JPH0214386B2 - - Google Patents

Info

Publication number
JPH0214386B2
JPH0214386B2 JP19802582A JP19802582A JPH0214386B2 JP H0214386 B2 JPH0214386 B2 JP H0214386B2 JP 19802582 A JP19802582 A JP 19802582A JP 19802582 A JP19802582 A JP 19802582A JP H0214386 B2 JPH0214386 B2 JP H0214386B2
Authority
JP
Japan
Prior art keywords
ammonium chloride
sodium nitrite
tablets
molded
foaming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19802582A
Other languages
Japanese (ja)
Other versions
JPS5986679A (en
Inventor
Haruyoshi Minamiguchi
Katsutoshi Kitao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP19802582A priority Critical patent/JPS5986679A/en
Publication of JPS5986679A publication Critical patent/JPS5986679A/en
Publication of JPH0214386B2 publication Critical patent/JPH0214386B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は亜硝酸ナトリウム−塩化アンモニウム
系の発泡剤の改良に係り、特に硬式テニスボール
コアなどのように内圧を有する中空ボールに使用
するのに適した発泡剤を提供することを目的とす
る。 例えば、硬式テニスボールは大気圧の2倍程度
の内圧を有する中空ゴム製のコアにメトトンと呼
ばれる織物を被覆することによつて製造される。
練習用にはこの内圧を有しないいわゆるプレツシ
ヤーレスボールもあるが打球感が悪く一般には好
まれない。 テニスボールコアに内圧を付与する方法には2
種類あり、その1つは加圧空気中でハーフシエル
と呼ばれる半球殻状のゴム成形物を2個重ね合わ
せて接着する方法(エアーインフレーシヨン方
式)で、他の1つは一方のハーフシエルに熱また
は化学反応による分解によつてチツ素ガスなどの
気体を発生する錠剤状の発泡剤を入れ他方のハー
フシエルと重ね合わせ、封入された発泡剤に分解
反応をおこさせて内圧を付与する方法(ケミカル
インフレーシヨン方式)である。 そして、上記反応型の発泡剤として通常亜硝酸
ナトリウム−塩化アンモニウム系の発泡剤が使用
されている。 この亜硝酸ナトリウム−塩化アンモニウム系の
発泡剤は亜硝酸ナトリウムと塩化アンモニウムと
が次式に示ように反応してチツ素ガスを発生す
る。 NaNO2+NH4Cl→NaCl+N2+2H2O 通常、反応は少量の水の添加と加熱によつて促
進される。反応によつて生じる塩化ナトリウムは
生成直後は水に溶解した状態で存在するが、時間
がたつにすれて水分がコアを透過して減少する
と、それに伴なつて溶解できなくなつた分が析出
して結晶を生成する。特に倉庫などで長時間静置
されるような条件下では粗大な単結晶を生成し、
打球の時に、この粗大結晶がコアの内壁にぶつか
り“カラカラ”という音がするいわゆる音鳴り現
象を生じる。 本発明者らはそのような事情に鑑み種々研究を
重ねた結果、亜硝酸ナトリウム−塩化アンモニウ
ム系の発泡剤に、亜硝酸ナトリウムと塩化アンモ
ニウムとの反応により生成する塩化アンモニウム
の結晶生成時の核となるような物質を添加するこ
とにより、塩化ナトリウムの粗大単結晶の生成を
抑制して微細な結晶を多数生成させ、それによつ
て打球時の音鳴り発生を防止することができるこ
とを見出し、本発明を完成するにいたつた。 本発明において上記のごとく塩化ナトリウムの
結晶生成時の核にする目的で添加する物質(以
下、添加剤という)としては、例えば結晶性セル
ロース、寒天、コンニヤク粉末、ゼラチン、酢酸
ビニル、ステアリン酸マグネシウム、無水ケイ
酸、クレー、タルクなどが用いられる。 発泡剤のテニスボールコア用などに使用するに
は錠剤状に成形して使用に供されるが、前記よう
な添加剤を配合すると錠剤が脆くなり、成形機に
よる錠剤成形が良好に行なわれなくなる場合があ
る。そこで、本発明者らはさらに研究を重ね、次
のような粘結剤を添加することにより上記のよう
な欠点を解消することができることを見出した。
そのような目的で添加される粘結剤としては例え
ばセラツク、ポリビニルピロリドン、ヒドロキシ
プロピルセルロースなどがあげられる。 これらの添加剤や粘結剤を添加しても、主剤で
ある亜硝酸ナトリウムと塩化アンモニウムの分量
が従来と同程度であれば所定の内圧を得ることが
できる。 発泡剤をテニスボールのコアなどの内圧付与の
ために使用する場合には、錠剤状に成形して使用
に供されるが、この錠剤状に成形するにあたつて
は、亜硝酸ナトリウムを含有した成分と塩化アン
モニウムを含有した成分とを別々に成形し、その
亜硝酸ナトリウム含有成分の錠剤状成形物と塩化
アンモニウム含有成分の錠剤状成形物をハーフシ
エル内に入れ、水を少量添加し、ハーフシエル内
で亜硝酸ナトリウムと塩化アンモニウムとが反応
してチツ素ガスが発生するようにさせる。 このように亜硝酸ナトリウム含有成分と塩化ア
ンモニウム含有成分とを別々に成形するのは、そ
の成形時や、あるいは成形前の混合時に亜硝酸ナ
トリウムと塩化アンモニウムとが反応して発泡剤
としての特性を喪失するのを防止するためであ
る。 また、錠剤状などの成形体にするのは、ハーフ
シエル同士の接合面が強固に接着される以前に亜
硝酸ナトリウムと塩化アンモニウムとが反応して
発生したガスが未接着の接合面からハーフシエル
の外部に漏れ出るのを防止するためである。 つまり、テニスボールのコア用などに使用する
場合、粉末状などであると、ハーフシエル同士の
接合面が強固に接着される以前に、亜硝酸ナトリ
ウムと塩化アンモニウムとが反応してチツ素ガス
が発生し、そのチツ素ガスが未接着の接合面から
ハーフシエルの外部に洩れ出て所望の内圧が得ら
れなくなるので、錠剤状などに成形することによ
つて、亜硝酸ナトリウムと塩化アンモニウムとの
反応が生じるのを遅くさせ、ハーフシエル同士の
接合面が強固に接着されるまで亜硝酸ナトリウム
と塩化アンモニウムとの反応を生じなくさせるた
めである。 なお亜硝酸ナトリウムと塩化アンモニウムの使
用割合は従来と同様でよく、例えば反応モル比
1:1前後でコア中で所定の内圧を得ることがで
きるようにすればよい。そして添加剤は発泡剤中
0.5〜8.0%(重量%、以下同様)にするのが好ま
しく、また粘結剤を加える場合には、添加剤の添
加量によつても異なるが、粘結剤を発泡剤中0.5
〜10.0%程度にするのが好ましい。 また、これら添加剤や粘結剤を適当に組み合わ
せることによつて発泡剤の硬度や崩壊時間すなわ
ち亜硝酸ナトリウム含有成分の錠剤や塩化アンモ
ニウム含有成分の錠剤が水に溶けて反応が急激に
進行するまでの時間を自由に調整することができ
る。例えば実施例に示すような発泡剤はその錠剤
が従来品に比べて硬度が大きく、崩壊時間が長く
なるように調整されているので、使用中において
錠剤の割れや欠けが少なく、内圧のバラツキが減
少し、またハーフシエル同士が強固に接着される
以前に発泡剤が分解して内部のガスが一部洩れる
ということもなく、従来よりも品質の安定したテ
ニスボールを製造できるという効果も併めて達成
することができる。 本発明の発泡剤は、テニスボールコアなどのよ
うに大気圧より高い内圧を有する遊戯用中空ボー
ルの内圧付与に特に好適に使用されるが、用途は
それのみに限られるものではない。また、テニス
ボールコアの内圧付与に使用するには通常錠剤状
に成形されて使用されるが、形状は錠剤状に限ら
れるものではなく、例えばペレツト状など他の形
状に成形してもよい。 つぎに実施例をあげて本発明を説明する。 実施例1〜2および比較例1 第1表に示す組成の発泡剤を調製した。ただ
し、実施例1においては、塩化アンモニウム、結
晶性セルロース、ヒドロキシプロピルセルロース
およびステアリン酸マグネシウムを前もつて混合
し、この塩化アンモニウム含有成分をロータリー
型錠剤成形機により直径約6mm、厚さ約6mmの錠
剤に成形し、亜硝酸ナトリウムは単独で上記成形
機により直径約6mm、厚さ約6mmの錠剤に成形し
て、それらの錠剤の硬度および崩壊時間を測定
し、塩化アンモニウム含有成分の錠剤の硬度およ
び崩壊時間を第1表に示した。また、実施例2の
場合は、塩化アンモニウム、無水ケイ酸、ポリビ
ニルピロリドン、白色セラツクおよびステアリン
酸マグネシウムを混合し、これとは別に亜硝酸ナ
トリウム、無水ケイ酸、ポリビニルピロリドン、
酢酸ビニルおよびステアリン酸マグネシウムを混
合し、それら塩化アンモニウム含有成分の混合物
と亜硝酸ナトリウム含有成分の混合物とを別々に
前記成形機により直径約6mm、厚さ約6mmの錠剤
に成形して、それらの錠剤の硬度および崩壊時間
を測定し、塩化アンモニウム含有成分の錠剤の硬
度および崩壊時間を第1表に示した。また、比較
例1においては、塩化アンモニウムと亜硝酸ナト
リウムとをそれぞれ別々に前記成形機により直径
約6mm、厚さ約6mmの錠剤に成形して、それらの
錠剤の硬度および崩壊時間を測定し、塩化アンモ
ニウムの錠剤の硬度および崩壊時間を第1表に示
した。なお、表中の各成分の配含量はすべての重
量部による。また、塩化アンモニウム含有成分の
錠剤状についてのみ硬度および崩壊時間を示した
のは、塩化アンモニウム含有成分の錠剤の方が亜
硝酸ナトリウム含有成分の錠剤より硬度が低く、
崩壊時間が短いからである。 つぎに、上記のようにして得られた発泡剤(つ
まり、塩化アンモニウム含有成分の錠剤と亜硝酸
ナトリウム含有成分の錠剤)をそれぞれを第2表
に示す組成のゴム組成物よりなるハーフシエルに
入れ、水をそれぞれ1.2c.c.ずつ添加し、同組成の
ハーフシエルを重ね合わせ155℃で10分間加硫
(加熱加圧成形)してテニスボール用のコアを得
た。つぎに該コアにメルトンダンベルを貼り合わ
せて加硫してテニスボールを製造した。 得られたテニスボールを第1表に示すような条
件下で保存し、保存後、ボールを切断して粗大結
晶の発生の有無を調べた。その結果を第1表に示
す。 なお硬度の測定はモンサント型硬度計で直径方
向の圧縮強度を測定することにより行ない、崩壊
時間の測定は85℃の温水に浸漬して完全に溶解す
るまでの時間を測定することにより行なつた。 第1表に示すように、亜硝酸ナトリウムと塩化
アンモニウムとの反応により生成する塩化ナトリ
ウムの結晶生成時の核となる物質として結晶性セ
ルロースを添加した実施例1や無水ケイ酸を添加
した実施例2は、それらを添加していない比較例
1に比べて、たとえば20℃×1年6ケ月保存後の
測定結果に見られるように、粗水結晶の発生個数
が少なかつた。
The present invention relates to improvements in sodium nitrite-ammonium chloride foaming agents, and an object of the present invention is to provide a foaming agent suitable for use in hollow balls having internal pressure, such as hard tennis ball cores. For example, hard tennis balls are manufactured by covering a hollow rubber core, which has an internal pressure of about twice atmospheric pressure, with a fabric called metton.
There are so-called pressureless balls for practice that do not have this internal pressure, but they have a poor feel at impact and are generally not preferred. There are two ways to apply internal pressure to the tennis ball core.
There are two types: one is a method (air inflation method) in which two hemispherical rubber molded products called half shells are glued together in pressurized air; A tablet-shaped foaming agent that generates gas such as nitrogen gas when decomposed by heat or chemical reaction is placed in the half-shell and overlapped with the other half-shell, causing the enclosed foaming agent to undergo a decomposition reaction and apply internal pressure. method (chemical inflation method). As the above-mentioned reactive foaming agent, a sodium nitrite-ammonium chloride foaming agent is usually used. In this sodium nitrite-ammonium chloride foaming agent, sodium nitrite and ammonium chloride react as shown in the following equation to generate nitrogen gas. NaNO 2 +NH 4 Cl→NaCl + N 2 +2H 2 O The reaction is usually accelerated by the addition of a small amount of water and heating. The sodium chloride produced by the reaction exists in a dissolved state in water immediately after its formation, but as time passes and water permeates through the core and decreases, the amount that cannot be dissolved will precipitate. to produce crystals. Especially under conditions where it is left undisturbed for a long time in a warehouse etc., coarse single crystals are produced.
When the ball is hit, these coarse crystals collide with the inner wall of the core, producing a rattling sound. In view of these circumstances, the present inventors have conducted various studies and found that a sodium nitrite-ammonium chloride foaming agent contains nuclei during the crystal formation of ammonium chloride, which is produced by the reaction between sodium nitrite and ammonium chloride. By adding a substance that causes I have completed my invention. In the present invention, as mentioned above, substances added for the purpose of forming nuclei during crystal formation of sodium chloride (hereinafter referred to as additives) include, for example, crystalline cellulose, agar, konjac powder, gelatin, vinyl acetate, magnesium stearate, Silicic anhydride, clay, talc, etc. are used. When used as a foaming agent for tennis ball cores, etc., it is molded into tablets, but when the additives mentioned above are added, the tablets become brittle and cannot be properly formed by a molding machine. There are cases. Therefore, the present inventors conducted further research and found that the above-mentioned drawbacks could be overcome by adding the following binder.
Examples of binders added for such purposes include shellac, polyvinylpyrrolidone, and hydroxypropyl cellulose. Even if these additives and binders are added, a predetermined internal pressure can be obtained as long as the amounts of sodium nitrite and ammonium chloride, which are the main ingredients, are the same as conventional ones. When a foaming agent is used to impart internal pressure to the core of a tennis ball, etc., it is molded into a tablet. The component containing ammonium chloride and the component containing ammonium chloride are molded separately, the tablet-shaped molded product of the sodium nitrite-containing component and the tablet-shaped molded product of the ammonium chloride-containing component are placed in a half shell, and a small amount of water is added, Inside the half shell, sodium nitrite and ammonium chloride react to generate nitrogen gas. The reason why the sodium nitrite-containing component and the ammonium chloride-containing component are molded separately in this way is that the sodium nitrite and ammonium chloride react with each other during molding or when they are mixed before molding, resulting in their properties as a blowing agent. This is to prevent loss. In addition, the reason why molded products such as tablets are made is that before the joint surfaces of the half shells are firmly bonded, the gas generated by the reaction of sodium nitrite and ammonium chloride flows from the unbonded joint surface to the half shells. This is to prevent leakage to the outside. In other words, when used in the core of a tennis ball, if it is in powder form, the sodium nitrite and ammonium chloride will react and generate nitrogen gas before the joint surfaces of the half shells are firmly bonded. The nitrogen gas leaks out from the unbonded joint surface to the outside of the half shell, making it impossible to obtain the desired internal pressure. This is to slow down the reaction and prevent the reaction between sodium nitrite and ammonium chloride from occurring until the joint surfaces of the half shells are firmly bonded. Note that the ratio of sodium nitrite and ammonium chloride used may be the same as conventional ones, and for example, it is sufficient to set a reaction molar ratio of about 1:1 so that a predetermined internal pressure can be obtained in the core. And the additive is in the foaming agent
It is preferable to set the binder to 0.5 to 8.0% (weight%, the same applies hereinafter), and when adding a binder, the binder is added to the foaming agent at a concentration of 0.5 to 8.0%, although it varies depending on the amount of additive added.
It is preferable to set it to about 10.0%. In addition, by appropriately combining these additives and binders, the hardness and disintegration time of the blowing agent, that is, tablets containing sodium nitrite and ammonium chloride, dissolve in water and the reaction proceeds rapidly. You can freely adjust the time. For example, the effervescent agents shown in the examples are adjusted so that the tablets have greater hardness and longer disintegration time than conventional products, so the tablets are less likely to crack or chip during use, and variations in internal pressure are reduced. In addition, the foaming agent does not decompose before the half shells are firmly bonded together and some of the internal gas leaks out, which also has the effect of producing tennis balls with more stable quality than before. can be achieved. The foaming agent of the present invention is particularly suitably used for imparting internal pressure to hollow balls for play, such as tennis ball cores, which have an internal pressure higher than atmospheric pressure, but the use is not limited thereto. Further, when used for applying internal pressure to a tennis ball core, it is usually molded into a tablet shape, but the shape is not limited to the tablet shape, and may be molded into other shapes such as a pellet shape. Next, the present invention will be explained with reference to Examples. Examples 1 to 2 and Comparative Example 1 Blowing agents having the compositions shown in Table 1 were prepared. However, in Example 1, ammonium chloride, crystalline cellulose, hydroxypropyl cellulose, and magnesium stearate were mixed in advance, and this ammonium chloride-containing component was then molded into tablets of approximately 6 mm in diameter and approximately 6 mm in thickness using a rotary tablet press. Molded into tablets, sodium nitrite alone was molded into tablets with a diameter of about 6 mm and a thickness of about 6 mm using the above molding machine, and the hardness and disintegration time of these tablets were measured to determine the hardness of the tablets containing ammonium chloride. and disintegration time are shown in Table 1. In the case of Example 2, ammonium chloride, silicic anhydride, polyvinylpyrrolidone, white shellac, and magnesium stearate were mixed, and separately, sodium nitrite, silicic anhydride, polyvinylpyrrolidone,
Vinyl acetate and magnesium stearate are mixed, and the mixture of the ammonium chloride-containing component and the sodium nitrite-containing component are separately molded into tablets with a diameter of about 6 mm and a thickness of about 6 mm using the molding machine. The hardness and disintegration time of the tablets were measured and are shown in Table 1. In addition, in Comparative Example 1, ammonium chloride and sodium nitrite were separately molded into tablets with a diameter of about 6 mm and a thickness of about 6 mm using the molding machine, and the hardness and disintegration time of the tablets were measured. Table 1 shows the hardness and disintegration time of ammonium chloride tablets. In addition, all the amounts of each component in the table are based on parts by weight. In addition, the hardness and disintegration time were shown only for tablets containing ammonium chloride, because the tablets containing ammonium chloride had lower hardness than the tablets containing sodium nitrite.
This is because the collapse time is short. Next, the blowing agents obtained as described above (that is, tablets containing ammonium chloride and tablets containing sodium nitrite) were each placed in a half shell made of a rubber composition having the composition shown in Table 2. , 1.2 cc of water was added to each half shell, and half shells of the same composition were stacked and vulcanized (heated and pressure molded) at 155°C for 10 minutes to obtain a core for a tennis ball. Next, a Melton dumbbell was bonded to the core and vulcanized to produce a tennis ball. The tennis balls obtained were stored under the conditions shown in Table 1, and after storage, the balls were cut to examine the presence or absence of coarse crystals. The results are shown in Table 1. The hardness was measured by measuring the compressive strength in the diametrical direction using a Monsanto type hardness tester, and the disintegration time was measured by immersing it in 85°C hot water and measuring the time until it completely dissolved. . As shown in Table 1, Example 1 in which crystalline cellulose was added as a core substance during crystal formation of sodium chloride produced by the reaction between sodium nitrite and ammonium chloride, and Example 1 in which silicic anhydride was added. Compared to Comparative Example 1 in which these were not added, Sample No. 2 produced fewer crude water crystals, as seen in the measurement results after storage at 20° C. for 1 year and 6 months.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 亜硝酸ナトリウム、塩化アンモニウムおよび
亜硝酸ナトリウムと塩化アンモニウムとの反応に
より生成する塩化ナトリウムの結晶生成時の核と
なる物質からなる発泡剤。 2 前記塩化ナトリウムの結晶生成時の核となる
物質が、結晶性セルロース、寒天、コンニヤク粉
末、ゼラチン、酢酸ビニル、ステアリン酸マグネ
シウム、無水ケイ酸、クレーおよびタルクよりな
る群から選ばれた少なくとも1種である特許請求
の範囲第1項記載の発泡剤。 3 粘結剤を添加し錠剤状またはペレツト状に成
形した特許請求の範囲第1項または第2項記載の
発泡剤。 4 粘結剤がセラツク、ポリビニルピロリドンお
よびヒドロキシプロピルセルロースよりなる群か
ら選ばれた少なくとも1種である特許請求の範囲
第3項記載の発泡剤。
[Scope of Claims] 1. A blowing agent comprising sodium nitrite, ammonium chloride, and a substance that serves as a nucleus during crystal formation of sodium chloride produced by the reaction of sodium nitrite and ammonium chloride. 2. The substance that serves as the core during crystal formation of the sodium chloride is at least one selected from the group consisting of crystalline cellulose, agar, konjac powder, gelatin, vinyl acetate, magnesium stearate, silicic anhydride, clay, and talc. The blowing agent according to claim 1. 3. The foaming agent according to claim 1 or 2, which is formed into a tablet or pellet shape by adding a binder. 4. The blowing agent according to claim 3, wherein the binder is at least one selected from the group consisting of shellac, polyvinylpyrrolidone, and hydroxypropylcellulose.
JP19802582A 1982-11-10 1982-11-10 Foaming agent Granted JPS5986679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19802582A JPS5986679A (en) 1982-11-10 1982-11-10 Foaming agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19802582A JPS5986679A (en) 1982-11-10 1982-11-10 Foaming agent

Publications (2)

Publication Number Publication Date
JPS5986679A JPS5986679A (en) 1984-05-18
JPH0214386B2 true JPH0214386B2 (en) 1990-04-06

Family

ID=16384266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19802582A Granted JPS5986679A (en) 1982-11-10 1982-11-10 Foaming agent

Country Status (1)

Country Link
JP (1) JPS5986679A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904625A (en) * 1986-10-03 1990-02-27 Union Carbide Corporation Refractory composites of alumina and boron nitride
US7044773B2 (en) 2002-08-01 2006-05-16 Ddk Ltd. Connector
JP4578931B2 (en) 2004-10-18 2010-11-10 第一電子工業株式会社 connector
JP2015062997A (en) * 2013-09-02 2015-04-09 株式会社ポリテック・デザイン Hollow body and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5986679A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
US4341559A (en) Binders based upon solutions of alkali metal silicates
US2842506A (en) Process for making plastic polyurethane foam employing water soluble tertiary amine-tertiary amine salt mixtures as catalysts
US3630951A (en) Bubble compositions
JPH0214386B2 (en)
JPS63264518A (en) Production of foamable tablet
FI59982C (en) FOERTJOCKAD TVAERBUNDEN SKUMMAD VATTENHALTIG SPRAENGAEMNESKOMPOSITION OCH FOERFARANDE FOER DESS FRAMSTAELLNING
JPS5859235A (en) Manufacture of article comprising expansion rigidity material of polyvinyl chloride as principal component, article obtained thereby and application
JPS589859A (en) Manufacture of binder and formed body based on alkali metal silicate aqueous solution
JPS58501470A (en) Method for manufacturing tablets that disintegrate in aqueous media
JPH0224796B2 (en)
US2239925A (en) Process of producing porous plaster and product thereof
US2433265A (en) Manufacture of magnesia products
JP2523112B2 (en) Injection material
JPS6338254B2 (en)
US1823335A (en) Method of manufacturing sponge rubber
JPS58127750A (en) Thermoplastic resin composition with filler
US1767514A (en) Porous mass for the storage of explosive gases and method of making same
US1415437A (en) Method of making tennis balls and like hollow articles
JP4387849B2 (en) Tennis ball and manufacturing method thereof
JPS63151691A (en) Manufacture of inorganic heat insulator
US1907520A (en) Sound record
US909915A (en) Explosive compound and process of producing the same.
GB185089A (en) Improved manufacture of tennis balls and like hollow articles
JPH10251430A (en) Production of plastic foam
JPH04198081A (en) Non-gelatinous water-containing explosive composition