JPH02122217A - Optical position detecting sensor - Google Patents

Optical position detecting sensor

Info

Publication number
JPH02122217A
JPH02122217A JP27581988A JP27581988A JPH02122217A JP H02122217 A JPH02122217 A JP H02122217A JP 27581988 A JP27581988 A JP 27581988A JP 27581988 A JP27581988 A JP 27581988A JP H02122217 A JPH02122217 A JP H02122217A
Authority
JP
Japan
Prior art keywords
magnet
rotating body
magnetic material
moves
external magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27581988A
Other languages
Japanese (ja)
Other versions
JPH0749967B2 (en
Inventor
Mitsuhiro Sato
佐藤 光広
Hiroyuki Kusuyama
樟山 裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27581988A priority Critical patent/JPH0749967B2/en
Publication of JPH02122217A publication Critical patent/JPH02122217A/en
Publication of JPH0749967B2 publication Critical patent/JPH0749967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To prevent the generation of a malfunction even if an external magnet deviates from a detection range and to detect the displacement as non-contact by providing a slide magnetic material and a lock use magnet. CONSTITUTION:A slide magnetic material 4 receives suction force of an external magnet 3, and moves in a slide space 15 together with the magnet 3, when the magnet 3 moves. When the magnet 3 exceeds a detection range and moves on, the magnetic material 4 runs against an end part of the space 15 and stops, and also, locked magnetically to its position by suction force of a lock use magnet 5. When the title sensor is constituted so that a spiral-like magnetic material 2 can be sucked magnetically and constrained by this locked magnetic material 4, it receives restraint by the magnetic material 4, and a free rotation of a rotating body 1 is not generated irrespective of existence of the magnet 3. Also, when the magnet 3 is reset to its original state and returns into the detection range, the magnetic material 4 receives suction force of the magnet 3 again and moves together with the magnet 3, and a suction position of the magnetic material 2 also moves, and the rotating body 1 rotates thereby.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検出体の位置変位を非接触的に検出可能な
光学的位置検出センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical position detection sensor that can detect the positional displacement of a detected object in a non-contact manner.

[従来の技術] 位置変位を検出するなめのセンサには種々な形状構成の
ものが提案されているが、光学的検出センサは機械的あ
るいは電気的接点部分を有しておらす、被検出体とセン
サの間を非接触状態としセンサを密封構成することか可
能であり、摩耗やスパーク発生など誤動作や事故の原因
となる構成部分かないことから、精密機械や外部雰囲気
の悪い施設あるいは火気を嫌う施設などにおいてとくに
有用であり、注目されるようになった。
[Prior Art] Various shapes and configurations have been proposed for linear sensors that detect positional displacement, but optical detection sensors have mechanical or electrical contact portions and are designed to detect objects to be detected. It is possible to configure the sensor in a sealed manner with no contact between the sensor and the sensor, and there are no component parts that can cause malfunctions or accidents such as wear or spark generation, so it is not suitable for precision machinery, facilities with poor external atmosphere, or fire. It is particularly useful in facilities, etc., and has come to attract attention.

第5図に示すものは、そのような光学的位置検出センサ
の従来の構成例の−を示ず説明断面図である。
What is shown in FIG. 5 is an explanatory cross-sectional view of a conventional configuration example of such an optical position detection sensor, with the - not shown.

図において、1はボディ9−にベアリング12をもって
回転軸11か取付けられている非磁性材料よりなる回転
体であり、当該回転体1の外周には磁石又は強磁性体よ
りなるスパイラル状の磁性体層2か形成されている。一
方、ボデイリーの外側には被検出体(図示され゛ていな
い)に固定された外部磁石3かあり、図中の卵重I−を
該外部磁石3か3−へと前進しあるいは後退し得る構成
を有する。いま、外部磁石3か第5図に示す位置にある
とき、スパイラル状磁性体2は当該外部磁石3にもっと
も近い部分が磁力により強く引き付けられて、回転体1
は第5図に示した位置で停止状態にある。外部磁石3か
被検出体の移動に伴い3側に移動すると、それに伴い外
部磁石3によってスパイラル状磁性体2の引き付けられ
る位置が変り、それに応じて回転体1は回転する。
In the figure, reference numeral 1 denotes a rotating body made of a non-magnetic material, in which a rotating shaft 11 is attached to a body 9 with a bearing 12, and a spiral magnetic body made of a magnet or ferromagnetic material is attached to the outer periphery of the rotating body 1. Layer 2 is formed. On the other hand, there is an external magnet 3 fixed to an object to be detected (not shown) outside the body, and the egg weight I- in the figure can be moved forward or backward toward the external magnet 3 or 3-. It has a configuration. Now, when the external magnet 3 is in the position shown in FIG. 5, the part of the spiral magnetic body 2 closest to the external magnet 3 is strongly attracted by the magnetic force, and
is at rest at the position shown in FIG. When the external magnet 3 moves toward the 3 side with the movement of the object to be detected, the position to which the spiral magnetic body 2 is attracted by the external magnet 3 changes accordingly, and the rotating body 1 rotates accordingly.

本センサには、別途支持ケース3oにより支持された一
対の光ファイバ20.20− (図では一方のみか示さ
れている)が配設されており、コネクタ21により成端
部22か接続され、先端部のコリメートレンズ23より
光か出射され、反射鏡8で反射した光がもう一方のコリ
メートレンズ23−(図示されていない)を介して入射
されるように構成されている。(具体的には第6図参照
)反射鏡8は回転体1の定められた位置に設置されてお
り、前述のように外部磁石3が移動しそれに伴い回転体
1か回転せしめられると、反射鏡86回転移動し、それ
まて反射鏡8で反射されて受光側光ファイバに入射して
いた反射光かオフとなる。
This sensor is provided with a pair of optical fibers 20, 20- (only one of which is shown in the figure) supported by a separate support case 3o, and connected to a termination part 22 by a connector 21. It is configured such that light is emitted from the collimating lens 23 at the tip, and the light reflected by the reflecting mirror 8 is incident through the other collimating lens 23- (not shown). (See Fig. 6 for details) The reflecting mirror 8 is installed at a fixed position on the rotating body 1, and when the external magnet 3 moves and the rotating body 1 is rotated accordingly, the reflecting mirror 8 is reflected. The mirror 86 rotates, and the reflected light that was reflected by the reflecting mirror 8 and entered the light-receiving optical fiber is turned off.

この反射光のオフを検知することにより、被検出体に位
置変位か生じたことを検出するものである。
By detecting that the reflected light is turned off, it is detected that a positional displacement has occurred in the object to be detected.

[発明か解決しようとする課題] 上記のように構成されるセンサにおいて、被検出体の移
動範囲か前記検出範囲り内であれば問題はないか、この
しを越えて移動した場合には、外部磁石3もそれに応じ
て移動し、スパイラル状磁性体2を引き付けることによ
り回転体1の回転を拘束していたものがなくなる。この
ため、センザ部に振動や衝撃か加わると回転体1か騎手
に回転し、任意に前記した光のオン−オフを発信しなり
して誤動作するおそれがある。
[Problem to be solved by the invention] In the sensor configured as described above, is there no problem if the object to be detected is within the movement range or the detection range, or if the object moves beyond this range? The external magnet 3 also moves accordingly and attracts the spiral magnetic body 2, thereby eliminating the constraint on the rotation of the rotating body 1. Therefore, if vibration or shock is applied to the sensor section, the rotating body 1 or the jockey may rotate, causing the above-mentioned light to turn on and off arbitrarily, causing a malfunction.

さらに、上記従来例においては、第6図に示すように光
の反射面を一点で構成しており、この反射面における入
射角に合致させるなめに、光ファイバ20,20−に図
に示すような角度を持たせ、その角度に強制的に保持さ
せておく必要がある。
Furthermore, in the above conventional example, the light reflecting surface is configured at one point as shown in FIG. 6, and in order to match the incident angle on this reflecting surface, the optical fibers 20, 20- are It is necessary to set a certain angle and force it to be held at that angle.

さらに、光ファイバは外力に対する強度が不十分であり
、上記のように保持さぜたその周囲をさらに保護ゲース
31で2重に保護してやる必要かあり、寸法的にセンサ
本体部分よりこの光フアイバ保持部の方が大きくなって
しまって実用上好ましくないという問題もあった。
Furthermore, the strength of the optical fiber against external forces is insufficient, so it is necessary to further protect the area around the optical fiber held in the above manner with a protective cage 31.Dimensionally, the optical fiber held in the sensor body is There is also the problem that the portion becomes larger, which is not practical.

本発明の目的は、上記したような従来技術の問題点を解
消し、外部磁石か検出範囲を超えて移動してもそれか戻
ってくるまでの間口転体か勝手に動かないようロックし
ておくことか可能であり、また全体の形状を小型化させ
得る光学的位置検出センサを提供しようとするものであ
る。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to lock the external magnet so that it does not move freely even if it moves beyond the detection range or until it returns. It is an object of the present invention to provide an optical position detection sensor that can be placed in the same position as the conventional one, and whose overall size can be reduced in size.

[課題を解決するための手段] 本発明は、外部磁石とスパイラル状磁性体の間に前記外
部磁石と平行して所定範囲動き得るスライド磁性体を配
置し、当該スライド磁性体の移動範囲の両サイドに該ス
ライド磁性体を磁気的に17ツクさせ得るロック用磁石
を配置すると共に、回転体にその軸方向に平行な複数の
光路を設()、光路の片側に光ファイバの成端部をそし
て反対側に反射鏡を設け、一の光路に出射光を導通させ
反射鏡により反射さぜな光を他の光路を介して受光端に
受光せしめ得るように構成したものである。
[Means for Solving the Problems] The present invention provides a sliding magnetic body that can move within a predetermined range parallel to the external magnet between an external magnet and a spiral magnetic body. A locking magnet capable of magnetically locking the sliding magnetic body is disposed on the side, and a plurality of optical paths parallel to the axial direction of the rotating body are provided (), and an optical fiber termination part is provided on one side of the optical path. A reflecting mirror is provided on the opposite side, and the emitted light is passed through one optical path, and the light reflected by the reflecting mirror is received at the light receiving end via the other optical path.

[作用] 外部磁石が移動するにつれ、スライド磁性体が移動する
から、該スライド磁性体とスパイラル状磁性体との間に
磁気的吸引作用を形成させておC−1ば、外部磁石か検
出範囲を超えて移動してしまっでも、スライド磁性体か
回転体を拘束しつづり、回転体の自由回転は阻止される
。スライド磁性体はその位置でロック用磁石によりロッ
クされ、自由移動することがない。tな、回転体に平行
な光路を形成ずれは、光ファイバを平行に配置でき、支
持構造か簡略化てき、全体に小型化させることかできる
[Function] As the external magnet moves, the slide magnetic body moves, so a magnetic attraction effect is formed between the slide magnetic body and the spiral magnetic body. Even if it moves beyond this point, the slide magnetic body continues to restrain the rotating body, and the free rotation of the rotating body is prevented. The slide magnetic body is locked at that position by a locking magnet and does not move freely. The optical fibers can be arranged parallel to each other, the support structure can be simplified, and the overall size can be reduced.

[実施例] 以下に、本発明について実施例図面を参照し説明する6 第1図は、本発明に係るセンサ本体部の具体的構成を示
す断面図であり、第2図は第1図のAA断面図である。
[Example] The present invention will be described below with reference to the drawings of the embodiment 6. Figure 1 is a cross-sectional view showing a specific configuration of the sensor main body according to the present invention, and Figure 2 is a cross-sectional view showing the specific configuration of the sensor body according to the present invention. It is an AA sectional view.

1は例えばアルミのような非磁性でかつ軽量な材料より
なる回転体であり、その回転軸11がベアリング12を
介しボディ9に回動自在に支持される。2は、当該回転
体1の外周にスパイラル状に巻付4fられあるいは埋込
まれた磁石あるいは強磁性体よりなる磁性体層であり、
3か前述した外部磁石である。
Reference numeral 1 denotes a rotating body made of a non-magnetic and lightweight material such as aluminum, and its rotating shaft 11 is rotatably supported by the body 9 via a bearing 12. 2 is a magnetic layer made of a magnet or ferromagnetic material that is spirally wound 4f or embedded in the outer periphery of the rotating body 1;
3 is the external magnet mentioned above.

本発明にわいては、回転体1を収納している非磁性体よ
りなるケース10の外側に同じく非磁性体よりなるカバ
ー14が取イイけられ、前記外部磁石3の検出範囲とほ
ぼ等しいスライド空間15か外部磁石3の移動方向に平
行に形成されて、当該スライド空間15内を自由に滑動
可能なスライド磁性体4が配置される一方、スライド空
間15の両端部にはロック用磁石5.5かインシュレー
タ16を介し設置される。
According to the present invention, a cover 14 also made of a non-magnetic material is provided on the outside of a case 10 made of a non-magnetic material that houses the rotary body 1, and the cover 14 is also made of a non-magnetic material, and the slider has a detection range that is approximately equal to the detection range of the external magnet 3. The space 15 is formed parallel to the moving direction of the external magnet 3, and a slide magnetic body 4 that can freely slide within the slide space 15 is disposed, while locking magnets 5. 5 is installed via an insulator 16.

上記のような磁石あるいは磁性体の配置において、基本
的には外部磁石3の磁気的吸引力がスパイラル状磁性体
2に作用し、先の従来例おいて説明したように、外部磁
石3の移動に応じ回転体1を回転せしめ得る必要かある
。従って、かかる作用を発揮できる構成となるように、
スパイラル状磁性体2を強磁性体で構成するか磁石とす
るか、あるいはスライド磁性体4を強磁性体で構成する
か磁石とするか、それぞれ適宜組合せ選択することか必
要である。
In the arrangement of the magnets or magnetic bodies as described above, basically, the magnetic attraction force of the external magnet 3 acts on the spiral magnetic body 2, and as explained in the previous conventional example, the movement of the external magnet 3 is caused. Is it necessary to be able to rotate the rotating body 1 depending on the situation? Therefore, in order to have a configuration that can exert such an effect,
It is necessary to select an appropriate combination of whether the spiral magnetic body 2 is made of a ferromagnetic material or a magnet, or whether the slide magnetic body 4 is made of a ferromagnetic material or a magnet.

スライド磁性体4は、外部磁石3の吸引力を受C−1、
当該外部磁石3か移動ずれは外部磁石3と共にスライド
空間15内を移動する。外部磁石3か検出範囲を越えて
移動して行りば、スライド磁性体4はスライド空間15
の端部に突き当り停止すると共に、ロック用磁石5の吸
引力によりその位置に磁気的にロックされる。このロッ
クされた磁性体4によりスパイラル状磁性体2を磁気的
に吸引し拘束し得るよう構成しておけは、当該スライド
磁性体4による拘束力を受け、外部磁石3の有無に関係
なく回転体1の自由回転は生じない。外部磁石3か元に
復帰し検出範囲内に戻ってくれば、スライド磁性体4は
再び外部磁石3の吸引力を受り外部磁石3と共に移動す
るようになり、スパイラル状磁性体2の吸引位置も移動
し、それにより先に説明したように回転体1が回転する
The slide magnetic body 4 receives the attractive force of the external magnet 3 C-1,
The displacement of the external magnet 3 moves within the slide space 15 together with the external magnet 3. When the external magnet 3 moves beyond the detection range, the slide magnetic body 4 moves into the slide space 15.
It stops when it hits the end of the locking magnet 5, and is magnetically locked in that position by the attractive force of the locking magnet 5. If the locked magnetic body 4 is configured to magnetically attract and restrain the spiral magnetic body 2, the rotating body will receive the restraining force of the sliding magnetic body 4 regardless of the presence or absence of the external magnet 3. 1 free rotation does not occur. When the external magnet 3 returns to its original state and returns within the detection range, the slide magnetic body 4 receives the attraction force of the external magnet 3 again and begins to move together with the external magnet 3, and the attraction position of the spiral magnetic body 2 is is also moved, thereby causing the rotating body 1 to rotate as explained above.

故に、スパイラル状磁性体2、スライド磁性体4、ロッ
ク用磁石5のそれぞれの構成を強磁性体とするか磁石と
するかの選択は、上記の動作が適切に行なわれる組合せ
となるような選択でなければならない。スライド磁性体
4を磁石として選択した場合には、ロック用磁石5を強
磁性体により構成しても差支えないことは勿論であり、
ロック用磁石なる表現の中にはかかる態様を含むもので
ある。
Therefore, the selection of whether the spiral magnetic body 2, the sliding magnetic body 4, and the locking magnet 5 should be made of ferromagnetic material or magnets should be made so that the above-mentioned operations can be performed appropriately. Must. Of course, if the slide magnetic body 4 is selected as the magnet, the locking magnet 5 may be composed of a ferromagnetic body.
The expression "locking magnet" includes such aspects.

一方、本実施例においては、回転体1は第2図に示すう
にコア1aと縁体1bとにより構成され、コア1aには
一対の光路7,7−が回転体1の軸に平行に形成されて
おり、当該光路7,7 の−端側のボディ9には光フア
イバ成端部(図示は省略されている)を取付ける取付部
6か、そして他端側には反射鏡取付は用フレーム13に
反射鏡8゜8−が設置される。
On the other hand, in this embodiment, the rotating body 1 is composed of a core 1a and a rim 1b as shown in FIG. 2, and a pair of optical paths 7, 7- are formed in the core 1a parallel to the axis of the rotating body 1. The body 9 at the negative end of the optical paths 7, 7 has a mounting part 6 for attaching an optical fiber termination (not shown), and the other end has a frame for mounting a reflector. A reflecting mirror 8° 8- is installed at 13.

光フアイバ成端部と反射鏡との配置関係は、回転体1が
特定の位置にあるときにそれぞれを光路7.7一の両側
で対向せしめ得る配置関係に設定され、一方の光フアイ
バ成端部よりの出射光40か一の光路7を通過して、第
3図(a>に示すように反射鏡8で反射し、反射鏡8−
で再反射した反射光41は光路7゛を通過して光ファイ
バの受光側成端部に入光し得る構成となっている。第3
図(b)は反射鏡8,8一の取付は状況を正面側よりみ
た正面見取図である。
The positional relationship between the optical fiber termination part and the reflecting mirror is set such that when the rotating body 1 is at a specific position, they can face each other on both sides of the optical path 7. The emitted light 40 from the part passes through the optical path 7, is reflected by the reflecting mirror 8 as shown in FIG.
The reflected light 41 re-reflected by the optical fiber is configured to be able to pass through the optical path 7' and enter the receiving end of the optical fiber. Third
Figure (b) is a front sketch showing how the reflecting mirrors 8 and 8 are mounted from the front side.

本発明に係るセンサは、上記のように構成されており、
外部磁石3が特定の位置例えば第1図の右端側にあると
き、その位置に対応してスパイラル状磁性体2の特定位
置が吸引され、回転体1の回転が特定位置で拘束停止せ
しめられる。いま、その状況下で前記光路7,7−内に
おける入・反射光の導通が行なわれる配置関係にあると
仮定する。被検出体か移動し外部磁石3がそれに伴って
移動ずれは、スパイラル状磁性体2の吸引位置が変り、
それに応じて回転体1か回転して、それまでの光路7,
7−内の光の導通か遮断され、それまでオンであった入
射光はオフになる。これにより被検出体に位置変位の生
じたことを検知することができる。
The sensor according to the present invention is configured as described above,
When the external magnet 3 is located at a specific position, for example, on the right end side in FIG. 1, the spiral magnetic body 2 is attracted to a specific position corresponding to that position, and the rotation of the rotating body 1 is restrained and stopped at the specific position. Now, it is assumed that the arrangement is such that the incident and reflected light is conducted within the optical paths 7, 7- under such circumstances. When the detected object moves and the external magnet 3 moves accordingly, the attraction position of the spiral magnetic body 2 changes,
The rotating body 1 rotates accordingly, and the optical path 7,
The conduction of light within 7- is cut off, and the incident light that was on until then is turned off. This makes it possible to detect the occurrence of positional displacement in the object to be detected.

光路については、上記のように2本に限定されるもので
はなく、任意のn本に形成してもよい。
The number of optical paths is not limited to two as described above, and any number of n optical paths may be formed.

第4図は、光路71〜76までの6本の光路を60度ご
とに配置したものである。71が出射光の通路となり7
2が反射光の通路となる状態でスタートし、回転体1か
60度回転すればつぎに72が出射通路で73か反射通
路となる。以下60度回転ごとに出・反射の通路がIl
l送りに変るから、これをパルス数で表示してやれば、
外部磁石3すなわち被検出体のより細かな移動情報を入
手することができる。
In FIG. 4, six optical paths 71 to 76 are arranged at intervals of 60 degrees. 71 becomes the path of the emitted light 7
2 becomes a reflected light path, and when the rotating body 1 rotates 60 degrees, 72 becomes an emission path and 73 becomes a reflection path. Below, for each 60 degree rotation, the exit/reflection path is Il.
Since it changes to l feed, if you display this as the number of pulses,
More detailed movement information of the external magnet 3, that is, the detected object can be obtained.

具体例として、上記における回転体上のスパイラル状磁
性体の巻付りピッチが30rnmであったとし、パルス
数か「2]であったとする。回転体は60度x2=12
0度回転したことになり、120/360ずなわち1/
3回転となって、30 x 1 / 3 = 10すな
わち、被検出体は10 +nII+移動したことが検出
される。
As a specific example, assume that the winding pitch of the spiral magnetic material on the rotating body is 30 nm, and the number of pulses is "2".The rotating body is 60 degrees x 2 = 12
This means that it has been rotated by 0 degrees, which is 120/360, or 1/
After three rotations, it is detected that the object to be detected has moved by 10 +nII+.

同様にして、光路数を増やし巻付は磁性体のピッチを適
当に調整してやることで、検出距離および精度の向上を
図ることかできるものである。
Similarly, the detection distance and accuracy can be improved by increasing the number of optical paths and suitably adjusting the pitch of the magnetic material.

本発明においては、外部磁石の移動が大きくても回転体
が自由に回転してしまうおそれのないことは先に説明し
た通りであるか、出・反射光の光路を平行とし、反射鏡
を光路の反対側に設置したことにより、光フアイバ成端
部に角度をもたぜる必要かなく、全体的にコンパクトに
取tt 4iることかできる結果、センサ全体の形状を
従来より大rlに小型化し得るもう一つの特徴を有する
In the present invention, there is no risk of the rotating body rotating freely even if the movement of the external magnet is large, as described above, or the optical paths of the emitted and reflected light are parallel, and the reflecting mirror is placed in the optical path. By installing it on the opposite side of the sensor, there is no need to add an angle to the optical fiber termination part, and the overall size can be made compact.As a result, the overall shape of the sensor can be made smaller than before. It has another characteristic that can be transformed into

[発明の効果] 以上の通り、本発明に係る位置検出センサによれはつぎ
のようなずぐれた効果を発揮させることかできる。
[Effects of the Invention] As described above, the position detection sensor according to the present invention can exhibit the following excellent effects.

(1)スライド磁性体とロック用磁石の配置により外部
磁石か検出範囲を逸脱しても、誤動作の生ずるおそれが
ない。
(1) Due to the arrangement of the slide magnetic body and the locking magnet, there is no risk of malfunction even if the external magnet deviates from the detection range.

(2)非接触的に変位検出ができ、メカニカルな摩耗な
ど誤動作につながる部分が存在しないから、故障しに<
<、大巾に信頼性を高め得る。
(2) Displacement can be detected non-contact, and there are no parts that can cause malfunctions such as mechanical wear, so there is no chance of failure.
<, reliability can be greatly improved.

(3)光による方法である上光通路部を密封できるので
、外部ノイズの入る心配かなく、電気接点のように火花
を発することもないから防爆上からみてきわめて安全で
ある。
(3) Since the optical path can be sealed using the optical method, there is no need to worry about external noise entering, and unlike electrical contacts, sparks are not emitted, making it extremely safe from an explosion-proof perspective.

(4)1台のセンサにより数点の位置検出をすることも
可能である。
(4) It is also possible to detect the positions of several points with one sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例を示す断面図、第2図は1
図のA−A断面図、第3図(a)は反射鏡の配置状況を
示す説明図、同図(b)はその正面見取図、第4図は光
路の別な形成例を示す説明図、第5図は従来例を示す断
面図、第6図は従来例における光の反射部分の構成を示
す説明図である。 7゜ 1:回転体、 2:スパイラル状磁性体層、 3:外部磁石、 4ニスライド磁性体、 5ごロック用磁石、 71〜76 :光路、 8.8−:反射鏡。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG.
3(a) is an explanatory diagram showing the arrangement of the reflecting mirror, FIG. 3(b) is a front view thereof, and FIG. 4 is an explanatory diagram showing another example of the formation of the optical path. FIG. 5 is a sectional view showing a conventional example, and FIG. 6 is an explanatory diagram showing the configuration of a light reflecting portion in the conventional example. 7゜1: Rotating body, 2: Spiral magnetic layer, 3: External magnet, 4 Nislide magnetic body, 5 Locking magnet, 71-76: Optical path, 8.8-: Reflector.

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性材料よりなる円柱状回転体の外周に強磁性
体あるいは磁石よりなるスパイラル状の磁性体層を形成
し、被検出体側に設けられた外部磁石が前記回転体の軸
方向に移動することにより前記スパイラル状磁性体層を
引き付け、それにより回転体に回転を生じさせてその回
転を光学的通路のオン−オフに利用し被検出体の位置変
位を光学的に検出する位置検出センサにおいて、前記ス
パイラル状磁性体と外部磁石との間に外部磁石と平行に
動き得る磁石あるいは強磁性体よりなるスライド磁性体
を設置し、当該スライド磁性体のスライド域の両側に該
スライド磁性体を磁気的にロック可能なロック用磁石を
配置する一方、回転体には当該回転体の軸方向に平行な
複数の光路を形成し、光路の一方側には光ファイバの発
光および受光端を、これら発・受光端に相対する光路の
反対側には一の光路よりの出射光を他の光路に具合よく
反射させ得る反射鏡が設けられてなる光学的位置検出セ
ンサ。
(1) A spiral magnetic layer made of a ferromagnetic material or a magnet is formed on the outer periphery of a cylindrical rotating body made of a non-magnetic material, and an external magnet provided on the side of the detected object moves in the axial direction of the rotating body. A position detection sensor that attracts the spiral magnetic layer, thereby causing a rotating body to rotate, and uses the rotation to turn on and off an optical path to optically detect a positional displacement of a detected object. A sliding magnetic body made of a magnet or ferromagnetic material that can move in parallel with the external magnet is installed between the spiral magnetic body and the external magnet, and the sliding magnetic body is placed on both sides of the sliding area of the sliding magnetic body. While a magnetically lockable locking magnet is arranged, a plurality of optical paths are formed in the rotating body parallel to the axial direction of the rotating body, and the light emitting and light receiving ends of the optical fiber are connected to one side of the optical path. An optical position detection sensor that is provided with a reflecting mirror on the opposite side of the optical path facing the light emitting/receiving end, which can appropriately reflect the light emitted from one optical path to the other optical path.
JP27581988A 1988-10-31 1988-10-31 Optical position sensor Expired - Lifetime JPH0749967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27581988A JPH0749967B2 (en) 1988-10-31 1988-10-31 Optical position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27581988A JPH0749967B2 (en) 1988-10-31 1988-10-31 Optical position sensor

Publications (2)

Publication Number Publication Date
JPH02122217A true JPH02122217A (en) 1990-05-09
JPH0749967B2 JPH0749967B2 (en) 1995-05-31

Family

ID=17560865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27581988A Expired - Lifetime JPH0749967B2 (en) 1988-10-31 1988-10-31 Optical position sensor

Country Status (1)

Country Link
JP (1) JPH0749967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838009B2 (en) 2007-02-19 2014-09-16 Konica Minolta, Inc. Roller mechanism with support member and image forming apparatus having the roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838009B2 (en) 2007-02-19 2014-09-16 Konica Minolta, Inc. Roller mechanism with support member and image forming apparatus having the roller

Also Published As

Publication number Publication date
JPH0749967B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JP4741798B2 (en) Gear mechanism and rotary encoder provided with the gear mechanism
EP0789909A1 (en) Retroreflective marker for data storage cartridge
EP3211379A1 (en) An angular position detector
JPH02122217A (en) Optical position detecting sensor
CN114543846A (en) Encoder unit, drive device, and robot
CN117092779A (en) Large-caliber quick-reflecting mirror with six-degree-of-freedom locking function and control method thereof
US6384990B1 (en) Two position optical element actuator device
US6220769B1 (en) Rotation detection mechanism and an apparatus provided with same
JP2841612B2 (en) Displacement detection sensor
JP2014025751A (en) Encoder, method of producing scale for encoder, drive device and robot device
JP2019066521A (en) Rotary drive device
JPH0316110Y2 (en)
JPH0516487Y2 (en)
JPH048369Y2 (en)
JP3308041B2 (en) Stage device stroke end detection device
JPH01235814A (en) Displacement detecting sensor
JP2856026B2 (en) Optical movement detector
JPH083572B2 (en) Lens position detector
CN110857866A (en) Encoder for encoding a video signal
JPH0420717B2 (en)
JPS6440916A (en) Magnetic actuator as photoelectric switch
JP2014074639A (en) Encoder, drive device and robotic device
JPH0285712A (en) Optical displacement sensor
JPH0739055Y2 (en) Optical head position detection mechanism
JPS63201523A (en) Optical encoder