JPH02125589A - Picture quality correction system for image pickup device - Google Patents

Picture quality correction system for image pickup device

Info

Publication number
JPH02125589A
JPH02125589A JP63277507A JP27750788A JPH02125589A JP H02125589 A JPH02125589 A JP H02125589A JP 63277507 A JP63277507 A JP 63277507A JP 27750788 A JP27750788 A JP 27750788A JP H02125589 A JPH02125589 A JP H02125589A
Authority
JP
Japan
Prior art keywords
signal
luminance
circuit
brightness
luminance signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63277507A
Other languages
Japanese (ja)
Other versions
JP2952488B2 (en
Inventor
Kazunori Iwabe
岩部 和記
Naomoto Kubo
直基 久保
Hiroshi Tamayama
宏 玉山
Takashi Yano
孝 矢野
Takashi Soga
孝 曽我
Hitoshi Koike
斉 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63277507A priority Critical patent/JP2952488B2/en
Priority to US07/496,331 priority patent/US5068718A/en
Publication of JPH02125589A publication Critical patent/JPH02125589A/en
Application granted granted Critical
Publication of JP2952488B2 publication Critical patent/JP2952488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the deterioration in the picture quality by supplying a luminance signal formed by a matrix circuit forming a luminance signal from a color signal obtained by the pickup at an image pickup element to a luminance correction circuit so as to expand the intermediate brightness between the minimum and maximum brightness. CONSTITUTION:For example, a luminance signal Y as shown in figure (a) is a signal Y1 attenuated by 1/K1 at an attenuation circuit 20, and becomes a signal Y2 amplified nonlinear by a nonlinear amplifier circuit 21. Then the polarity of the signal Y2 is inverted by an inverting circuit 22 to form a signal Y3. The signal Y3 and the original luminance signal Y are added by an adder circuit 23 to form a signal Y4. Moreover, the signal Y4 and the original luminance signal Y are added by an adder circuit 24 to form a new luminance signal Yc. Thus, since a luminance signal correction circuit emphasizes intermediate brightness and the change in the brightness at a black and white levels is suppressed, the picture quality of a main object and a background is improved in the state of rear light and spot light scene.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子カメラ等の撮像装置に関し、特に、主被写
体に対して周囲の輝度が比較的高い所謂逆光状態や、主
被写体に対して周囲の輝度が比較的低い所謂スポット・
ライト・シーンの状態において主被写体及び背景を良好
に撮影するための画質補正方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an imaging device such as an electronic camera, and particularly in a so-called backlit situation where the surrounding brightness is relatively high relative to the main subject, or when the main subject is So-called spots where the brightness of
The present invention relates to an image quality correction method for properly photographing a main subject and a background in a light scene.

〔従来の技術〕[Conventional technology]

従来、電子スチル・カメラやビデオ・テープ・レコーダ
(VTR)等の撮像装置にあっては、第6図に示す撮像
系統を備えている。まず構成を説明すると、同図におし
・て、1は撮影レンズや絞り及びシャッター等から成る
撮像光学系であり、撮像光学系1の後方に例えば電荷蓄
積型固体撮像素子(CCD)等の撮像素子2が配置され
、撮像素子2の受光面には例えば画素に対応した赤(R
)。
2. Description of the Related Art Conventionally, imaging devices such as electronic still cameras and video tape recorders (VTRs) have been equipped with an imaging system shown in FIG. First, to explain the configuration, in the figure, 1 is an imaging optical system consisting of a photographing lens, an aperture, a shutter, etc. Behind the imaging optical system 1, there is a charge accumulation solid-state image sensor (CCD), etc. An image sensor 2 is arranged, and the light-receiving surface of the image sensor 2 is colored with red (R) corresponding to the pixel, for example.
).

青(B)、緑(G)のカラー・フィルタ3が設けられて
いる。撮像素子2は被写体光学像を光電変換し、所謂水
平走査及び垂直走査読み出しによって各画素に発生した
映像信号を時系列的に出力し、この映像信号はブリ・ア
ンプ4によって信号処理可能な振幅レベルまで増幅され
る。
Blue (B) and green (G) color filters 3 are provided. The image sensor 2 photoelectrically converts the optical image of the object and outputs video signals generated in each pixel by so-called horizontal scanning and vertical scanning readout in time series, and this video signal has an amplitude level that can be processed by the amplifier 4. is amplified to.

ブリ・アンプ4から出力される時系列の映像信号は色分
離回路5によって、赤(R)、青(B)。
The time-series video signal output from the amplifier 4 is separated into red (R) and blue (B) by the color separation circuit 5.

緑(G)の夫々の色信号に分離され、更にこれらの色信
号から画像を再生した場合に最適の白色が得られるよう
にするために白バランス回路6によって夫々の色信号の
振幅レベルが調整される。更に、白バランス回路6より
出力された色信号はブラウン管の階調特性を補正するた
めのT補正回路7を通り、マ) IJクス回路8によっ
て輝度信号Y1色差信号R−Y及びB−Yに変換される
。そして、これらの°信号Y、R−Y、B−Yを磁気記
録媒体に記録したり、画像再生用モニタ・テレビジョン
等に供給する。
The signal is separated into green (G) color signals, and the amplitude level of each color signal is adjusted by a white balance circuit 6 in order to obtain the optimum white color when an image is reproduced from these color signals. be done. Furthermore, the color signal output from the white balance circuit 6 passes through a T correction circuit 7 for correcting the gradation characteristics of the cathode ray tube, and is converted into a luminance signal Y1 and color difference signals R-Y and B-Y by an IJ circuit 8. converted. Then, these ° signals Y, RY, and B-Y are recorded on a magnetic recording medium or supplied to a monitor, television, etc. for image reproduction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような撮像装置にあっては絞りやシャッ
ター速度を調整することによって露光量を自動調整し、
撮像素子への入射光量を最適に設定する自動露出機能(
AE機能)を備えている。
By the way, such imaging devices automatically adjust the exposure amount by adjusting the aperture and shutter speed.
Automatic exposure function that optimally sets the amount of light incident on the image sensor (
AE function).

このAE機能は、ます画角内の被写体から受ける光強度
を検出し、撮像素子の最適な光電変換特性条件で撮影を
可能とするように絞り等を自動調整する。
This AE function detects the intensity of light received from a subject within the field of view, and automatically adjusts the aperture etc. to enable photographing under the optimum photoelectric conversion characteristic conditions of the image sensor.

しかしながら、このような機能を備えていても、例えば
第7図に示すように主被写体Aの背景シーンBの輝度が
高い場合には最も撮影したい主被写体Aは暗くなって画
像が不明瞭となり、更に、主被写体よりの受光量を上げ
て撮影すると背景の景色は真っ白になってしまう。逆に
、暗い背景中で白い服を着た人物等を主被写体として撮
影する場合に該服装がとんでしまい質感を損なう等の問
題があった。
However, even with such a function, if the brightness of the background scene B of the main subject A is high, as shown in FIG. 7, the main subject A that you most want to photograph will be dark and the image will be unclear. Furthermore, if the amount of light received from the main subject is increased, the background scenery will become completely white. On the other hand, when photographing a person wearing white clothes as the main subject in a dark background, there is a problem in that the clothes come off and the texture is lost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこのような課題に鑑みて成されたものであり、
同一画角内に高輝度と低輝度の被写体が混在する場合で
あっても、夫々の被写体を明瞭に撮影する撮像装置の画
質補正方式を提供することを目的とする。
The present invention has been made in view of such problems,
An object of the present invention is to provide an image quality correction method for an imaging device that clearly photographs each subject even when high-luminance and low-luminance subjects coexist within the same angle of view.

この目的を達成するために本発明は、予め設定されてい
る最小輝度と最大輝度の範囲中において、該最小輝度の
輝度信号入力に対する出力と最大輝度の輝度信号入力に
対する出力を同一の線型特性で発生し、該最小輝度と最
大輝度の範囲内での輝度信号入力を上記線型特性よりも
増幅率の大きな適宜の非線型特性で出力することにより
上記最小輝度と最大輝度の範囲内の輝度信号を伸長する
輝度補正回路を備えた。
In order to achieve this object, the present invention provides an output for a luminance signal input of the minimum luminance and an output for a luminance signal input of the maximum luminance with the same linear characteristic within a preset range of minimum luminance and maximum luminance. The luminance signal within the range of the minimum brightness and maximum brightness is output by outputting the brightness signal input within the range of the minimum brightness and maximum brightness with an appropriate non-linear characteristic having a larger amplification factor than the linear characteristic. Equipped with an expanding brightness correction circuit.

第1図は本発明の原理構成図、第2図は本発明の原理説
明図である。これらの図に右いて、色分離された各色信
号R(赤)、B(青)、G(緑)を従来技術のマトリク
ス回路9で色差信号R−Y。
FIG. 1 is a diagram illustrating the principle of the present invention, and FIG. 2 is a diagram illustrating the principle of the present invention. On the right side of these figures, the color-separated color signals R (red), B (blue), and G (green) are processed by a matrix circuit 9 of the prior art to generate a color difference signal RY.

B−Y及び輝度信号Yに変換し、更に輝度信号Yを第2
図の入出力特性を有する輝度信号補正回路10に通して
新たな輝度信号Ycを発生させ、これらの色差信号R−
Y、B−Yと輝度信号Ycを画像再生のための信号とし
て用いる。第2図に示すように、予め設定された最も暗
い状態に対応する最小輝度Y。と最も明るい状態に対応
する最大輝度Y)1の範囲において、該最小輝度Y。と
最大輝度YMの輝度信号入力に対しては同一の線型な増
幅率で新たな輝度信号Yc・を出力し、その最小輝度Y
0と最大輝度YMの間の輝度信号入力に対しては予め設
定された非線型な増幅率特性によって新たな輝度信号Y
cを出力する。尚、この非線型な増幅率は最小輝度Y0
と最大輝度Y、4での増幅率よりも高い値に設定するこ
とにより、中間の輝度信号を伸長するように成っている
B-Y and luminance signal Y, and further converts the luminance signal Y into a second
A new luminance signal Yc is generated through the luminance signal correction circuit 10 having the input/output characteristics shown in the figure, and these color difference signals R-
Y, BY and the luminance signal Yc are used as signals for image reproduction. As shown in FIG. 2, the minimum brightness Y corresponds to the preset darkest state. and the maximum brightness Y corresponding to the brightest state) in the range of 1, the minimum brightness Y. For the luminance signal input with the maximum luminance YM, a new luminance signal Yc is output with the same linear amplification factor, and the minimum luminance Y
For a luminance signal input between 0 and the maximum luminance YM, a new luminance signal Y is generated using a preset nonlinear amplification factor characteristic.
Output c. Note that this nonlinear amplification factor is determined by the minimum brightness Y0
By setting the amplification factor to a value higher than the amplification factor at maximum luminance Y and 4, the intermediate luminance signal is expanded.

〔作用〕[Effect]

このような構成を有する本発明にあっては、最小と最大
の輝度の中間輝度を伸長するので、低照度の被写体の輝
度を強調して主被写体を良好に撮影することができ、一
方、最も暗い状態と最も明るい状態はそのままの輝度と
するので黒は黒として白は白としてそのまま残り、黒い
部分が白けたり、比較的高輝度の部分が消滅する等の画
質の低下を抑制することができ、又、輝度信号のみを処
理するのでホワイトバランスのずれの発生が無い。
In the present invention having such a configuration, since the intermediate brightness between the minimum and maximum brightness is extended, it is possible to emphasize the brightness of the subject in low illumination and to take good pictures of the main subject. Since the brightness of the darkest and brightest states remains the same, blacks remain black and whites remain white, which prevents deterioration in image quality such as black areas turning white or relatively high-brightness areas disappearing. Also, since only the luminance signal is processed, there is no white balance shift.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面と共に説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第3図は電子スチル・カメラやVTRに適用した場合の
撮像系統の構成を示す。まず構成を説明すると、第3図
において、11は撮影レンズや絞り及びシャッター等か
ら成る撮像光学系であり、撮像光学系11の後方に例え
ば電荷蓄積型固体撮像素子(CCD)等の撮像素子12
が配置され、撮像素子12の受光面には例えば画素に対
応した赤(R)、青(B)、緑(G)のカラー・フィル
タ13が設けられている。撮像素子12は被写体光学像
を光電変換し、所謂水平走査及び垂直走査読み出しによ
って各画素に発生した映像信号を時系列的に出力し、こ
の映像信号はブリ・アンプ14によって信号処理可能な
振幅レベルまで増幅される。
FIG. 3 shows the configuration of an imaging system when applied to an electronic still camera or a VTR. First, to explain the configuration, in FIG. 3, 11 is an imaging optical system consisting of a photographing lens, an aperture, a shutter, etc. Behind the imaging optical system 11 is an imaging device 12 such as a charge storage solid-state imaging device (CCD).
are arranged, and color filters 13 of, for example, red (R), blue (B), and green (G) corresponding to the pixels are provided on the light receiving surface of the image sensor 12. The image sensor 12 photoelectrically converts the optical image of the object, and outputs video signals generated in each pixel by so-called horizontal scanning and vertical scanning readout in time series, and this video signal has an amplitude level that can be processed by the amplifier 14. is amplified to.

ブリ・アンプ14から出力される時系列の映像信号は色
分離回路15によって、赤(R)、青(B)、緑(G)
の夫々の色信号に分離され、更にこれらの色信号から画
像を再生した場合に最適の白色が得られるようにするた
めに白バランス回路16によって夫々の色信号の振幅レ
ベルが調整される。更に白バランス回路16より出力さ
れた色信号はブラウン管上での階調特性を補正するため
のγ補正回路17を通り、マトリクス回路18によって
輝度信号Y1色差信号R−Y及びB−Yに変換される。
The time-series video signal output from the amplifier 14 is separated into red (R), blue (B), and green (G) by the color separation circuit 15.
Further, when an image is reproduced from these color signals, the amplitude level of each color signal is adjusted by a white balance circuit 16 in order to obtain the optimum white color. Further, the color signal output from the white balance circuit 16 passes through a γ correction circuit 17 for correcting the gradation characteristics on the cathode ray tube, and is converted by the matrix circuit 18 into a luminance signal Y1 and color difference signals R-Y and B-Y. Ru.

19は輝度信号補正回路であり、マトリクス回路18で
形成された輝度信号Yを内部の非線型回路によって新た
な輝度信号Ycを発生する。該非線型回路は第4図の構
成を有しており、輝度信号Yの振幅を所定比率1/に1
で減衰する減衰回路20と、減衰した信号を予め設定さ
れた非線型の増幅率で増幅する非線型増幅回路21と、
非線型増幅回路21より出力される信号を反転する反転
回路22を備えている。尚、非線型増幅回路21は最小
輝度と最大輝度における増幅率kI(減衰率の逆数)で
あり、これらの最小輝度と最大輝度の範囲内での増幅率
はに1より小さい非線型の特性を有する。例えば、非線
型の特性は、周知のガンマ特性におけるT(ガンマ)が
1以上の場合の特性曲線に類似させたり、多種の撮影条
件下で実験的に検出した特性曲線を使用する。
Reference numeral 19 denotes a luminance signal correction circuit, which generates a new luminance signal Yc from the luminance signal Y formed by the matrix circuit 18 using an internal nonlinear circuit. The nonlinear circuit has the configuration shown in FIG. 4, and the amplitude of the luminance signal Y is 1/
an attenuation circuit 20 that attenuates the attenuated signal, and a nonlinear amplification circuit 21 that amplifies the attenuated signal with a preset nonlinear amplification factor.
An inversion circuit 22 that inverts the signal output from the nonlinear amplifier circuit 21 is provided. The nonlinear amplifier circuit 21 has an amplification factor kI (reciprocal of the attenuation factor) at the minimum brightness and maximum brightness, and the amplification factor within the range of the minimum brightness and maximum brightness has a nonlinear characteristic of less than 1. have For example, the nonlinear characteristic may be made similar to a characteristic curve in the case where T (gamma) is 1 or more in the well-known gamma characteristic, or a characteristic curve experimentally detected under various imaging conditions may be used.

更に非線型回路には、加算回路23及び24を備え、加
算回路23は反転回路22より出力される信号Y3と輝
度信号Yを加算して信号Y4を形成し、加算回路24は
信号Y4と輝度信号Yを加算することによって新たな輝
度信号Ycを発生する。
Furthermore, the nonlinear circuit includes adder circuits 23 and 24, the adder circuit 23 adds the signal Y3 output from the inverting circuit 22 and the luminance signal Y to form a signal Y4, and the adder circuit 24 adds the signal Y3 output from the inverting circuit 22 and the luminance signal Y to form a signal Y4. By adding the signal Y, a new luminance signal Yc is generated.

次に、輝度信号補正回路19の作動を第5図に基づいて
説明する。例えば第5図(a)  に示すような輝度信
号Yは減衰回路20によって1/に1に減衰された信号
Y1 となり〔第5図(b)参照〕、信号Y1 は非線
型増幅回路21によって非線型に増幅された信号Y2と
なる〔第5図(C)参照〕。ここで、信号Y2の最小と
最大輝度に相当する振幅は元の輝度信号Yの最小と最大
輝度の振幅に等しいレベルに復元されるが、最小と最大
輝度の間の輝度信号は非線型に減衰され波形となる。
Next, the operation of the luminance signal correction circuit 19 will be explained based on FIG. For example, the luminance signal Y shown in FIG. 5(a) becomes the signal Y1 which is attenuated to 1/1 by the attenuation circuit 20 [see FIG. 5(b)], and the signal Y1 is attenuated by the nonlinear amplifier circuit 21. The signal Y2 is linearly amplified [see FIG. 5(C)]. Here, the amplitude corresponding to the minimum and maximum brightness of the signal Y2 is restored to a level equal to the amplitude of the minimum and maximum brightness of the original brightness signal Y, but the brightness signal between the minimum and maximum brightness is nonlinearly attenuated. waveform.

次に、信号Y2は反転回路22によって極性が反転し、
第5図(d)に示す信号Y3が形成される。
Next, the polarity of the signal Y2 is inverted by the inverting circuit 22,
A signal Y3 shown in FIG. 5(d) is formed.

このように形成された信号Y3と元の輝度信号Yを加算
回路23で加算することによって、第5図(e)に示す
ように、非線型に増幅された部分だけを示す信号Y4を
形成し、更に信号Y、と元の輝度信号Yを加算回路24
で加算することによって第5図(f) に示すような新
たな輝度信号Ycが形成される。即ち、第5図(f)に
示す新たな輝度信号Ycは第2図の特性によって形成さ
れるものに相当する。
By adding the signal Y3 thus formed and the original luminance signal Y in the adder circuit 23, a signal Y4 indicating only the nonlinearly amplified portion is formed, as shown in FIG. 5(e). , further adds the signal Y and the original luminance signal Y to the adding circuit 24
A new luminance signal Yc as shown in FIG. 5(f) is formed by adding the luminance signals Yc. That is, the new luminance signal Yc shown in FIG. 5(f) corresponds to the one formed by the characteristics shown in FIG.

このように、この実施例によれば、マトリクス回路によ
って形成された輝度信号を更に所定の非線型の入出力特
性の輝度信号補正回路で中間輝度を強調し且つ黒の部分
と白の部分の輝度の変化を11制しているので、逆光と
スポット・ライト・シーンの状態において、主被写体と
背景の画質を向上させることが出来る。
As described above, according to this embodiment, the luminance signal formed by the matrix circuit is further enhanced by the luminance signal correction circuit having predetermined non-linear input/output characteristics, and the luminance of the black part and the white part is adjusted. Since it has 11 control over changes in the amount of light, it is possible to improve the image quality of the main subject and background in backlit and spotlight scenes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、マトリクス回路で
形成された輝度信号を、最小と最大の輝度の中間輝度に
ついて伸長する非線型処理を行うので、低輝度の被写体
の輝度を強調して主被写体を良好に撮影することができ
、一方、最も暗い状態と最も明るい状態はそのままの輝
度とするので黒は黒として白は白としてそのまま残り、
黒い部分が白けたり、比較的高輝度の部分が消滅する等
の画質の低下を抑制することができ、又、ホワイトバラ
ンスのずれの発生が無く、鮮明が画像を撮影することが
出来る。
As explained above, according to the present invention, non-linear processing is performed to expand the luminance signal formed by the matrix circuit to an intermediate luminance between the minimum and maximum luminance, so the luminance of a low-luminance object is emphasized and the main The subject can be photographed well, while the darkest and brightest conditions remain the same brightness, so black remains black and white remains white.
It is possible to suppress deterioration in image quality such as black parts turning white and relatively high-luminance parts disappearing, and it is also possible to take clear images without white balance deviation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成説明図; 第2図は本発明の原理説明図; 第3図は本発明の実施例構成図; 第4図は第3図中の輝度補正回路の構成を示すブロック
図; 第5図は輝度補正回路の作動を説明する説明図;第6図
は従来例の構成を示すブロック図;第7図は解決すべき
課題を説明するための説明図である。 図中: 9.18;マトリクス回路 10.19;輝度補正回路 11;撮像光学系 12;CCD 15;色分離回路 16;白バランス回路 17;T補正回路 20;減衰回路 21:非線型増幅回路 22.23;加算回路
Figure 1 is a diagram explaining the configuration of the present invention; Figure 2 is a diagram explaining the principle of the invention; Figure 3 is a diagram showing the configuration of an embodiment of the invention; Figure 4 shows the configuration of the brightness correction circuit in Figure 3. Block diagram; FIG. 5 is an explanatory diagram for explaining the operation of the brightness correction circuit; FIG. 6 is a block diagram for explaining the configuration of a conventional example; FIG. 7 is an explanatory diagram for explaining the problem to be solved. In the figure: 9.18; Matrix circuit 10.19; Brightness correction circuit 11; Imaging optical system 12; CCD 15; Color separation circuit 16; White balance circuit 17; T correction circuit 20; Attenuation circuit 21: Nonlinear amplifier circuit 22 .23; Addition circuit

Claims (1)

【特許請求の範囲】 撮像素子による撮像で得られた色信号から輝度信号を形
成するマトリクス回路を備えた撮像装置において、 予め設定されている最小輝度と最大輝度の範囲中におい
て、該最小輝度の輝度信号入力に対する出力と最大輝度
の輝度信号入力に対する出力を同一の線型特性で発生し
、該最、小輝度と最大輝度の範囲内での輝度信号入力を
上記線型特性よりも増幅率の大きな適宜の非線型特性で
出力することにより上記最小輝度と最大輝度の範囲内の
輝度信号を伸長する輝度補正回路を備え、 前記マトリクス回路で形成された前記輝度信号を上記輝
度補正回路に供給し、非線型に増幅された輝度信号を形
成することを特徴とする撮像装置の画質補正方式。
[Claims] In an imaging device equipped with a matrix circuit that forms a luminance signal from a color signal obtained by imaging with an image sensor, within a preset range of minimum and maximum luminance, the minimum luminance is The output for the luminance signal input and the output for the maximum luminance luminance signal input are generated with the same linear characteristic, and the luminance signal input within the range of the maximum, minimum luminance and maximum luminance is generated with an appropriate amplification factor larger than the above linear characteristic. a brightness correction circuit that expands a brightness signal within the range of the minimum brightness and maximum brightness by outputting it with a non-linear characteristic; the brightness signal formed by the matrix circuit is supplied to the brightness correction circuit; An image quality correction method for an imaging device characterized by forming a linearly amplified luminance signal.
JP63277507A 1988-11-04 1988-11-04 Image quality correction method for imaging device Expired - Fee Related JP2952488B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63277507A JP2952488B2 (en) 1988-11-04 1988-11-04 Image quality correction method for imaging device
US07/496,331 US5068718A (en) 1988-11-04 1990-03-20 Image quality correcting system for use with an imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277507A JP2952488B2 (en) 1988-11-04 1988-11-04 Image quality correction method for imaging device

Publications (2)

Publication Number Publication Date
JPH02125589A true JPH02125589A (en) 1990-05-14
JP2952488B2 JP2952488B2 (en) 1999-09-27

Family

ID=17584558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277507A Expired - Fee Related JP2952488B2 (en) 1988-11-04 1988-11-04 Image quality correction method for imaging device

Country Status (1)

Country Link
JP (1) JP2952488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517333A (en) * 1993-02-24 1996-05-14 Matsushita Electric Industrial Co., Ltd. Gradation correction device and image sensing device therewith for supplying images with good gradation for both front-lit and back-lit objects

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158789A (en) * 1979-05-25 1980-12-10 Bosch Gmbh Robert Method and circuit for correcting contrast of color television signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158789A (en) * 1979-05-25 1980-12-10 Bosch Gmbh Robert Method and circuit for correcting contrast of color television signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517333A (en) * 1993-02-24 1996-05-14 Matsushita Electric Industrial Co., Ltd. Gradation correction device and image sensing device therewith for supplying images with good gradation for both front-lit and back-lit objects

Also Published As

Publication number Publication date
JP2952488B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
JP4404823B2 (en) Imaging device
US5767899A (en) Image pickup device
US5138458A (en) Electronic camera apparatus capable of providing wide dynamic range image signal
KR20080102117A (en) Image signal processing device and image signal processing method
US7667735B2 (en) Image pickup device and image processing method having a mask function
JP7157714B2 (en) Image processing device and its control method
JP2022183218A (en) Image processing device and control method thereof
JP3590242B2 (en) Electronic imaging device
JP3943719B2 (en) Color imaging device
JP3748031B2 (en) Video signal processing apparatus and video signal processing method
JP4335728B2 (en) Image processing apparatus and method
JPH11146410A (en) Video camera
JP2952488B2 (en) Image quality correction method for imaging device
JP2000102022A (en) Digital camera
JP2902656B2 (en) Electronic imaging device
JP2787781B2 (en) Digital electronic still camera
JP2004120511A (en) Imaging apparatus
JP2615163B2 (en) Image quality correction method for imaging device
JP2006109046A (en) Imaging device
JP3463526B2 (en) Electronic still camera
JP3395237B2 (en) Film image reading device
JP3763555B2 (en) Electronic still camera
JPH02140088A (en) Picture quality correction system for image pickup device
JP3310973B2 (en) Exposure control device for image sensor
JP2738985B2 (en) Video signal black level correction circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees