distance is short when the concentration is low, so in order to secure the low concentration layer 3b described above, In the initial stage, the high concentration layer 3a must also be made low in concentration.

しかしながら、このようにすると低濃度層3bは確保さ
れるが、高濃度層3aの主ヤリ711度が十分にとれず
、このため、この部分が十分に低抵抗にならず、電極5
とのコンタクトが不良になる問題点があった。
However, although the low concentration layer 3b is secured in this way, the main angle of 711 degrees of the high concentration layer 3a cannot be sufficiently maintained, and as a result, this portion does not have a sufficiently low resistance, and the electrode 5
There was a problem with poor contact with the

本発明は、高抵抗領域を十分に確保でき、しかも、抵抗
体両端部の間隔を小にできて小形に構成できる半導体装
置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that can sufficiently secure a high resistance region and can be constructed in a compact size by reducing the distance between both ends of a resistor.

(課題を解決するための手段) 第1図は本発明の原理図(断面図)を示す。同図(A)
中、50は半導体基板、51は絶縁体、52は抵抗体で
ある。抵抗体52は、断面が概略U字形に構成されてお
り、そのU字形の側部に低抵抗領域52a1そのU字形
の底部に高抵抗領域52bを夫々具備してなる。
(Means for Solving the Problems) FIG. 1 shows a principle diagram (cross-sectional view) of the present invention. Same figure (A)
Inside, 50 is a semiconductor substrate, 51 is an insulator, and 52 is a resistor. The resistor 52 has a generally U-shaped cross section, and includes a low resistance region 52a1 on the side of the U shape and a high resistance region 52b on the bottom of the U shape.

この場合、特に、第1図(B)に示す如く、高抵抗領域
52bは低抵抗領域52aの両端に比して深い位置に形
成されている。又、低抵抗領域52aの両端は半導体基
板50の平面に対して概略平行な同一面上にあり、半導
体基板50上の電極53にコンタクトをとられている。
In this case, in particular, as shown in FIG. 1(B), the high resistance region 52b is formed at a deeper position than both ends of the low resistance region 52a. Further, both ends of the low resistance region 52a are on the same plane that is approximately parallel to the plane of the semiconductor substrate 50, and are in contact with the electrode 53 on the semiconductor substrate 50.

更に、第1図(C)に示す如く、高抵抗領域(52b)
は低抵抗領域52aの両端に比して浅い位置に形成され
ている。又、高抵抗領域52bの両端は半導体基板50
に形成された拡散W!i54と接続されている。
Furthermore, as shown in FIG. 1(C), a high resistance region (52b)
are formed at shallower positions than both ends of the low resistance region 52a. Further, both ends of the high resistance region 52b are connected to the semiconductor substrate 50.
Diffusion formed in W! Connected to i54.

〔作用〕[Effect]

本発明では、抵抗体50をU字形に構成しているので、
U字形の側部の深さを長く形成すれば、U字形端部の間
隔を大にとらないでも、熱処理によって低抵抗領域52
aを形成するに際して811度の不純物拡散が高抵抗流
域52bに及ぶのを防止でき、高抵抗領域52bを十分
に確保できる。
In the present invention, since the resistor 50 is configured in a U-shape,
If the depth of the U-shaped side portions is long, the low resistance region 52 can be formed by heat treatment without requiring a large interval between the U-shaped ends.
When forming a, the impurity diffusion at 811 degrees can be prevented from reaching the high resistance region 52b, and the high resistance region 52b can be sufficiently secured.

特に、低抵抗領域52aの端部に電極53を接続するも
のにあっては、電橋53とのコンタクトを良好にでき、
しかも、高抵抗領域を十分に確保できて画電極の間隔を
小にでき、装置を微細化できる。
In particular, when the electrode 53 is connected to the end of the low resistance region 52a, good contact with the electric bridge 53 can be achieved.
Moreover, a sufficient high resistance region can be secured, the interval between picture electrodes can be reduced, and the device can be miniaturized.

又、埋込領域を介して隣接するトランジスタと接続する
ものにあっては、高抵抗領域52bを十分に確保できて
低抵抗領1a52a端部の間隔を小にでき、しかも、外
部に電極を設けないでも隣接トランジスタと接続できる
ので、更に装置を微細化できる。
Furthermore, in the case of a transistor connected to an adjacent transistor through a buried region, a sufficient amount of the high resistance region 52b can be secured and the interval between the ends of the low resistance region 1a52a can be made small, and furthermore, it is possible to provide an external electrode. Since it can be connected to an adjacent transistor even if the transistor is not connected, the device can be further miniaturized.

〔実施例〕〔Example〕

第2図は本発明装置の一実施例のI33&工程図(断面
図及び平面図)を示す。第2図(A)に示す如く、シリ
コン基板10(P<100>10・1)の表面にCVD
法で厚さ0.1μmの酸化シリコン層11を形成し、更
にこの表面にCVD法で厚さ0.3μ−の窒化シリコン
層12を形成する。次に、第2図(B)に示す如く、バ
ターニングされたレジスト膜13を置いてこれをマスク
として異方性エツチングを行ない、窒化シリコン層12
.1!il化シリコン層11.シリコン基板10にかけ
てU満14を形成する。次に、第2図(C)に示す如く
、等方性エツチングを行なうと、窒化シリコン層12は
殆どエツチングされず、酸化シリコン層11及びシリコ
ン基板10がエツチングされてU溝14よりも幅の広い
U溝15が形成され、窒化シリコンWi12によって庇
部12aが形成される。
FIG. 2 shows I33 & process drawings (sectional view and plan view) of an embodiment of the apparatus of the present invention. As shown in FIG. 2(A), CVD is applied to the surface of the silicon substrate 10 (P<100>10.1).
A silicon oxide layer 11 with a thickness of 0.1 .mu.m is formed by a method, and a silicon nitride layer 12 with a thickness of 0.3 .mu.m is further formed on this surface by a CVD method. Next, as shown in FIG. 2(B), a patterned resist film 13 is placed and anisotropic etching is performed using this as a mask to remove the silicon nitride layer 12.
.. 1! Illized silicon layer 11. A U 14 is formed over the silicon substrate 10. Next, as shown in FIG. 2C, when isotropic etching is performed, the silicon nitride layer 12 is hardly etched, and the silicon oxide layer 11 and the silicon substrate 10 are etched to a width wider than the U-groove 14. A wide U-groove 15 is formed, and an eaves portion 12a is formed of silicon nitride Wi12.

庇部12aによって形成される孔12bは第2図(C)
に示す平面図上、例えば長方形に形成される。
The hole 12b formed by the eave part 12a is shown in FIG. 2(C).
In the plan view shown in , it is formed, for example, in a rectangular shape.

次に、第2図(D)に示す如く、酸化を行なってU溝1
5内に厚さ0.3μmの酸化シリコン層11aを形成す
る。この後、エネルギ50keV。
Next, as shown in FIG. 2(D), oxidation is performed to form the U groove 1.
A silicon oxide layer 11a having a thickness of 0.3 μm is formed within the silicon oxide layer 5. After this, the energy is 50 keV.

ドーズ−ffiIX101′cII櫂の条件でシリコン
のイオン注入を行なう。この場合、垂直方向及び斜め方
向からイオン注入を行ない、U溝15中、一対の側壁及
び底面にのみダメージ層16を形成する。
Silicon ion implantation is performed under the following conditions: dose-ffiIX101'cII. In this case, ion implantation is performed in the vertical and oblique directions to form the damaged layer 16 only on the pair of side walls and the bottom surface of the U-groove 15.

次に、成長ガスとした3塩化シランを用い、第2図(E
)に示す如く、多結晶シリコン1117を厚さ02μ量
で成長形成する。この場合、シリコンが注入されて側壁
及び底面に形成されたダメージ層16上にのみU字形に
多結晶シリコン層17が形成される。次に、酸化を行な
い、第2図(F)に示す如く、多結晶シリコン層17の
表面に厚さ0.2μ−の酸化シリコン層18を形成し、
溝内に多結晶シリコン層19を成長形成する。次に、第
2図(G)に示すようにポリッシングを行なって平坦化
する。
Next, using trichlorosilane as the growth gas, as shown in Fig. 2 (E
), polycrystalline silicon 1117 is grown to a thickness of 02 μm. In this case, a U-shaped polycrystalline silicon layer 17 is formed only on the damaged layer 16 formed on the sidewalls and bottom surface by implanting silicon. Next, oxidation is performed to form a silicon oxide layer 18 with a thickness of 0.2μ on the surface of the polycrystalline silicon layer 17, as shown in FIG. 2(F).
A polycrystalline silicon layer 19 is grown within the trench. Next, as shown in FIG. 2(G), polishing is performed to flatten the surface.

次に、第2図(H)に示す如く、表面にCVD法で厚さ
0.5μ量の酸化シリコン層20を形成し、多結晶シリ
コン117が露出するように酸化シリコン層20にコン
タクト窓21.22を形成する。
Next, as shown in FIG. 2H, a silicon oxide layer 20 with a thickness of 0.5 μm is formed on the surface by CVD, and a contact window 20 is formed in the silicon oxide layer 20 so that the polycrystalline silicon 117 is exposed. Form .22.

次に、エネルギ50keV、ドーズ[t2X10”oM
’の条件で多結晶シリコンr!J17に例えばヒ素(そ
の他のものでもよい)のイオン注入を行ない、その後、
乾燥酸素雰囲気中、1100℃で10秒間熱処理を行な
って多結晶シリコン層17に導入されたドーパントを活
性化する。この活性化によるドーパント拡散により、U
字形に形成された多結晶シリコン層17の側部に高濃度
層17aが形成される一方、その底部に低濃度層17b
が形成される。次に、活性化の際に酸化シリコン層20
の表面にできた酸化シリコン膜を厚さ約50r+mだけ
エツチングした後、その表面にアルミニウム層を堆積し
、多結晶シリコン層17と対向する部分のアルミニウム
層をエツチングによって残し、電極23.24とする。
Next, the energy is 50 keV, the dose [t2X10”oM
'Polycrystalline silicon r! For example, ion implantation of arsenic (other substances may be used) is performed on J17, and then,
A heat treatment is performed at 1100° C. for 10 seconds in a dry oxygen atmosphere to activate the dopant introduced into the polycrystalline silicon layer 17. Due to the dopant diffusion caused by this activation, U
A high concentration layer 17a is formed on the sides of the polycrystalline silicon layer 17 formed in the shape of a letter, while a low concentration layer 17b is formed on the bottom of the polycrystalline silicon layer 17.
is formed. Next, during activation, the silicon oxide layer 20
After etching the silicon oxide film formed on the surface to a thickness of about 50 r+m, an aluminum layer is deposited on the surface, and the portion of the aluminum layer facing the polycrystalline silicon layer 17 is left by etching to form the electrodes 23 and 24. .

これにより、低濃度(高抵抗)1117bは高濃度(低
抵抗)層17aを介して電極23.24に接続される。
Thereby, the low concentration (high resistance) layer 1117b is connected to the electrodes 23.24 via the high concentration (low resistance) layer 17a.

このように、本発明ではシリコン基板10の中にU字形
に多結晶シリコン層17を形成してここに高濃度(低抵
抗)層17a及び低濃度(高抵抗)1117bを形成し
ているので、U字形の側部の深さを長く形成すれば、従
来例のように電極23゜24の間隔を大にとらないでも
、高濃度層17a及び低濃度層17bを熱処理による活
性化によって形成する際に高濃度tFJ17aのドーパ
ントの拡散が低濃度層17bに及ぶとことを防止でき、
高抵抗領域を十分に確保できる。このものは、電極23
.24を図示しない隣接トランジスタのエミッタ領域や
コレクタ領域等に接続されて用いられる。
As described above, in the present invention, the polycrystalline silicon layer 17 is formed in a U-shape in the silicon substrate 10, and the high concentration (low resistance) layer 17a and the low concentration (high resistance) layer 1117b are formed therein. If the depth of the side portions of the U-shape is made long, it is possible to form the high concentration layer 17a and the low concentration layer 17b by activation by heat treatment, without having to make a large interval between the electrodes 23 and 24 as in the conventional example. It is possible to prevent diffusion of the dopant in the high concentration tFJ 17a into the low concentration layer 17b,
Enough high resistance area can be secured. This is the electrode 23
.. 24 is used by being connected to the emitter region, collector region, etc. of an adjacent transistor (not shown).

第3図は本発明H置の他の実施例の製造工程図(断面図
)を示す。第3図(A)に示す如く、シリコン基板30
 (P < 100> 1Ω・cJ)の表面に選択的に
N+拡散層31.32を形成し、その表面に厚さ3μl
の酸化シリコン層33を堆積し、その掛、N+拡散層3
1.32が露出するように酸化シリコン層33をエツチ
ングして孔34゜35を形成する。このとき、抵抗体に
VJ)?するトランジスタのエミッタ領域38.ベース
領域39゜コレクタ領域40も作る。この場合、N+拡
散層31.32はトランジスタの埋込コレクタ領域とな
る。次に、第3図(B)に示す如く、孔34゜35内及
び酸化シリコンW!J33の表面に厚さ1μlの多結晶
シリコン1!!36を成長形成し、次に、第3図(C)
に示す如く、表面に形成された多結晶シリコン層36の
両端部をエツチング除去し、逆U字形の多結晶シリコン
1136を形成する。
FIG. 3 shows a manufacturing process diagram (cross-sectional view) of another embodiment of the present invention. As shown in FIG. 3(A), a silicon substrate 30
(P <100> 1Ω・cJ) N+ diffusion layer 31.32 is selectively formed on the surface, and a 3 μl thick layer is formed on the surface.
A silicon oxide layer 33 is deposited, and then an N+ diffusion layer 3
Holes 34 and 35 are formed by etching the silicon oxide layer 33 so that 1.32 is exposed. At this time, VJ)? The emitter region of the transistor 38. A base region 39° and a collector region 40 are also created. In this case, the N+ diffusion layers 31 and 32 become the buried collector region of the transistor. Next, as shown in FIG. 3(B), the inside of the hole 34°35 and the silicon oxide W! 1 μl thick polycrystalline silicon 1 on the surface of J33! ! 36 is grown and then formed as shown in FIG. 3(C).
As shown in FIG. 3, both ends of the polycrystalline silicon layer 36 formed on the surface are etched away to form an inverted U-shaped polycrystalline silicon layer 1136.

次に、熱処理を行ない、N+拡散層31.32の不純物
を多結晶シリコン層36に拡散する。尚、この熱処理は
エミッタ形成熱処理と兼ねることができる。これにより
、逆U字形に形成された多結晶シリコン層36の側部に
高81麿層36aが形成される一方、その底部に低濃度
F136bが形成される。次に、第3図(D)に示す如
く、表面に厚さ1μmの酸化シリコン層37を形成する
。これにより、低濃度(高抵抗)層36bは高濃度(低
抵抗)層36a、N+拡散層(埋込コレクタ領域)31
を介してトランジスタに接続される。
Next, heat treatment is performed to diffuse impurities in the N+ diffusion layers 31 and 32 into the polycrystalline silicon layer 36. Note that this heat treatment can also serve as emitter formation heat treatment. As a result, a high concentration layer 36a is formed on the sides of the polycrystalline silicon layer 36 formed in an inverted U shape, while a low concentration layer 36b is formed on the bottom thereof. Next, as shown in FIG. 3(D), a silicon oxide layer 37 with a thickness of 1 μm is formed on the surface. As a result, the low concentration (high resistance) layer 36b, the high concentration (low resistance) layer 36a, the N+ diffusion layer (buried collector region) 31
connected to the transistor via.

このものも、前述の実施例と同様に、逆U字形に多結晶
シリコン層36を形成してここに高濃度(低抵抗)層3
6a及び低濃度(高抵抗)層36bを形成しているので
、逆U字形の側部の深さを長く形成すれば、従来例のよ
うに抵抗体両端の平面図上の間隔を大にとらないでもN
1拡散層31゜32からの拡散が低濃度Fi36bに及
ぶことを防止でき、高抵抗領域を十分に確保できる。又
、この実施例では、外部に電極を設けないでも隣接トラ
ンジスタと接続できる構成であるので、電極を設けて外
部を経由してトランジスタに接続する構成に比して平面
図上の面積を小にできる。
In this case as well, similarly to the above-mentioned embodiment, a polycrystalline silicon layer 36 is formed in an inverted U shape, and a high concentration (low resistance) layer 3 is formed thereon.
6a and a low concentration (high resistance) layer 36b, if the depth of the sides of the inverted U shape is made long, it is possible to increase the distance between both ends of the resistor in a plan view as in the conventional example. No but N
Diffusion from the first diffusion layers 31 and 32 can be prevented from reaching the low concentration Fi 36b, and a sufficient high resistance region can be secured. Furthermore, since this embodiment has a configuration that allows connection to adjacent transistors without providing external electrodes, the area on the plan view can be reduced compared to a configuration in which electrodes are provided and connections are made to transistors via the outside. can.

尚、本発明は高抵抗体形成の場合に効果的であるが、比
較的低抵抗の抵抗体及び、均質なギヤリアm度の抵抗体
についても有効である。
Although the present invention is effective in forming a high resistance element, it is also effective in forming a resistor having a relatively low resistance and a homogeneous gear rear resistor.

(発明の効果) 以上説明した如く、本発明によれば、低抵抗領域両端の
間隔を大にとらないでも、熱処理によって低抵抗領域及
び高抵抗領域を形成する際に高濃度不純物の拡散が高抵
抗領域に及ぶのを防止でき、高抵抗領域を十分に確保で
き、従って、装首を微細化できる。特に、低抵抗領域端
部に電極を接続するものにあっては、電極とのコンタク
トを良好にでき、しかも、高抵抗領域を十分に確保でき
て画電極間隔を小にでき、又、埋込領域を介して隣接す
るトランジスタと接続するものにあっては、更に装置を
微細化できる。
(Effects of the Invention) As explained above, according to the present invention, even if the distance between both ends of the low resistance region is not large, the diffusion of high concentration impurities is increased when forming the low resistance region and the high resistance region by heat treatment. It is possible to prevent this from reaching the resistance region, to ensure a sufficient high resistance region, and therefore to miniaturize the neck attachment. In particular, in the case where the electrode is connected to the edge of the low-resistance area, good contact with the electrode can be made, and a sufficient high-resistance area can be secured, allowing the distance between the picture electrodes to be reduced. For devices connected to adjacent transistors via regions, the device can be further miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図(断面図)、 第2図は本発明の一実施例の製造工程図(断面図、平面
図)、 第3図は本発明の他の実施例の製造工程図(断面図)、 第4図は従来の構造断面図である。 50は半導体基板、 51は絶縁体、 52は抵抗体、 52aは低抵抗領域、 52bは高抵抗領域、 54は拡散層 を小す。
Fig. 1 is a diagram of the principle of the present invention (cross-sectional view), Fig. 2 is a manufacturing process diagram (cross-sectional view, plan view) of one embodiment of the present invention, and Fig. 3 is a manufacturing process diagram of another embodiment of the present invention. FIG. 4 is a sectional view of a conventional structure. 50 is a semiconductor substrate, 51 is an insulator, 52 is a resistor, 52a is a low resistance region, 52b is a high resistance region, and 54 is a small diffusion layer.

Claims (1)

【特許請求の範囲】 〔1〕半導体基板(50)に絶縁体(51)で覆われた
抵抗体(52)を有する半導体装置において、 上記抵抗体(52)は断面が概略U字形に構成されてな
り、 該U字形の側部に低抵抗領域(52a)、該U字形の底
部に高抵抗領域(52b)を夫々具備してなることを特
徴とする半導体装置。 〔2〕請求項(1)記載の半導体装置において、高抵抗
領域(52b)が低抵抗領域(52a)の両端に比して
深い位置に形成されており、 上記低抵抗領域(52a)の両端は半導体基板(50)
平面に対して概略平行な同一面上にあり、上記半導体基
板(50)上の電極(53)にコンタクトしてなること
を特徴とする半導体装置。 〔3〕請求項(1)記載の半導体装置において、高抵抗
領域(52b)が低抵抗領域(52a)の両端に比して
浅い位置に形成されており、 上記高抵抗領域(52b)の両端は半導体基板(50)
に形成された不純物層(54)と接続されてなることを
特徴とする半導体装置。
[Claims] [1] In a semiconductor device having a resistor (52) covered with an insulator (51) on a semiconductor substrate (50), the resistor (52) has a substantially U-shaped cross section. A semiconductor device comprising: a low-resistance region (52a) on a side of the U-shape, and a high-resistance region (52b) on a bottom of the U-shape. [2] In the semiconductor device according to claim (1), the high resistance region (52b) is formed at a deeper position than both ends of the low resistance region (52a), and both ends of the low resistance region (52a) is a semiconductor substrate (50)
A semiconductor device, characterized in that it is located on the same plane approximately parallel to a plane and is in contact with an electrode (53) on the semiconductor substrate (50). [3] In the semiconductor device according to claim (1), the high-resistance region (52b) is formed at a shallower position than both ends of the low-resistance region (52a), and both ends of the high-resistance region (52b) is a semiconductor substrate (50)
A semiconductor device characterized in that the semiconductor device is connected to an impurity layer (54) formed in the semiconductor device.
JP30542188A 1988-12-02 1988-12-02 Semiconductor device Pending JPH02151061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30542188A JPH02151061A (en) 1988-12-02 1988-12-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30542188A JPH02151061A (en) 1988-12-02 1988-12-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02151061A true JPH02151061A (en) 1990-06-11

Family

ID=17944930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30542188A Pending JPH02151061A (en) 1988-12-02 1988-12-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02151061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316978A (en) * 1993-03-25 1994-05-31 Northern Telecom Limited Forming resistors for intergrated circuits
US5726084A (en) * 1993-06-24 1998-03-10 Northern Telecom Limited Method for forming integrated circuit structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316978A (en) * 1993-03-25 1994-05-31 Northern Telecom Limited Forming resistors for intergrated circuits
US5726084A (en) * 1993-06-24 1998-03-10 Northern Telecom Limited Method for forming integrated circuit structure

Similar Documents

Publication Publication Date Title
JP2503460B2 (en) Bipolar transistor and manufacturing method thereof
JPS59115553A (en) Method of forming resistance element
JPH02151061A (en) Semiconductor device
JPH07245400A (en) Field-effect transistor and its manufacture
JPS60145664A (en) Manufacture of semiconductor device
JP3063122B2 (en) Semiconductor device and manufacturing method thereof
JP2967596B2 (en) Method for manufacturing semiconductor device
JPH0126184B2 (en)
JP3317289B2 (en) Method for manufacturing semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS6316672A (en) Manufacture of semiconductor element
JP3237116B2 (en) Semiconductor device
JP2712889B2 (en) Method for manufacturing semiconductor device
JPH05335329A (en) Semiconductor device and its manufacture
JPH0258230A (en) Manufacture of bipolar transistor
JPS6395664A (en) Semiconductor device and manufacture thereof
JPH0744183B2 (en) Method for manufacturing semiconductor device
JPS60753A (en) Manufacture of semiconductor device
JPS6295871A (en) Manufacture of semiconductor device
JPS62209858A (en) Semiconductor device
JPS61184872A (en) Manufacture of semiconductor device
JPS61198673A (en) Manufacture of semiconductor device
JPH05160058A (en) Manufacture of semiconductor device
JPH0810696B2 (en) Method for manufacturing semiconductor device
JPS61182265A (en) Manufacture of semiconductor device