JPH0213105A - Power supply for fet amplifier - Google Patents

Power supply for fet amplifier

Info

Publication number
JPH0213105A
JPH0213105A JP63163611A JP16361188A JPH0213105A JP H0213105 A JPH0213105 A JP H0213105A JP 63163611 A JP63163611 A JP 63163611A JP 16361188 A JP16361188 A JP 16361188A JP H0213105 A JPH0213105 A JP H0213105A
Authority
JP
Japan
Prior art keywords
current
voltage
power supply
drain
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63163611A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nakano
義明 中野
Tetsuji Nakatani
中谷 哲二
Tomio Ueda
富雄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63163611A priority Critical patent/JPH0213105A/en
Publication of JPH0213105A publication Critical patent/JPH0213105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

PURPOSE:To eliminate the need for deciding a rated maximum output current of a power supply to be a larger value taking the state at power application into account by selecting a power current being the sum of a drain current and a charging current of a decoupling capacitor at application of power not to be in excess of a steady-state power current over the entire period of power application. CONSTITUTION:Since a leading control circuit 11 retards the circuit current till reaching the steady-state by allowing a positive output voltage VDS to charge a capacitor C of a decoupling circuit 3 and a tailing control circuit 21 sets a negative gate voltage VGS of a FET to a larger negative voltage VP around the pinchoff voltage for a prescribed time only, no drain current ID flows and only a charging current IC smaller than the steady-state current flows. Then the negative gate voltage VGS is selected smaller than the setting voltage VP, and then even if the positive drain voltage VDS rises to a normal voltage VDD, the drain current ID reaches its steady-state current IDD only and the power current being the sum of the drain current ID and the power current IS does not exceed the rated maximum output current IO MAX.

Description

【発明の詳細な説明】 〔概要〕 マイクロ波増幅器等の増幅素子として電界効果トラ、ン
ジスタFETを用いたFET増幅器用の正のドレイン電
圧と負のゲートを投入順序を定めてデカップリングを通
してFETに供給する電源の構成に関し、 電源投入時のドレイン電流IDとデカップリングコンデ
ンサの充電電流■。の和の電源電流■。
[Detailed Description of the Invention] [Summary] A positive drain voltage and a negative gate for an FET amplifier using a field effect transistor or transistor FET as an amplification element of a microwave amplifier or the like are determined and the order is determined and the order is determined and the FET is connected to the FET through decoupling. Regarding the configuration of the power supply, drain current ID and decoupling capacitor charging current ■ at power-on. The power supply current of the sum of■.

が電源の最大定格出力電流より小さいFET増幅器用の
電源を目的とし、 ソースを接地した電界効果トランジスタFETのゲート
に負のゲート電圧を加え、直列抵抗と接地間コンデンサ
からなるデカップリングを通してドレインに正のドレイ
ン電圧を加えFETにドレイン電流I、を流しデカップ
リングのコンデンサ乙こ充電電流ICを流すFET増幅
器用電源において、正電源の出力の正電圧の立上りをデ
カップリングのコンデンサが充電され定常状態に達する
まで遅らす立上り制御回路と、負電源の出力の負電圧を
一定時間だけFETのゲート電圧の所定の動作電圧より
低くトレイン電流が流れないピンチオフ電圧付近の負電
圧に下げる立下り制御回路を設け、電源投入時のFET
のドレイン電流■。を減らしデカップリングのコンデン
サの充電電流■。
Intended for power supplies for FET amplifiers whose output current is smaller than the maximum rated output current of the power supply, a negative gate voltage is applied to the gate of a field effect transistor FET whose source is grounded, and a positive voltage is applied to the drain through decoupling consisting of a series resistor and a capacitor between ground. In a power supply for an FET amplifier, which applies a drain voltage of , and flows a drain current I to the FET and a charging current IC to the decoupling capacitor, the decoupling capacitor is charged at the rise of the positive voltage of the output of the positive power supply and reaches a steady state. A rise control circuit that delays the output of the negative power supply until the current is reached, and a fall control circuit that reduces the negative voltage of the output of the negative power supply for a certain period of time to a negative voltage near the pinch-off voltage that is lower than the predetermined operating voltage of the gate voltage of the FET and at which no train current flows. FET at power on
The drain current of■. ■ Reduce the decoupling capacitor charging current.

と合わせた電源電流I、が定格最大出力電流より大とな
らぬように構成する。
The configuration is such that the combined power supply current I does not exceed the rated maximum output current.

〔産業上の利用分野〕[Industrial application field]

本発明はマイクロ波増幅器等の増幅素子として電界効果
トランジスタFETを用いたFET増幅器用の電源に係
り、特にF E TのソースSを接地し、ゲー1−Gに
負電圧を印加した後にドレインDに正電圧を印加するF
ET増幅器用の電源の構成に関する。
The present invention relates to a power supply for an FET amplifier using a field effect transistor FET as an amplification element such as a microwave amplifier, and in particular, the source S of the FET is grounded, and after applying a negative voltage to the gate 1-G, the drain D Applying a positive voltage to F
This invention relates to the configuration of a power supply for an ET amplifier.

〔従来の技術〕[Conventional technology]

従来のFET増幅器用電源は、第4図のブロック図に示
す如く、増幅素子としての電界効果トランジスタFET
l0のソースSを接地し、ゲートGに負電圧−Vou 
tを加えドレインDに正電圧+Vou tを加えるドレ
イン電圧用正電2gtaとデーl−電圧用負電源2Aか
らなる固定バイアスのFET増幅署:)用電源であって
、該電源を動作させる場合の電源投入の順序は、第5図
の説明図のAに示す々rl<、FE′T’IOのドレイ
ン電流I、が飽和電流1t+ssに近い大電流が流れて
FETl0が破壊されるのを防ぐ為、最初負のゲート電
圧V CSを加え、次に正のドレイン電圧V 05を加
えるようにしているので、同図のBのように、飽和電流
■、3.より小さいドレイン電流IDが流れる。また電
源には一般にノイズをカットするデカップリング3のコ
ンデンサCが接地間にあるので該コンデンサCへの充電
電流IC(同図C)も加わり結局、投入時には同図のD
のようにドレイン電流■。とコンデンサCへの充電電流
I。の和として大きな電源電流I、が流れる。
A conventional FET amplifier power supply uses a field effect transistor FET as an amplifying element, as shown in the block diagram of FIG.
The source S of l0 is grounded, and the gate G is applied with a negative voltage -Vou.
A fixed bias FET amplification station consisting of a positive voltage 2gta for the drain voltage and a negative power source 2A for the data l-voltage which applies a positive voltage +Vout to the drain D by adding t and applying a positive voltage +Vout t to the drain D, and when operating the power supply. The order in which the power is turned on is as shown in A in the explanatory diagram of FIG. , first a negative gate voltage V CS is applied, and then a positive drain voltage V 05 is applied, so as shown in B in the same figure, the saturation currents ■, 3. A smaller drain current ID flows. In addition, since the power supply generally has a decoupling capacitor C (3) between the ground and the ground, a charging current IC (C in the same figure) is also added to the capacitor C.
Drain current as ■. and charging current I to capacitor C. A large power supply current I flows as the sum of .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

すると電源電流■、が電源に定めノ、−最大重(δ出力
電流I。、4AXを越えたり、図示しない4源の過電流
保護回路が動作してFETl0に「−・>7 y;バイ
アス電圧が加わらないことがある。そr・□゛)為、電
源の最大定格出力電流i。HAXをFETl0の定常動
作時の電流■、。より十分に大きい値にし5なければな
らないのでFET増幅器用電源がコスト・アンプとなる
という問題がjチイ、。
Then, if the power supply current ■, exceeds the maximum load (δ output current I., 4AX) determined by the power supply, the 4-source overcurrent protection circuit (not shown) operates, and the bias voltage Therefore, the maximum rated output current of the power supply i. The problem is that it becomes a cost amplifier.

本発明は電源投入時の電源電流1sを低く抑えて、電源
の最大定格出力電流l。□8と定常動作時の電源電流1
.。との差が小さいFET増幅器用の電源を提供するこ
とを課題とする。
The present invention suppresses the power supply current 1 s at power-on to a low value, thereby increasing the maximum rated output current 1 of the power supply. □8 and power supply current 1 during steady operation
.. . An object of the present invention is to provide a power supply for an FET amplifier with a small difference between the two.

〔課題を解決するための手段〕[Means to solve the problem]

この課題は、デカップリング回路3のコンデンサCの充
電電流1cは、FETl0のドレイン電圧v nsの大
小によって決まるが、ドレイン電流IDは、ゲーI・電
圧VCSによって変化することに着目し、第1図に示す
如く、正電源1の出力の正電圧+νoutの立上りをデ
カップリング3のコンデンサCが充電され定常状態に達
するまで遅らす立上り制御回路11と、負電源2の出力
の負電圧−Vou tを一定時間だけFETのゲート電
圧VCSの通常の動作電圧V GOより低くドレイン電
流■、が流れないピンチオフ電圧付近の負電圧Vpに下
げる立下り制御回路21を設け、電源投入時に先ず、正
のドレイン電圧用型#1の出力電圧V OSがデカップ
リング3のコンデンサCを充電し定常状態に達するまで
の間、負のゲート電圧用電源2の出力電圧V G3を通
常の動作電圧V Goより下げる事によって電源投入時
のFETl0のドレイン電流■。を凍らし電源電流I、
が電源の定格最大出力電流■。MAXより大とならぬよ
うにする、即ち、負のゲート電圧V CSをFETのド
レイン電流I、が流れないピンチオフ電圧付近の負の大
きい電圧v2に設定し次に正のドレイン電圧V DSを
零から徐々に上昇するように構成する本発明によって解
決する。
This problem was solved by focusing on the fact that the charging current 1c of the capacitor C of the decoupling circuit 3 is determined by the magnitude of the drain voltage Vns of the FET 10, but the drain current ID changes depending on the gate I and the voltage VCS. As shown in , there is a rise control circuit 11 that delays the rise of the positive voltage +νout of the output of the positive power supply 1 until the capacitor C of the decoupling 3 is charged and reaches a steady state, and a rise control circuit 11 that delays the rise of the positive voltage +νout of the output of the positive power supply 1 and keeps the negative voltage -Vout of the output of the negative power supply 2 constant. A fall control circuit 21 is provided to lower the gate voltage VCS of the FET to a negative voltage Vp near the pinch-off voltage that is lower than the normal operating voltage VGO and the drain current does not flow. Until the output voltage VOS of type #1 charges the capacitor C of decoupling 3 and reaches a steady state, the output voltage VG3 of the negative gate voltage power supply 2 is lowered below the normal operating voltage VGo. Drain current of FET10 when turned on ■. Freezes the power supply current I,
■ The rated maximum output current of the power supply. In other words, set the negative gate voltage V CS to a large negative voltage v2 near the pinch-off voltage at which the FET drain current I does not flow, and then set the positive drain voltage V DS to zero. This problem is solved by the present invention, which is configured to gradually rise from .

本発明のFET増幅器用電源の構成を示す第1図の原理
図において、 ■は、電界効果トランジスタFETl0のドレインDに
正電圧のドレイン電圧V DSを供給するドレイン電圧
用正電源である。
In the principle diagram of FIG. 1 showing the configuration of the FET amplifier power supply according to the present invention, 2 is a drain voltage positive power supply that supplies a positive drain voltage VDS to the drain D of the field effect transistor FET10.

IOは、ソースSを接地しゲートGに負電圧−Vou 
tを加えドレインDに正電圧+Voutを加える固定バ
イアスの増幅器用の電界効果トランジスタFETである
IO has its source S grounded and its gate G connected to a negative voltage -Vou.
This is a field effect transistor FET for a fixed bias amplifier that applies a positive voltage +Vout to the drain D.

11は、正電源1の出力の正電圧+Voutの立上りを
デカップリング3のコンデンサCが充電され定常状態に
達するまで遅らす立上り制御回路、2は、FET 10
のゲートGに負電圧−Vou tのゲート電圧VGSを
供給するゲート電圧用負電源である。
11 is a rise control circuit that delays the rise of the positive voltage +Vout output from the positive power supply 1 until the capacitor C of the decoupling 3 is charged and reaches a steady state; 2 is a FET 10
This is a negative power supply for gate voltage that supplies gate voltage VGS of negative voltage -Vout to gate G of .

21は、貫電rX2の出力の負電圧−Voutを一定時
間だけPETのゲート電圧V。、の通常の動作電圧V 
G。
21 is the gate voltage V of PET for a certain period of time while the negative voltage -Vout of the output of the current through rX2 is applied. , the normal operating voltage V
G.

より低くドレイン電流■。が流れないピンチオフ電圧付
近の負電圧Vpに下げる立下り制御回路である。
■Lower drain current. This is a fall control circuit that lowers the voltage Vp to a negative voltage near the pinch-off voltage at which no voltage flows.

〔作用〕[Effect]

立上り制御回路11は、電源投入時のドレイン電圧用電
源1の正の出力電圧V OSがデカップリング3のコン
デンサCを充電し定常状態に達するまで立上りを遅らせ
、立下り制御回路21が、一定時間だけFET負のゲー
ト電圧VGSをピンチオフ電圧付近の負の大きい電圧V
、に設定するのでドレイン電流1.が流れず定常電流よ
り小さい充電電流ICのみが流れる。そのあと負のゲー
ト電圧VGSを前記設定電圧Vpより浅くして、正のド
レイン電圧V DSが正規電圧V Doへ上昇しても、
ドレイン電流I、はその定常値rooになるだけであり
、そのドレイン電流r0と充電電流■。の和の電源電流
■、は、電源投入時の全期間に亘って定常時の電流を基
にした電源の定格最大出力電流■。MAXより大きくな
る事はなくなり問題は解決される。
The rise control circuit 11 delays the rise until the positive output voltage VOS of the drain voltage power supply 1 charges the capacitor C of the decoupling 3 and reaches a steady state when the power is turned on. Only the negative gate voltage VGS of the FET is pinched off when the large negative voltage V
, so the drain current is 1. does not flow, and only the charging current IC, which is smaller than the steady current, flows. After that, even if the negative gate voltage VGS is made shallower than the set voltage Vp and the positive drain voltage VDS rises to the normal voltage VDo,
The drain current I, only reaches its steady-state value roo, and its drain current r0 and charging current ■. The sum of the power supply current ■ is the rated maximum output current of the power supply based on the steady state current over the entire period when the power is turned on. It will no longer be larger than MAX, and the problem will be solved.

〔実施例〕 第2図は本発明の実施例のFET増幅器用電源の構成を
示す回路図であり、第3図はその動作を説明するための
特性図である。
[Embodiment] FIG. 2 is a circuit diagram showing the configuration of a power supply for an FET amplifier according to an embodiment of the present invention, and FIG. 3 is a characteristic diagram for explaining its operation.

第2図において、立上り制御回路11は、トランジスタ
Tr1.Tr2、抵抗R1,R2,R3、コンデンサC
1で構成され、立下り制御回路21は、トランジスタT
r3、抵抗R6,R7,R8,R9、コンデンサC2で
構成される。
In FIG. 2, the rise control circuit 11 includes transistors Tr1. Tr2, resistors R1, R2, R3, capacitor C
1, the fall control circuit 21 includes a transistor T
r3, resistors R6, R7, R8, R9, and capacitor C2.

電源投入時に、負犬カーVinが先ず第3図の説明図の
■の如く入力すると、立下り制御回路21の抵抗R6と
コンデンサC2の接続点Bに大きい負の■微分波形が現
れ、トランジスタTr3がONとなる。
When the power is turned on, when the negative dog car Vin is first inputted as shown in the explanatory diagram of FIG. becomes ON.

するとゲート電圧用負電源2の5EXSE入力の電圧が
下がり接地GNDのレベルに近づく。すると負電源2の
出力端−Vou tの■電圧が大きくなり、例えば、設
定値−Voutが一5vならば、約−8vの電圧Vou
t ’になり一定時間τだけ継続する。
Then, the voltage at the 5EXSE input of the gate voltage negative power supply 2 decreases and approaches the level of ground GND. Then, the voltage at the output terminal -Vout of the negative power supply 2 increases. For example, if the set value -Vout is 15V, the voltage Vout of about -8V increases.
t' and continues for a certain period of time τ.

前記接続点Bの■電圧が抵抗R6とコンデンサC2によ
り一定時間でだけ経過して−0,6v以下になるとトラ
ンジスタTr3がOFFとなり、■の如く約−8Vの出
力電圧−Vout ’が一5vの設定値−Voutにな
る。
When the voltage at the connection point B becomes -0.6V or less after a certain period of time due to the resistor R6 and capacitor C2, the transistor Tr3 is turned off, and the output voltage -Vout' of about -8V as shown in ■ is -5V. The set value becomes -Vout.

電源投入時には、又、正入力+Vinが第3図の説明図
の■の如く抵抗R1と抵抗R2の両端に加わる。
When the power is turned on, the positive input +Vin is also applied to both ends of the resistor R1 and the resistor R2, as indicated by (■) in the explanatory diagram of FIG.

すると、抵抗R1と抵抗R2の中間点へ〇〇電圧は、抵
抗R2とコンデンサCIにより、零Ovから順次上昇す
るが、約+0.6v以下の一定時間τは、Tr2がOF
F している。Tr2がOFFの時はTriもOFFと
なり、ドレイン電圧用正電源1の出力端+Vou tの
■電圧、は現れずOVである。中間点へ〇〇電圧が+0
.6V以上になるとTr2がO)JしてTri もON
となる。
Then, the 〇〇 voltage to the midpoint between the resistor R1 and the resistor R2 increases sequentially from zero Ov due to the resistor R2 and the capacitor CI, but for a certain time τ below about +0.6 V, Tr2 is OF
F I am. When Tr2 is OFF, Tri is also OFF, and the voltage of the output terminal +Vout of the positive power source 1 for drain voltage does not appear and is OV. To the intermediate point 〇〇voltage is +0
.. When the voltage exceeds 6V, Tr2 turns O)J and Tri also turns ON.
becomes.

TriがONとなるとドレイン電圧用正電2I);tl
の出力端+νoutに■の如く所定電圧+Vou tが
現れる。
When Tri is turned on, the drain voltage positive voltage 2I); tl
A predetermined voltage +Vout appears at the output terminal +vout as shown in (2).

そして該所定電圧+Voutがデカップリング3のコン
デンサCoを充電し定常状態に達した時に規定のドレイ
ン電圧V 05がFETl0のドレインDに印加される
When the predetermined voltage +Vout charges the capacitor Co of the decoupling 3 and reaches a steady state, a predetermined drain voltage V05 is applied to the drain D of the FETl0.

以上の如く、本発明の実施例の第2図のFET増幅器用
電源は、その立下り制御回路21が、一定時間τだけ負
のゲート電圧V GSを、ドレイン電流の流れないピン
チオフ電圧付近の負電圧−8vに設定するので、FET
l0のドレイン電流I。は流れず電源からは定常電流1
ooより小さいデカップリング3のコンデンサCoの充
電電流I、のみが流れる。そのあと、負のゲート電圧V
GSを前記負電圧8vより浅くし設定値−5vに設定し
正のドレイン電圧V 05が正規電圧V Doへ上昇し
ても、ドレイン電流■、はその定常値■、。になるだけ
で、その定常値IDOと充電電流I、の和の電源電流I
、が電源から出力されるだけである。従って本発明の実
施例のFET増幅器用電源は、電源投入時の電源電流I
、が電源投入の全期間に亘って定常時の電源電流を上回
らず、定常特電流を基にして定める電源の定格最大出力
電流I。MAXより大きくなる事はないので問題は無い
As described above, in the FET amplifier power supply according to the embodiment of the present invention shown in FIG. Since the voltage is set to -8v, the FET
Drain current I of l0. does not flow, steady current 1 from the power supply
Only the charging current I of the capacitor Co of decoupling 3, which is smaller than oo, flows. Then the negative gate voltage V
Even if GS is made shallower than the negative voltage 8V and set to the set value -5V, and the positive drain voltage V05 rises to the normal voltage VDo, the drain current (2) remains at its steady value (2). The power supply current I which is the sum of the steady-state value IDO and the charging current I
, is only output from the power supply. Therefore, the FET amplifier power supply according to the embodiment of the present invention has a power supply current I when the power is turned on.
, does not exceed the steady-state power supply current during the entire power-on period, and is the rated maximum output current I of the power supply determined based on the steady-state special current. There is no problem because it will never be larger than MAX.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によるFET増幅器用電源は
、その電源投入時のそのドレイン電流とデカップリング
のコンデンサの充電電流の和の電源電流が、電源投入の
全期間に亘って定常時の電源電流を上回ることがないの
で、電源の定格最大出力電流を投入時を考慮して大きな
値に定める必要がないので、電源のコストを低減できる
効果がある。
As explained above, in the FET amplifier power supply according to the present invention, the power supply current, which is the sum of the drain current and the charging current of the decoupling capacitor when the power is turned on, is equal to the steady power supply current during the entire power-on period. Since it is not necessary to set the rated maximum output current of the power supply to a large value in consideration of the power-on state, there is an effect of reducing the cost of the power supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のFET増幅器用電源の構成を示す原理
図、 第2図は本発明の実施例のFET増幅器用電源の構成を
示す回路図、 第3図は本発明の実施例の動作を説明するための特性図
、 第4図は従来のFET増幅器用電源のブロック図、 第5図は従来例の動作を説明するための説明図である。 図において、 1はドレイン電圧用正電源、2はゲート電圧用負電源、
3はデカップリング回路、10はFET、丁 11は立上り制御回路、21は立柔り制御回路である。 本発明の寅施例の重力作Σ説哨す鋒め力持11生必$ 
3 図 ネ1尺のFET増襦I!:、用慢ヒ源のフ゛ロック図$
 4  図
Fig. 1 is a principle diagram showing the configuration of the FET amplifier power supply of the present invention, Fig. 2 is a circuit diagram showing the configuration of the FET amplifier power supply of the embodiment of the present invention, and Fig. 3 is the operation of the embodiment of the present invention. FIG. 4 is a block diagram of a conventional FET amplifier power supply, and FIG. 5 is an explanatory diagram for explaining the operation of the conventional example. In the figure, 1 is a positive power supply for drain voltage, 2 is a negative power supply for gate voltage,
3 is a decoupling circuit, 10 is an FET, 11 is a rise control circuit, and 21 is a rise control circuit. A must-have for 11 students who will be a strong force to explain the gravity work Σ of the tiger embodiment of the present invention
3 Figure: 1-shaku FET addition I! :, Block diagram of the source of negligence $
4 Figure

Claims (1)

【特許請求の範囲】 ソース(S)を接地した電界効果トランジスタFET(
10)のゲート(G)に負電源(2)の出力の負電圧(
−Vout)のゲート電圧(V_G_S)を加え、配線
抵抗(R)と接地間のコンデンサ(C)からなるデカッ
プリング(3)を通してドレイン(D)に正電源(1)
の出力の正電圧(+Vout)のドレイン電圧(V_D
_S)を加え該FET(10)にドレイン電流(I_D
)を流し該デカップリング(3)のコンデンサ(C)に
充電電流(I_C)を流すFET増幅器用電源において
、正電源(1)の出力の正電圧(+Vout)の立上り
をデカップリング(3)のコンデンサ(C)が充電され
定常状態に達するまで遅らす立上り制御回路(11)と
、 負電源(2)の出力の負電圧(−Vout)を一定時間
だけFET(10)のゲート電圧(V_G_S)の所定
の動作電圧(V_G_O)より低くドレイン電流(I_
D_S)が流れないピンチオフ電圧付近の負電圧(V_
P)に下げる立下り制御回路(21)を設け、 電源投入時に立下り制御回路(21)により一定時間だ
け負電源(2)の出力の負電圧(−Vout)をピンチ
オフ電圧付近の負電圧(V_P)に下げ、立上り制御回
路(11)により正電源(1)の出力の正電圧(+Vo
ut)の立上りを遅らせてFET(10)のドレイン電
流(I_D)を減らしデカップリング(3)のコンデン
サ(C)の充電電流(I_C)と合わせた電源電流(I
_S)が電源の定格最大出力電流(I_O_M_A_X
)より大とならぬことを特徴としたFET増幅器用電源
[Claims] A field effect transistor FET (with its source (S) grounded)
10) is connected to the gate (G) of the negative voltage (
-Vout) is applied to the gate voltage (V_G_S), and the positive power supply (1) is applied to the drain (D) through a decoupling (3) consisting of a wiring resistance (R) and a capacitor (C) between ground.
The drain voltage (V_D) of the positive voltage (+Vout) of the output of
_S) and drain current (I_D) is added to the FET (10).
) and a charging current (I_C) flows through the capacitor (C) of the decoupling (3). A rise control circuit (11) that delays the rise until the capacitor (C) is charged and reaches a steady state, and a negative voltage (-Vout) at the output of the negative power supply (2) is applied to the gate voltage (V_G_S) of the FET (10) for a certain period of time. The drain current (I_
Negative voltage (V_
A fall control circuit (21) is provided to reduce the negative voltage (-Vout) of the output of the negative power supply (2) for a certain period of time by the fall control circuit (21) when the power is turned on. The positive voltage (+V_P) of the output of the positive power supply (1) is lowered by the rise control circuit (11)
ut) to reduce the drain current (I_D) of the FET (10) and reduce the power supply current (I_D) combined with the charging current (I_C) of the decoupling (3) capacitor (C).
_S) is the rated maximum output current of the power supply (I_O_M_A_X
) A power supply for FET amplifiers that is characterized by not being larger.
JP63163611A 1988-06-30 1988-06-30 Power supply for fet amplifier Pending JPH0213105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63163611A JPH0213105A (en) 1988-06-30 1988-06-30 Power supply for fet amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63163611A JPH0213105A (en) 1988-06-30 1988-06-30 Power supply for fet amplifier

Publications (1)

Publication Number Publication Date
JPH0213105A true JPH0213105A (en) 1990-01-17

Family

ID=15777218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63163611A Pending JPH0213105A (en) 1988-06-30 1988-06-30 Power supply for fet amplifier

Country Status (1)

Country Link
JP (1) JPH0213105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141110A (en) * 1988-11-22 1990-05-30 Nec Corp Power supply circuit for fet amplifier
JP2007065205A (en) * 2005-08-30 2007-03-15 Denso Corp Display device
JP2010103796A (en) * 2008-10-24 2010-05-06 New Japan Radio Co Ltd Switching method of high frequency circuit, and high frequency circuit
JP2011146143A (en) * 2010-01-12 2011-07-28 Panasonic Corp Microwave processing device
JP2013168753A (en) * 2012-02-15 2013-08-29 Fujitsu Ltd Amplification device and amplification method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141110A (en) * 1988-11-22 1990-05-30 Nec Corp Power supply circuit for fet amplifier
JP2007065205A (en) * 2005-08-30 2007-03-15 Denso Corp Display device
JP4626451B2 (en) * 2005-08-30 2011-02-09 株式会社デンソー Display device
JP2010103796A (en) * 2008-10-24 2010-05-06 New Japan Radio Co Ltd Switching method of high frequency circuit, and high frequency circuit
JP2011146143A (en) * 2010-01-12 2011-07-28 Panasonic Corp Microwave processing device
JP2013168753A (en) * 2012-02-15 2013-08-29 Fujitsu Ltd Amplification device and amplification method

Similar Documents

Publication Publication Date Title
US7276888B2 (en) Precharge circuit for DC/DC boost converter startup
US5973512A (en) CMOS output buffer having load independent slewing
JP3181507B2 (en) Apparatus for low voltage differential amplifier incorporating switched capacitor
US20050270004A1 (en) DC-DC CMOS converter
CN205092772U (en) Linear regulator control circuit
CN111367347B (en) Line loss compensation method and circuit of linear voltage stabilizer
US10303193B2 (en) Voltage regulator circuit, corresponding device, apparatus and method
JPS5942492B2 (en) Push-pull pulse amplification circuit
CN104655911A (en) Bi-directional current sensor
JPH0213105A (en) Power supply for fet amplifier
US10073476B2 (en) Miller compensation circuit, and corresponding regulator, system, and method
US10917008B2 (en) Output stage circuit of power conversion circuit
EP1493223B1 (en) Voltage converter using mos transistors
US20050052209A1 (en) Linear voltage tracking amplifier for negative supply slew rate control
US11146059B2 (en) Circuit and method for managing an inrush current
JPH069607Y2 (en) Power supply for gradient magnetic field
US20180262199A1 (en) Reference signals generated using internal loads
EP3805898A1 (en) Electronic system for generating multiple power supply output voltages with one regulation loop
CN111555740A (en) Diode current bypass control circuit and control method thereof
JP4424095B2 (en) Level shift circuit
Patel Modified Startup Delay Providing Circuit for Integrated Circuits
JPS63260220A (en) Rush current preventing circuit
US6160390A (en) Method and apparatus for error current compensation
CN114629449A (en) Operational amplifier
JPS6223604A (en) Bias circuit