JPH02137120A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH02137120A
JPH02137120A JP28989388A JP28989388A JPH02137120A JP H02137120 A JPH02137120 A JP H02137120A JP 28989388 A JP28989388 A JP 28989388A JP 28989388 A JP28989388 A JP 28989388A JP H02137120 A JPH02137120 A JP H02137120A
Authority
JP
Japan
Prior art keywords
fine particles
recording medium
metal oxide
protective layer
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28989388A
Other languages
Japanese (ja)
Other versions
JP2659771B2 (en
Inventor
Hisao Kawai
河合 久雄
Akinori Kurikawa
栗川 明典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP28989388A priority Critical patent/JP2659771B2/en
Publication of JPH02137120A publication Critical patent/JPH02137120A/en
Application granted granted Critical
Publication of JP2659771B2 publication Critical patent/JP2659771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve CSS durability by consisting a protective layer of a metal oxide film and specific fine hard particles dispersed in the metal oxide film. CONSTITUTION:This recording medium is constituted by providing an underlying layer 2, a magnetic layer 3, the protective layer 4, and a lubricating layer 5 successively on a nonmagnetic substrate 1 and the protective layer 4 consists of the metal oxide film 6 in which a silicon oxide is used as the metal oxide and two kinds of the fine hard particles which are dispersed in the metal oxide film 6 and very in average grain size. Namely, the thickness in the region of the metal oxide film 6 where the fine hard particles in the protective layer 4 do not exist is 50 to 400Angstrom and the fine hard particles are constituted of at least two kinds of the fine hard particles 7, 8 which contain the fine hard particles 7 having 200 to 1,000Angstrom average grain size and the fine hard particles 8 having 1,000 to 5,000Angstrom average grain size and vary in the average grain sizes. The fine hard particles 7 of 200 to 1,000Angstrom average grain size are made to exist in the protective layer 4 at 10 to 500 pieces per 1mum<2> and the fine hard particle 8 of 1,000 to 5,000Angstrom average grain size are made to exist at 0.01 to 10 pieces per 1mum<2> therein. The excellent durability is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気ディスク装置等に用いられる磁気記録媒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic recording medium used in a magnetic disk device or the like.

[従来の技術] 近年、磁気ディスク装置等において磁気記録媒体に記録
される情報量は著しく増加し、磁気記録媒体に要求され
る特性は益々厳しくなってきている。この磁気記録媒体
には、優れた磁気特性、電磁変換特性を有する磁性層と
、磁気ヘッドとの接触、摺動時の摩擦力が小さく耐摩耗
性が高く、ヘッドクラッシュが起り難く、さらに防蝕性
の優れた保護層とが要求されている。この為、最近では
非磁性体基板上に磁性層を形成した後、保護層を形成し
、さらに必要に応じて潤滑層を形成して磁気記録媒体を
構成することが多い。例えば、特開昭61−73227
号公報では、予めN1−P層を設けたA1基板上にCo
N1P磁性層を設けた後、粒径300〜500人のγ−
アルミナ微粒子からなる硬質微粒子を分散させた酸化ケ
イ素ポリマー保護層を設け、さらにパーフルオロポリエ
ーテル潤滑層を順次設けた磁気記録媒体が開示されてい
る。この特開昭61−73227号公報には、磁気記録
媒体を前述した構成にすることより保護層の硬度が高く
なりコンタクトスタートストップ(以下C8Sという)
テストに対する耐久性が向上することが記載されている
。ここでC8Sテストとは、磁気記録媒体と磁気ヘッド
とを当接した状態で磁気記録媒体の回転を開始し、この
回転により磁気ヘッドを磁気記録媒体と摺動しながら浮
上させ、そして、所定時間回転した後、磁気記録媒体の
回転を停止して磁気ヘッドを再び磁気記録媒体に当接し
、以下、この回転開始・停止を繰り返して行なうもので
あり、磁気記録媒体が何回のC8S回数を経た後、破損
や摩擦係数の増大等をきなすかを調べ、磁気記録媒体の
耐久性を評価するためのテストである。
[Prior Art] In recent years, the amount of information recorded on magnetic recording media in magnetic disk drives and the like has increased significantly, and the characteristics required of magnetic recording media have become increasingly strict. This magnetic recording medium has a magnetic layer with excellent magnetic properties and electromagnetic conversion properties, low frictional force during contact with the magnetic head and sliding, high wear resistance, less head crash, and corrosion resistance. An excellent protective layer is required. For this reason, recently, a magnetic recording medium is often constructed by forming a magnetic layer on a nonmagnetic substrate, then forming a protective layer, and further forming a lubricating layer if necessary. For example, JP-A-61-73227
In the publication, Co is deposited on an A1 substrate on which an N1-P layer is provided in advance.
After forming the N1P magnetic layer, the γ-
A magnetic recording medium is disclosed in which a silicon oxide polymer protective layer in which hard fine particles made of fine alumina particles are dispersed is provided, and a perfluoropolyether lubricating layer is sequentially provided. This Japanese Patent Application Laid-Open No. 61-73227 discloses that by making the magnetic recording medium as described above, the hardness of the protective layer is increased, resulting in contact start/stop (hereinafter referred to as C8S).
It is stated that durability against tests is improved. Here, the C8S test means that the magnetic recording medium starts to rotate with the magnetic recording medium and the magnetic head in contact with each other, and this rotation causes the magnetic head to float while sliding on the magnetic recording medium, and then for a predetermined period of time. After the rotation, the rotation of the magnetic recording medium is stopped and the magnetic head is brought into contact with the magnetic recording medium again. From then on, this rotation start and stop is repeated, and it is determined how many C8S cycles the magnetic recording medium has undergone. This is a test to evaluate the durability of a magnetic recording medium by examining whether damage or an increase in the coefficient of friction occurs after the magnetic recording medium.

[発明が解決しようとする課題] しかしながら前述の構成の磁気記録媒体は、湿度の低い
雰囲気中でC8Sテストによる耐久性(以下C8S耐久
性という)を評価すると、相応のC8S耐久性を示すが
、湿度の高い雰囲気中、例えば相対温度90%で温度3
0’Cの雰囲気中でC8S耐久性を評価すると、C8S
耐久性は著しく低下し、例えば数100回のC8S回数
で磁気ヘッドとの静止摩擦係数が増加しはじめ、数10
00回のC8S回数で磁気ヘッドが磁気記録媒体表面に
吸着してしまうという現象が起り、またヘッドクラッシ
ュが発生することも多くなる。
[Problems to be Solved by the Invention] However, when the magnetic recording medium having the above-mentioned configuration is evaluated for durability by a C8S test (hereinafter referred to as C8S durability) in a low-humidity atmosphere, it shows a reasonable C8S durability. In a humid atmosphere, for example at a relative temperature of 3.
When evaluating C8S durability in an atmosphere of 0'C, C8S
Durability decreases significantly, for example, after several hundred C8S cycles, the coefficient of static friction with the magnetic head begins to increase, and
After 00 C8S cycles, a phenomenon occurs in which the magnetic head sticks to the surface of the magnetic recording medium, and head crashes often occur.

そしてこのようなC8S耐久性のない磁気記録媒体を、
特に我国の梅雨期や夏期などのように湿度の高い環境下
で使用すると、磁気ディスク装置が使用不能になってし
まうことから重大な問題となっていた。
And such C8S non-durable magnetic recording media,
This has become a serious problem, especially when used in a humid environment such as during the rainy season or summer in Japan, as the magnetic disk drive becomes unusable.

本発明はこのような課題を解決するためになされたもの
であり、その目的は湿度の高い環境下でも優れた耐久性
を有する磁気記録媒体を提供することにある。
The present invention has been made to solve these problems, and its purpose is to provide a magnetic recording medium that has excellent durability even in a humid environment.

[課題を解決するための手段] 本発明は上記目的を達成するためになされたものであり
、 非磁性体基板上に磁性層および保護層を順次形成してな
り、前記保護層が金属酸化物膜と、該金属酸化物膜中に
分散された硬質微粒子とにより構成されている磁気記録
媒体において、 前記保護層中の硬質微粒子の存在しない金属酸化物膜の
領域の厚さが50〜400人であり、前記硬質微粒子が
平均粒径200〜1000人の硬質微粒子と平均粒径1
000〜5000人の硬質微粒子を含む少なくとも2種
類の、平均粒径の異なる硬質微粒子によって構成され、
前記保護層において前者の平均粒径200〜1000人
の硬質微粒子が1μm’あたり10〜500個、後者の
平均粒径1000〜5000人の硬質微粒子が1μm0
あなり0.01〜10個存在する ことを特徴とする磁気記録媒体である。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and includes a magnetic layer and a protective layer formed sequentially on a non-magnetic substrate, the protective layer being made of a metal oxide. A magnetic recording medium comprising a film and hard fine particles dispersed in the metal oxide film, wherein the thickness of the region of the metal oxide film in which the hard fine particles are not present in the protective layer is 50 to 400 mm. and the hard fine particles have an average particle size of 200 to 1000 hard fine particles and an average particle size of 1
Consisting of at least two types of hard fine particles with different average particle sizes, including hard fine particles of 000 to 5000 people,
In the protective layer, the former hard fine particles with an average particle size of 200 to 1000 particles are 10 to 500 particles per 1 μm, and the latter hard fine particles with an average particle size of 1000 to 5000 particles are 1 μm0.
This is a magnetic recording medium characterized by the presence of 0.01 to 10 pieces.

[実施例] 以下、本発明の実施例を第1図を参照しつつ詳細に説明
する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to FIG.

実施例1 第1図は本実施例の磁気記録媒体の部分断面図を示すも
のであり、該磁気記録媒体は、非磁性体基板1上に下地
層2、磁性層3、保護層4および潤滑層5を順次設けて
なり、前記保護層4は、金属酸化物としてケイ素酸化物
を用いた金属酸化物膜6と、該金属酸化物膜6中に分散
された、平均粒径が異なる2種の硬質微粒子、すなわち
本発明で規定された平均粒径200〜100OXの硬質
微粒子に含まれる、平均粒径300人のシリカ微粒子7
と、本発明で規定された平均粒径1000〜5000人
の硬質微粒子に含まれる、平均粒径3000人のシリカ
微粒子8とによって構成されている(なおここに平均粒
径とは、硬質微粒子(シリカ微粒子)の平均的な大きさ
、すなわち縦と横とでは径の違う硬質微粒子(シリカ微
粒子)を含めて一群の硬質微粒子(シリカ微粒子)の径
を測定し平均した大きさを意味する)。
Example 1 FIG. 1 shows a partial cross-sectional view of a magnetic recording medium according to this example. The protective layer 4 includes a metal oxide film 6 using silicon oxide as a metal oxide, and two types of particles having different average particle sizes dispersed in the metal oxide film 6. Silica fine particles 7 with an average particle size of 300, included in hard fine particles with an average particle size of 200 to 100OX defined in the present invention.
and silica fine particles 8 with an average particle size of 3000 particles, which are included in the hard fine particles with an average particle size of 1000 to 5000 particles defined in the present invention. This means the average size of a group of hard fine particles (silica fine particles), including hard fine particles (silica fine particles) that have different diameters in the vertical and horizontal directions.

また保護層4において硬質微粒子であるシリカ微粒子7
.8が存在しない金属酸化物膜6の領域の厚さは、本発
明の限定範囲(50〜400X>に含まれる150人で
あり、またシリカ微粒子7の存在密度は本発明の限定範
囲(10〜500個/1μm0)に含まれる200個/
1m0、シリカ微粒子8の存在密度は本発明の限定範囲
(0゜01〜10個/1μm0)に含まれる0、1個/
1μmCIである。
In addition, in the protective layer 4, silica fine particles 7 which are hard fine particles
.. The thickness of the region of the metal oxide film 6 where 8 does not exist is 150 people included in the limited range of the present invention (50 to 400 500 pieces/200 pieces included in 1μm0)
1 m0, the density of silica fine particles 8 is within the limited range of the present invention (0°01 to 10 particles/1 μm0).
1 μm CI.

この磁気記録媒体は以下のようにして製造された。すな
わち、先ず両生表面を鏡面研磨した、直径130晒、中
心部穴径40mm、厚さ1.9mのアルミニウム合金板
(表面粗さ180人)をアルマイト処理して得な非磁性
体基板1を用意し、この基板上上に、Crターゲットと
Arガスを用いるスパッタリング法により膜厚1000
人のCr膜からなる下地層2を形成した。
This magnetic recording medium was manufactured as follows. That is, first, an aluminum alloy plate (surface roughness: 180 mm) with a diameter of 130 mm, a central hole diameter of 40 mm, and a thickness of 1.9 m, whose ambidextrous surface was mirror polished, was anodized to prepare a special nonmagnetic substrate 1. Then, a film with a thickness of 1000 mm was formed on this substrate by sputtering using a Cr target and Ar gas.
A base layer 2 made of a human Cr film was formed.

次にこの下地層2上にCoNiCrターゲットとArガ
スを用いるスパッタリング法により膜厚600人のCo
NiCr膜からなる磁性層3を形成した。
Next, a Co film with a thickness of 600 nm was deposited on this underlayer 2 by sputtering using a CoNiCr target and Ar gas.
A magnetic layer 3 made of a NiCr film was formed.

次に金属アルコキシドであるテトラエトキシシラン(S
 i(OC2H5) 4 )と水とメタノールと酢酸と
ホルムアミドとをモル比1/2/1010.110.1
となるように調合して得た溶液と、平均粒径が300人
(平均粒径の値はコールタ−カウンター社製の粒度分布
測定機コールタ−カウンターN4で測定した。以下同様
)のシリカ微粒子7と平均粒径が3000人のシリカ微
粒子8をメタノール中にそれぞれ15wt%ずつ分散さ
せて得た溶液とを、100/1の割合で混合し、得られ
た混合液を、上記磁性層3上にスピンコード法により塗
布した後、290℃で30分間熱処理して金属アルコキ
シドであるテトラエトキシシランを金属酸化物であるケ
イ素酸化物に転化して金属酸化物膜6を形成し、該金属
酸化物膜6中にシリカ微粒子7とシリカ微粒子8とが分
散された保護層4を得た。この保護層4中のシリカ微粒
子の存在しない金属酸化物膜6の領域の厚さは、上述の
如く約150人であり、走査型電子顕微鏡により測定し
たシリカ微粒子の存在密度は、上述の如く平均粒径30
0人のシリカ微粒子7については200個/1mO1平
均粒径3000人のシリカ微粒子8については0.1個
/1μm0であった。
Next, metal alkoxide tetraethoxysilane (S
i(OC2H5) 4), water, methanol, acetic acid, and formamide in a molar ratio of 1/2/1010.110.1
A solution prepared by mixing the following and silica fine particles 7 with an average particle size of 300 (the average particle size was measured using a particle size distribution analyzer Coulter Counter N4 manufactured by Coulter Counter Co., Ltd.) and a solution obtained by dispersing silica fine particles 8 with an average particle size of 3000 in methanol at a ratio of 15 wt % each, and the resulting mixed solution was applied onto the magnetic layer 3. After coating by a spin code method, a heat treatment is performed at 290° C. for 30 minutes to convert tetraethoxysilane, which is a metal alkoxide, into silicon oxide, which is a metal oxide, to form a metal oxide film 6. A protective layer 4 in which silica fine particles 7 and silica fine particles 8 were dispersed in 6 was obtained. The thickness of the area of the metal oxide film 6 in which no silica particles are present in the protective layer 4 is approximately 150 mm as described above, and the density of silica particles measured by a scanning electron microscope is the average thickness as described above. Particle size 30
For silica fine particles 7 of 0 people, the average particle diameter was 200 pieces/1 mO1, and for silica fine particles 8 of 3000 people, the average particle size was 0.1 pieces/1 μm0.

次に上記保護層4上にスピンコード法によりフッ素化オ
イル(デュポン社製KRYTOX  157  FSH
)を塗布して膜厚約15人の潤滑層5を形成して、目的
とする磁気記録媒体を得た。
Next, a fluorinated oil (KRYTOX 157 FSH manufactured by DuPont) was applied onto the protective layer 4 by a spin code method.
) was coated to form a lubricating layer 5 with a thickness of approximately 15 mm, thereby obtaining the desired magnetic recording medium.

得られた、本実施例の磁気記録媒体についてC8Sテス
トを行ない、また磁気ヘッドの出力電圧を測定した。こ
れらの結果は、後記の比較例1〜4の磁気記録媒体につ
いての結果とともに後に詳述する。
The obtained magnetic recording medium of this example was subjected to a C8S test, and the output voltage of the magnetic head was measured. These results will be detailed later together with the results for the magnetic recording media of Comparative Examples 1 to 4, which will be described later.

比較例1 硬質微粒子として、平均粒径が300人のシリカ微粒子
のみを用い、その存在密度を500個/1m0とした以
外は実施例1と同様の方法で本比較例の磁気記録媒体を
得た。
Comparative Example 1 A magnetic recording medium of this comparative example was obtained in the same manner as in Example 1, except that only silica fine particles having an average particle size of 300 particles were used as hard fine particles, and the density was 500 particles/1 m0. .

比較例2 硬質微粒子として、いずれも平均粒径200〜1000
人の硬質微粒子に含まれる、平均粒径300人のシリカ
微粒子と平均粒径800人のシリ力微粒子を用い、それ
らの存在密度を20個/1μm0とした以外は実施例1
と同様の方法で本比較例の磁気記録媒体を得た。
Comparative Example 2 As hard fine particles, the average particle size was 200 to 1000.
Example 1 except that human silica particles with an average particle size of 300 and human silica particles with an average particle size of 800, which are contained in human hard particles, were used, and their density was set to 20 particles/1 μm0.
A magnetic recording medium of this comparative example was obtained in the same manner as described above.

比較例3 硬質微粒子として、平均粒径が2000人のシリカ微粒
子のみを用い、その存在密度を10個/1μm0とした
以外は実施例1と同様にして本比較例の磁気記録媒体を
得な。
Comparative Example 3 A magnetic recording medium of this comparative example was obtained in the same manner as in Example 1, except that only silica fine particles having an average particle diameter of 2000 were used as the hard fine particles, and the density was set to 10 pieces/1 μm0.

比較例4 硬質微粒子として、平均粒径が4000人のシリカ微粒
子のみを用い、その存在密度を10個/1μm0とした
以外は実施例1と同様の方法で本比較例の磁気記録媒体
を得た。
Comparative Example 4 A magnetic recording medium of this comparative example was obtained in the same manner as in Example 1, except that only silica fine particles having an average particle size of 4000 were used as hard fine particles, and the density was set to 10 pieces/1 μm0. .

次に、得られた、実施例1および比較例1.2の磁気記
録媒体のそれぞれ10枚について、Aj2TiCのスラ
イダーを有する磁気ヘッドを用いて、平均相対湿度90
%、平均温度30℃の雰囲気中でC8Sテストを行ない
イC8S耐久性を評価した結果は以下の通りである。
Next, ten sheets of each of the obtained magnetic recording media of Example 1 and Comparative Example 1.2 were heated to an average relative humidity of 90 using a magnetic head having an Aj2TiC slider.
%, the C8S test was conducted in an atmosphere with an average temperature of 30° C., and the results of evaluating the C8S durability are as follows.

実施例1の磁気記録媒体は、全10枚ともに10000
回以上のC8S回数に耐えるのみならず、10000回
のC8S回数を経た後でも磁気ヘッドとの静止摩擦係数
は平均で約0.5と極めて小さい値であった。また磁気
ヘッドが磁気記録媒体の表面に吸着することも発生せず
、さらにヘッドクラッシュも起らなかった。
The magnetic recording medium of Example 1 has a total capacity of 10,000 for all 10 sheets.
Not only did it withstand more than 10,000 C8S cycles, but even after 10,000 C8S cycles, the coefficient of static friction with the magnetic head was an extremely small value of about 0.5 on average. Furthermore, the magnetic head did not stick to the surface of the magnetic recording medium, and no head crash occurred.

これに対して比較例1の磁気記録媒体は、C8S回数が
約100回から磁気ヘッドとの静止摩擦係数が増加しは
じめ、10枚のうち4枚については500〜1000回
のCSS回数で、静止摩擦係数が、C8S耐久性評価装
置のモーターのトルク値をモーターの回転軸と磁気ヘッ
ドとの距離で除した値より大きくなり測定不能になって
しまった。残り6枚は500〜1000回のCSS回数
でヘッドクラッシュを引き起こしてしまった。なお、ヘ
ッドクラッシュを引き起こす直前の磁気へラドどの静止
摩擦係数は2.0以上であった。また比較例2の磁気記
録媒体では、静止摩擦係数の増加は比較例1よりゆるや
かであったが、10枚のうち5枚がC8S回数が約10
00回で静止摩擦係数が2より大きくなってしまった。
On the other hand, for the magnetic recording medium of Comparative Example 1, the coefficient of static friction with the magnetic head started to increase after about 100 C8S cycles, and 4 of the 10 media stopped coming to a standstill after 500 to 1000 CSS cycles. The friction coefficient became larger than the value obtained by dividing the motor torque value of the C8S durability evaluation device by the distance between the motor's rotating shaft and the magnetic head, making it impossible to measure it. The remaining 6 cards caused head crashes after 500 to 1000 CSS cycles. In addition, the coefficient of static friction of the magnetic helad immediately before causing a head crash was 2.0 or more. In addition, in the magnetic recording medium of Comparative Example 2, the increase in the coefficient of static friction was more gradual than in Comparative Example 1, but 5 out of 10 had a C8S frequency of about 10.
At 00 times, the coefficient of static friction became greater than 2.

残りの5枚のうち3枚は、5000回以上のC8S回数
で静止摩擦係数が2を超え、2枚は約5000回でヘッ
ドクラッシュを起こした。
Of the remaining five discs, three had static friction coefficients exceeding 2 after 5,000 C8S cycles, and two suffered head crashes after approximately 5,000 cycles.

以上の結果により、実施例1の磁気記録媒体は、比較例
1.2のものに比べて湿度の高い雰囲気中でもC8S耐
久性にすぐれていることが明らかとなった。
The above results revealed that the magnetic recording medium of Example 1 has superior C8S durability even in a humid atmosphere compared to that of Comparative Example 1.2.

次に実施例1の磁気記録媒体および比較例3.4の磁気
記録媒体について、スペーシングロス(ヘッドと磁気記
録媒体の距離の増加による記録密度の低下)の程度を評
価すべく、磁気ヘッドの出力を測定した。なおこの測定
において測定機として米国アデルファイ社製のRDOO
8メディアサーテイファイヤ−(モノリシックタイプの
磁気ヘッドを使用)を用い、ヘッドと磁気記録媒体の表
面との距N(いわゆる浮上高さ)を2000人とした。
Next, with respect to the magnetic recording medium of Example 1 and the magnetic recording medium of Comparative Example 3.4, in order to evaluate the degree of spacing loss (a decrease in recording density due to an increase in the distance between the head and the magnetic recording medium), The output was measured. The measuring device used in this measurement was RDOO manufactured by Adelphi Corporation in the United States.
A 8-media certifier (using a monolithic type magnetic head) was used, and the distance N between the head and the surface of the magnetic recording medium (so-called flying height) was set to 2000.

その結果、実施例1の磁気記録媒体の場合、磁気ヘッド
の出力電圧が0.4mVであるのに対し、比較例3.4
の磁気記録媒体の場合、磁気ヘッドの出力電圧がそれぞ
れ0.25mV、0.15mVであり、実施例1の磁気
記録媒体は比較例のものに比ベスベーシングロスが少な
いことが明らかとなった。
As a result, in the case of the magnetic recording medium of Example 1, the output voltage of the magnetic head was 0.4 mV, whereas in the case of Comparative Example 3.4.
In the case of the magnetic recording medium, the output voltage of the magnetic head was 0.25 mV and 0.15 mV, respectively, and it became clear that the magnetic recording medium of Example 1 had less bassing loss than that of the comparative example. .

以上実施例により本発明を説明してきたが、本発明は以
下の変形例および応用例を含むものである。
Although the present invention has been described above with reference to Examples, the present invention includes the following modifications and applications.

(1)実施例では、ケイ素酸化物からなる金属酸化物膜
を形成するための原料として、テトラエトキシシランを
用いたが、その部分又は完全加水分解物を用いても良く
、またいわゆるゾルゲル法によりケイ素酸化物を形成す
るものであれば他のケイ素アルコキシドやその部分又は
完全加水分解物を用いても良い。このような例としては
、テトラメトキシシラン、テトラ−n−プロポキシシラ
ン、テトラ−1−プロポキシシラン、テトラ−n−ブト
キシシラン、テトラ−5ec−ブトキシシラン、テトラ
−tert−ブトキシシラン等のテトラアルコキシシラ
ンや、これらのテトラアルコキシシランのアルコキシ基
の1〜3個をアルキル基に置換したモノアルキルトリア
ルコキシシラン、ジアルキルジアルコキシシラン及びト
リアルキルモノアルコキシシラン等のケイ素アルコキシ
ド及びこれらの部分又は完全加水分解物が挙げられる。
(1) In the examples, tetraethoxysilane was used as a raw material for forming a metal oxide film made of silicon oxide, but a partial or complete hydrolyzate of tetraethoxysilane may also be used, or a so-called sol-gel method may be used. Other silicon alkoxides and their partial or complete hydrolysates may be used as long as they form silicon oxides. Examples of such include tetraalkoxysilanes such as tetramethoxysilane, tetra-n-propoxysilane, tetra-1-propoxysilane, tetra-n-butoxysilane, tetra-5ec-butoxysilane, and tetra-tert-butoxysilane. and silicon alkoxides such as monoalkyltrialkoxysilanes, dialkyldialkoxysilanes, and trialkylmonoalkoxysilanes in which 1 to 3 of the alkoxy groups of these tetraalkoxysilanes are substituted with alkyl groups, and their partial or complete hydrolysates. can be mentioned.

また金属酸化物膜はアルミニウム酸化物によって形成し
ても良く、このアルミニウム酸化物からなる膜もアルミ
ニウムアルコキシドやその部分又は完全加水分解物を用
いるゾルゲル法により形成される。これらの例としては
、トリエトキシアルミニウム、トリメトキシアルミニウ
ム、トリーn−プロポキシアルミニウム、トリーミープ
ロポキシアルミニウム、トリーn−ブトキシアルミニウ
ム等のトリアルコキシアルミニウムや、これらのトリア
ルコキシアルミニウムのアルコキシ基の1〜2個をアル
キル基に置換したモノアルキルジアルコキシアルミニウ
ム及びジアルキルモノアルコキシアルミニウム等のアル
ミニウムのアルコキシド及びこれらの部分又は完全加水
分解物が挙げられる。さらに、金属アルコキシドとして
、タンタル、タングステン、スズ、ジルコニウム及びチ
タン等のアルコキシド並びにこれらの部分又は完全加水
分解物を使用し、金属酸化物膜を形成しても良い。
Further, the metal oxide film may be formed of aluminum oxide, and the film made of aluminum oxide is also formed by a sol-gel method using aluminum alkoxide or a partial or complete hydrolyzate thereof. Examples of these include trialkoxyaluminums such as triethoxyaluminum, trimethoxyaluminum, tri-n-propoxyaluminum, tri-n-propoxyaluminum, tri-n-butoxyaluminum, and 1 to 2 alkoxy groups of these trialkoxyaluminums. Alkoxides of aluminum such as monoalkyldialkoxyaluminum and dialkylmonoalkoxyaluminum in which is substituted with an alkyl group, and partial or complete hydrolysates thereof can be mentioned. Furthermore, a metal oxide film may be formed by using alkoxides such as tantalum, tungsten, tin, zirconium, and titanium, and partial or complete hydrolysates thereof as the metal alkoxide.

ケイ素、アルミニウム、タンタル、タングステン、スズ
、ジルコニウム、チタン等の金属酸化物からなる膜は、
金属アルコキシドを用いる、前記ゾルゲル法以外の方法
で形成しても良い。
Films made of metal oxides such as silicon, aluminum, tantalum, tungsten, tin, zirconium, titanium, etc.
It may be formed by a method other than the above-mentioned sol-gel method using a metal alkoxide.

なお、金属酸化物膜を構成する金属酸化物として2種以
上のものを用いても良い。
Note that two or more types of metal oxides may be used as the metal oxides constituting the metal oxide film.

また、実施例では、ケイ素酸化物からなる金属酸化物膜
の形成に際して、テトラエトキシシランと水とメタノー
ルと酢酸とホルムアミドとの混合物を用いたが、酢酸と
ホルムアミドについてはその一方又は両方の使用を省略
できる。
In addition, in the examples, a mixture of tetraethoxysilane, water, methanol, acetic acid, and formamide was used to form a metal oxide film made of silicon oxide, but one or both of acetic acid and formamide may be used. Can be omitted.

また水を積極的に使用せずに、大気中の水(水蒸気)を
取り込んで金属アルコキシドの加水分解物を含有する溶
液を得ても良い。また前記メタノールの代りにエチルア
ルコールやブチルアルコール等を用いても良い。
Alternatively, a solution containing a metal alkoxide hydrolyzate may be obtained by taking in water (steam) from the atmosphere without actively using water. Moreover, ethyl alcohol, butyl alcohol, etc. may be used instead of the methanol.

(2)実施例では、金属酸化物膜中に分散される硬質微
粒子として、シリカ微粒子を用いたが、硬質性を有する
ものであれば、他の無機系微粒子を用いても良く、その
例としてアルミナ、ジルコニア、チタニア、炭化ケイ素
、炭化タングステン等の微粒子が挙げられる。硬質微粒
子として種類の異なる2種以上のものを用いることもで
きる。
(2) In the examples, silica particles were used as the hard particles dispersed in the metal oxide film, but other inorganic particles may be used as long as they have hardness. Examples include fine particles of alumina, zirconia, titania, silicon carbide, tungsten carbide, and the like. Two or more different types of hard particles can also be used.

(3)実施例では、保護層中の硬質微粒子の存在しない
金属酸化物膜の領域の厚さを150人としたが、本発明
において、この厚さは50〜400人の範囲に限定され
る。
(3) In the example, the thickness of the region of the metal oxide film in which hard fine particles are not present in the protective layer is 150 mm, but in the present invention, this thickness is limited to a range of 50 to 400 mm. .

その理由は50人未満であると、金属酸化物膜が薄くな
りすぎて硬質微粒子を保持する力が小さくなって、C8
S耐久性が悪くなり、また400人を超えるとスペーシ
ングロスの問題が発生するからである。
The reason for this is that if there are fewer than 50 people, the metal oxide film becomes too thin and its ability to hold hard fine particles decreases, resulting in C8
This is because S durability deteriorates, and if the number of people exceeds 400, a problem of spacing loss will occur.

(4)実施例では、平均粒径の小さい硬質微粒子として
平均粒径300人の硬質微粒子を、そして平均粒径の大
きい硬質微粒子として平均粒径3000人の硬質微粒子
を用いたが、前者の平均粒径の小さい硬質微粒子は平均
粒径200〜1000人の範囲で選択でき、また後者の
平均粒径の大きい硬きい硬質微粒子は1000〜500
0人の範囲で選択できる(但し、両者の硬質微粒子とし
て、いずれも平均粒径1000人のものを使用すること
はできない)。
(4) In the examples, hard fine particles with an average particle size of 300 mm were used as hard fine particles with a small average particle size, and hard fine particles with an average particle size of 3000 mm were used as hard fine particles with a large average particle size. Hard fine particles with a small particle size can be selected with an average particle size of 200 to 1000 particles, and the latter hard fine particles with a large average particle size can be selected with an average particle size of 1000 to 500 particles.
(However, it is not possible to use hard fine particles with an average particle size of 1000 particles for both hard particles.)

前者の平均粒径200〜1000人の硬質微粒子の存在
密度を実施例では200個/1m。
In the example, the density of the former hard fine particles having an average particle size of 200 to 1000 particles is 200 particles/1 m.

としたが、本発明において、その存在密度は10〜50
0個/1μm0の範囲に限定される。
However, in the present invention, its density is 10 to 50
It is limited to a range of 0 pieces/1 μm0.

その理由は100個/1m0未満であると、高湿度(例
えば相対湿度90%)下のC8Sテストにおいて数10
0回のC8S回数で静止摩擦係数が急速に増加しはじめ
、また500個/1μmoを超えると、C8Sテストの
継続により静止摩擦係数が増加しやすく、しがもスペー
シングロスの問題が発生するからである。
The reason for this is that if the number of particles is less than 100 pieces/1m0, the C8S test under high humidity (e.g. 90% relative humidity)
The coefficient of static friction begins to increase rapidly when the number of C8S is 0, and when it exceeds 500 pieces/1 μmo, the coefficient of static friction tends to increase due to the continuation of the C8S test, which inevitably causes the problem of spacing loss. It is.

また後者の平均粒径1000〜5000人の硬質微粒子
の存在密度を実施例では0.1個/1μmaとしたが、
本発明において、その存在密度は0.01〜10個/1
μm’の範囲に限定される。その理由は0.01個/1
μm0未満であると、C8Sテストの継続により硬質微
粒子がけずられてしまい静止摩擦係数が増加しやすくな
り、また100個/1m0を超えるとスペーシングロス
の問題が発生するからである。
In addition, the density of the latter hard fine particles with an average particle size of 1000 to 5000 particles was set to 0.1 particles/1 μma in the example,
In the present invention, the abundance density is 0.01 to 10 pieces/1
limited to the range of μm'. The reason is 0.01/1
If it is less than μm0, the hard particles are likely to be scraped by the continuation of the C8S test and the coefficient of static friction will tend to increase, and if it exceeds 100 particles/1m0, a problem of spacing loss will occur.

すなわち、平均粒径の異なる2種の硬質微粒子の平均粒
径の範囲と存在密度の範囲を上記の如く設定することに
より、C8S回数を重ねても静止摩擦係数の増加が極め
て小さくCSS耐久性にすぐれ、しかもスペーシングロ
スの小さい磁気記録媒体を得ることができる。
In other words, by setting the average particle size range and existing density range of the two types of hard fine particles with different average particle sizes as described above, the increase in the coefficient of static friction is extremely small even after repeated C8S cycles, and the CSS durability is maintained. An excellent magnetic recording medium with small spacing loss can be obtained.

(5)実施例では、硬質微粒子として平均粒径が異なる
2種の硬質微粒子を用いたが、本発明の目的を損わない
範囲で上記2種の硬質微粒子以外に他の、1種以上の硬
質微粒子を用いることもできる。
(5) In the examples, two types of hard fine particles with different average particle diameters were used as the hard fine particles, but in addition to the above two types of hard fine particles, one or more types of Hard fine particles can also be used.

(6)実施例では、非磁性体基板として、アルミニウム
合金板を用いたが、アルミニウム合金以外の金属、ガラ
ス、アルミナ、セラミック、プラスチック等の他の材質
のものも使用することもできる。
(6) In the embodiment, an aluminum alloy plate was used as the nonmagnetic substrate, but other materials such as metals other than aluminum alloy, glass, alumina, ceramics, and plastics may also be used.

(7)実施例では、磁性層として、CoNiCr膜を形
成したが、CoNi、CoPt、CoPなどの他のCo
系合金やFe2O3などの磁性材料により磁性層を構成
してもよい。
(7) In the example, a CoNiCr film was formed as the magnetic layer, but other Co such as CoNi, CoPt, CoP, etc.
The magnetic layer may be made of a magnetic material such as a magnetic alloy or Fe2O3.

(8)実施例ではCr膜からなる下地層を設けたが、下
地層の材料として、Cr以外にMOlTi、Ta等の非
磁性材料を用いることができる。なお、下地層は必須の
層でなく、場合によりその形成を省略することもできる
(8) In the embodiment, a base layer made of a Cr film was provided, but as a material for the base layer, other than Cr, non-magnetic materials such as MOTi, Ta, etc. can be used. Note that the base layer is not an essential layer, and its formation may be omitted depending on the case.

(9)実施例では、磁性層上に直接保護層を形成したが
、磁性層と保護層との間にCr等の金属膜又は酸化クロ
ム等の金属酸化物膜を1層又は複数層介在させて、磁性
層の化学的耐久性を更に向上させても良い。
(9) In the examples, the protective layer was formed directly on the magnetic layer, but one or more layers of a metal film such as Cr or a metal oxide film such as chromium oxide may be interposed between the magnetic layer and the protective layer. The chemical durability of the magnetic layer may be further improved.

(10)実施例では潤滑層の材料としてフッ素化オイル
を用いたが、フルオロカーボン系の液体潤滑剤やスルホ
ン酸のアルカリ金属塩からなる潤滑剤を用いることもで
きる。なお潤滑層は必須の層でなく、場合によりその形
成を省略することもできる。
(10) In the examples, fluorinated oil was used as the material for the lubricant layer, but a fluorocarbon-based liquid lubricant or a lubricant made of an alkali metal salt of sulfonic acid may also be used. Note that the lubricating layer is not an essential layer, and its formation may be omitted depending on the case.

[発明の効果] 以上詳述した通り、本発明によればC8S耐久性にすぐ
れ、かつスペーシングロスの問題のない磁気記録媒体が
提供された。
[Effects of the Invention] As detailed above, according to the present invention, a magnetic recording medium having excellent C8S durability and free from the problem of spacing loss was provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の磁気記録媒体の部分断面図である。 FIG. 1 is a partial cross-sectional view of the magnetic recording medium of Example 1.

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性体基板上に磁性層および保護層を順次形成
してなり、前記保護層が金属酸化物膜と、該金属酸化物
膜中に分散された硬質微粒子とにより構成されている磁
気記録媒体において、前記保護層中の硬質微粒子の存在
しない金属酸化物膜の領域の厚さが50〜400Åであ
り、前記硬質微粒子が平均粒径200〜1000Åの硬
質微粒子と平均粒径1000〜5000Åの硬質微粒子
を含む少なくとも2種類の、平均粒径の異なる硬質微粒
子によって構成され、前記保護層において前者の平均粒
径200〜1000Åの硬質微粒子が1μm°あたり1
0〜500個、後者の平均粒径1000〜5000Åの
硬質微粒子が1μm°あたり0.01〜10個存在する ことを特徴とする磁気記録媒体。
(1) A magnetic layer formed by sequentially forming a magnetic layer and a protective layer on a non-magnetic substrate, where the protective layer is composed of a metal oxide film and hard fine particles dispersed in the metal oxide film. In the recording medium, a region of the metal oxide film in which hard fine particles are not present in the protective layer has a thickness of 50 to 400 Å, and the hard fine particles include hard fine particles with an average particle size of 200 to 1000 Å and hard fine particles with an average particle size of 1000 to 5000 Å. The protective layer is composed of at least two types of hard fine particles having different average particle diameters, including hard fine particles of 200 to 1000 Å, and the former hard fine particles have an average particle size of 1 μm/μm.
1. A magnetic recording medium characterized in that there are 0.01 to 10 hard fine particles per μm° with an average particle diameter of 1000 to 5000 Å.
JP28989388A 1988-11-16 1988-11-16 Magnetic recording media Expired - Lifetime JP2659771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28989388A JP2659771B2 (en) 1988-11-16 1988-11-16 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28989388A JP2659771B2 (en) 1988-11-16 1988-11-16 Magnetic recording media

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP7011527A Division JP2752331B2 (en) 1995-01-27 1995-01-27 Magnetic recording media
JP7011526A Division JP2752330B2 (en) 1995-01-27 1995-01-27 Magnetic recording media
JP7011528A Division JP2752332B2 (en) 1995-01-27 1995-01-27 Magnetic recording media
JP6058497A Division JP2860290B2 (en) 1997-03-14 1997-03-14 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH02137120A true JPH02137120A (en) 1990-05-25
JP2659771B2 JP2659771B2 (en) 1997-09-30

Family

ID=17749133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28989388A Expired - Lifetime JP2659771B2 (en) 1988-11-16 1988-11-16 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2659771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272260A (en) * 1995-01-27 1995-10-20 Hoya Corp Magnetic recording medium
JPH07272258A (en) * 1995-01-27 1995-10-20 Hoya Corp Magnetic recording medium
JPH07272259A (en) * 1995-01-27 1995-10-20 Hoya Corp Magnetic recording medium
US5914168A (en) * 1994-09-30 1999-06-22 Fujitsu Limited Magnetic recording medium and magnetic disc device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914168A (en) * 1994-09-30 1999-06-22 Fujitsu Limited Magnetic recording medium and magnetic disc device
JPH07272260A (en) * 1995-01-27 1995-10-20 Hoya Corp Magnetic recording medium
JPH07272258A (en) * 1995-01-27 1995-10-20 Hoya Corp Magnetic recording medium
JPH07272259A (en) * 1995-01-27 1995-10-20 Hoya Corp Magnetic recording medium

Also Published As

Publication number Publication date
JP2659771B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US4390562A (en) Process of manufacturing a magnetic record member
JPH02137120A (en) Magnetic recording medium
US5026577A (en) Magnetic recording medium lubricated with a cholesteric liquid crystal
JP2884900B2 (en) Magnetic storage
JP2752332B2 (en) Magnetic recording media
JP2752330B2 (en) Magnetic recording media
JPH08297833A (en) Magnetic recording medium and its production
JP2860290B2 (en) Magnetic recording media
JP2752331B2 (en) Magnetic recording media
JPH0823935B2 (en) Thin film magnetic recording medium
JPH0337844A (en) Magneto-optical disk
JP2507597B2 (en) Magneto-optical recording medium
JP3019612B2 (en) Manufacturing method of magnetic recording medium
Schulz et al. A comparison of film structure and surface chemistry of carbon and oxide disk overcoats
JP2736960B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0916936A (en) Magnetic recording medium and its production
JPH07282444A (en) Magnetic recording medium
JPH05274646A (en) Magnetic recording medium
JPH07182652A (en) Magnetic recording medium
JP3061984B2 (en) Magnetic storage
JPS6173227A (en) Magnetic recording medium
JP3675449B2 (en) Hard disk and manufacturing method thereof
JP2568984B2 (en) Manufacturing method of magnetic recording medium
JPH0729154A (en) Magnetic recording medium
JP2003016638A (en) Method for measuring property of magnetic disk medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12