JPH02120059A - Manufacture of finely perforated wiring board - Google Patents

Manufacture of finely perforated wiring board

Info

Publication number
JPH02120059A
JPH02120059A JP27300188A JP27300188A JPH02120059A JP H02120059 A JPH02120059 A JP H02120059A JP 27300188 A JP27300188 A JP 27300188A JP 27300188 A JP27300188 A JP 27300188A JP H02120059 A JPH02120059 A JP H02120059A
Authority
JP
Japan
Prior art keywords
insulating substrate
conductor
diameter
wiring board
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27300188A
Other languages
Japanese (ja)
Other versions
JP2744445B2 (en
Inventor
Takashi Katono
上遠野 隆
Susumu Miyabe
宮部 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP27300188A priority Critical patent/JP2744445B2/en
Publication of JPH02120059A publication Critical patent/JPH02120059A/en
Application granted granted Critical
Publication of JP2744445B2 publication Critical patent/JP2744445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps

Abstract

PURPOSE:To manufacture a finely perforated wiring board having fine holes of high roundness by a method wherein a first and a second conductor layers having a great number of first fine holes are formed on a first and a second carrier substrates, a second fine hole having a diameter larger than a diameter of the first fine hole is formed on an insulating substrate, and the insulating substrate is stuck to the conductor layer by making the first fine hole correspond to the second fine hole. CONSTITUTION:A metal sheet of, for instance, aluminium or the like is taken as a carrier substrate 7, and a fine hole 9 of a size of diameter B and a conductor layer 81 or 82 are formed by photofabrication. A half hardened film-like adhesive layer 11 is laminated on an insulating substrate 10, and perforation is performed to the insulating substrate 10 and an adhesive complex, i.e. an insulating layer 12. When a hole diameter of the conductor layers 81, 82 are taken as B and a minimum conductor width around the fine hole 9 is taken as C, a hole diameter D of a fine hole 13 provided to the insulating layer 12 exists in a relation of B<=D<=C. Alignment is performed by an optical method by using an alignment mark, and respective fine holes of the conductor layers 81, 82 and the insulating substrate 10 are made to correspond to each other. Tentative bonding is performed and pressure heating is performed. Etching removal of the carrier substrate 7 is performed to manufacture a finely perforated wiring board.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プリンタのヘッド部品に用いられる微細多孔
配線板の製造方法に関し、特に、微細孔に発生する電界
により荷電粒子あるいは荷電分子の運動を制御する機能
を有する微細多孔配線板の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a microporous wiring board used in a printer head component, and in particular, the present invention relates to a method for manufacturing a microporous wiring board used in printer head components, and in particular, to a method for manufacturing a microporous wiring board used in printer head components. The present invention relates to a method for manufacturing a microporous wiring board that has a function of controlling.

[従来の技術] 従来の微細多孔配線板の一例を第2図および第3図に示
す。第2図(A)は微細多孔配線板の表側、第2図(C
)は微細多孔配線板の裏側を示す。
[Prior Art] An example of a conventional microporous wiring board is shown in FIGS. 2 and 3. Figure 2 (A) is the front side of the microporous wiring board, Figure 2 (C)
) shows the back side of the microporous wiring board.

第2図([1)および第2図(D) は、それぞれ第2
図(八)および第2図(C)における微細孔1の付近の
拡大図である。第3図は第2図(B)および(D)のX
−X’ 線に沿った断面を模式的に示す。
Figure 2 ([1) and Figure 2 (D) are respectively
It is an enlarged view of the vicinity of the micropore 1 in Figure (8) and Figure 2 (C). Figure 3 shows the X in Figure 2 (B) and (D).
A cross section along the -X' line is schematically shown.

絶縁基板3の両面には導体層21および22によって導
体配線がマトリックス状に形成されている。
On both surfaces of the insulating substrate 3, conductor wiring is formed in a matrix by conductor layers 21 and 22.

導体層21および22には微細孔1の列が複数列形成さ
れている。導体層21および22に電圧が印加されるこ
とにより、微細孔1内で電界が発生する。
A plurality of rows of micropores 1 are formed in the conductor layers 21 and 22. By applying a voltage to the conductor layers 21 and 22, an electric field is generated within the micropore 1.

この電界をヘッド部品の制御に利用するプリント方式は
、一方式に限定されるものではない。
The printing method that uses this electric field to control head components is not limited to one method.

例をあげると、特開昭53−93831号公報および特
開昭58−104769号公報に記載されているように
、帯電したトナー等のような粒子あるいはイオン化した
気体分子等が微細孔1を通過する運動の制御が上述の電
界によって行われ、記録ドラムあるいは記録紙にトナー
などのような記録媒体が供給されるという現象を利用し
てプリントが行われる。荷電粒子あるいは荷電分子の発
生源は微細多孔配線板とは別個に設定する場合と、上述
の電界を利用する場合がある。このようなプリンタにお
いて高密度記録が行われるためには、微細孔1の配列ピ
ッチおよび孔の径を小さくする必要がある。例えば、孔
径は0.2mmといった寸法である。
For example, as described in JP-A-53-93831 and JP-A-58-104769, particles such as charged toner or ionized gas molecules pass through the micropores 1. Printing is performed by utilizing the phenomenon that the movement is controlled by the above-mentioned electric field, and a recording medium such as toner is supplied to the recording drum or recording paper. The source of charged particles or charged molecules may be set separately from the microporous wiring board, or may use the above-mentioned electric field. In order to perform high-density recording in such a printer, it is necessary to reduce the arrangement pitch of the fine holes 1 and the diameter of the holes. For example, the hole diameter is 0.2 mm.

この微細多孔1を作製するための従来の製造方法は、 (1)絶縁基板3の両側に金属箔を接着し、次いでフォ
トエッヂフグ法により導体21および22を形成する。
The conventional manufacturing method for producing the microporous 1 is as follows: (1) Metal foil is bonded to both sides of the insulating substrate 3, and then the conductors 21 and 22 are formed by the photo-edge blow method.

(2)次いで、ドリルまたはパンチングにより微細孔1
を形成する。
(2) Next, drill or punch the micro holes 1.
form.

というように、導体層および絶縁層の孔あけを機械的に
行うという方法であった。
In this way, the holes in the conductor layer and insulating layer were mechanically formed.

[発明が解決しようとする課題] 上述のような製造方法により作製された微細多孔配線板
の微細孔1の実際の断面図は第4図に示すものとなる。
[Problems to be Solved by the Invention] An actual cross-sectional view of the micropores 1 of the microporous wiring board produced by the manufacturing method described above is shown in FIG.

すなわち、機械加工時に導体層21および22および接
着剤層5のパリ4や、絶縁基板3のパリあるいは凹凸6
が生じる。このため、絶縁層部に形成された微細孔最小
直径A′が、導体層部の孔径Aよりも小さくなることが
起こるので、荷電粒子あるいは荷電分子の通過運動が妨
げられ、また荷電分子を発生する場合にはその発生が妨
げられる。またこれらのパリは孔の真円度および精度を
低下させる。
That is, during machining, the edges 4 of the conductor layers 21 and 22 and the adhesive layer 5, and the edges or irregularities 6 of the insulating substrate 3 are removed.
occurs. For this reason, the minimum diameter A' of the micropores formed in the insulating layer becomes smaller than the pore diameter A of the conductor layer, which impedes the movement of charged particles or charged molecules, and also generates charged molecules. If so, its occurrence is prevented. These holes also reduce the roundness and precision of the hole.

以上の理由により、従来の微細多孔配線板をプリンタの
ヘッド部品に用いたときは印字の質が低下するという問
題があった。
For the above reasons, when the conventional microporous wiring board was used as a head component of a printer, there was a problem that the quality of printing deteriorated.

本発明の目的は上述の問題点を解決し、真円度の高い微
細孔を有する微細多孔配線板の製造方法を1是イ共する
ことにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a microporous wiring board having micropores with high roundness.

[課題を解決するための手段] このような目的を達成するために、本発明は、所定の導
体パターン上の所定位置に多数の第1微細孔を有する第
1および第2導体層をフォトファブリケーションにより
第1および第2担体基板上に形成する工程と、第1微細
孔の直径以上の直径をもつ多数の第2微細孔を絶縁基板
を貫通して形成する工程と、絶縁基板の両面を前記第1
および第2の導体層で挟み、第1および第2微細孔を対
応させて、絶縁基板と導体層とを接着させる工程とを含
むことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention fabricates first and second conductor layers having a large number of first micropores at predetermined positions on a predetermined conductor pattern. a step of forming a large number of second micropores having a diameter larger than the diameter of the first micropores by penetrating the insulating substrate on the first and second carrier substrates, and a step of forming both surfaces of the insulating substrate by Said first
and a step of bonding the insulating substrate and the conductor layer by sandwiching them between the second conductor layers and making the first and second micropores correspond to each other.

第1図(八)に示すように導体層81および82はフォ
トファブリケーションにより形成されるが、取り扱い等
の理由により担体基板7を使用することが好ましい。
As shown in FIG. 1(8), the conductor layers 81 and 82 are formed by photofabrication, but for reasons such as handling, it is preferable to use the carrier substrate 7.

ここでフォトファブリケーションとは写真法によるレジ
スト形成技術およびエツチングまたはメツキによる導体
形成技術を意味する。メツキを用いる場合、例えばアル
ミニウム等の金属薄板を担体基板7とし、液状レジスト
あるいはDFn等を用いる写真法によりレジストパター
ンを形成し、次いで金属薄板をカソードとして電気メツ
キにより、銅あるいはニッケル等の金属をレジスト以外
の部分に析出させた後、レジスト剥離液を用いてレジス
トを剥離することにより第1図(A) に示す表裏用の
一組の導体層81および82の構成を得る。
Here, photofabrication means a resist forming technique using a photographic method and a conductor forming technique using etching or plating. When plating is used, for example, a thin metal plate such as aluminum is used as the carrier substrate 7, a resist pattern is formed by a photographic method using liquid resist or DFn, and then a metal such as copper or nickel is applied by electroplating using the thin metal plate as a cathode. After depositing on areas other than the resist, the resist is stripped off using a resist stripping solution to obtain the structure of a pair of front and back conductor layers 81 and 82 shown in FIG. 1(A).

この工程で直径Bの大きさの微細孔9および導体層81
あるいは82が形成される。
In this process, a micro hole 9 having a diameter B and a conductor layer 81 are formed.
Alternatively, 82 is formed.

また、別法として、担体基板7と導体薄板を接着あるい
は粘着した後、レジストパターンを導体基板上に形成し
、次いでレジストパターン以外の導体をエツチングした
後、レジストを除去し、第1図(八) に示す構成を得
ることも可能である。エツチング方式とメツキ方式とを
比較すると、エツチング方式の場合、サイドエツチング
の影響によリ、加工精度をコントロールすることが困難
であるので、電気メツキによって導体層81および82
を形成することがより好ましい。
Alternatively, after bonding or sticking the carrier substrate 7 and the thin conductive plate, a resist pattern is formed on the conductive substrate, the conductors other than the resist pattern are etched, and then the resist is removed. ) It is also possible to obtain the configuration shown in Comparing the etching method and the plating method, in the case of the etching method, it is difficult to control the processing accuracy due to the influence of side etching, so the conductor layers 81 and 82 are removed by electroplating.
It is more preferable to form.

第1図(B)に示すように、絶縁基板lOには、後述す
る接着工程(第1図(D))のために、予め接着剤層1
1を絶縁基板10の両側に塗布し半硬化状態としておく
か、あるいは半硬化状態のフィルム状接着剤層11をラ
ミネートしておくかするが、接着剤の厚みの均一性およ
び硬化度の管理の容易さを考慮すると、フィルム状接着
シートを用いることがより好ましい。
As shown in FIG. 1(B), an adhesive layer 10 is preliminarily applied to the insulating substrate lO for the bonding process (FIG. 1(D)) to be described later.
1 is applied to both sides of the insulating substrate 10 and left in a semi-cured state, or a semi-cured film adhesive layer 11 is laminated, but it is difficult to control the uniformity of the thickness of the adhesive and the degree of curing. In consideration of ease, it is more preferable to use a film-like adhesive sheet.

絶縁基板lOとしては、ポリイミドフィルム、ポリエー
テルイミドフィルム、ポリエーテルエーテルケトンフィ
ルム、ポリエーテルサルホンフィルムおよびポリエチレ
ンテレフタレートフィルム等のような各種のフィルムあ
るいは0.05〜0.1mm厚のガラスエポキシ基板等
の使用が可能であるが、耐熱性および寸法安定性に優れ
るポリイミドフィルムがより好ましい。また、その場合
、フィルム状接着剤としてはポリイミド接着用に市販さ
れているBステージ接着シートの使用が可能である。
As the insulating substrate 1O, various films such as polyimide film, polyetherimide film, polyetheretherketone film, polyethersulfone film, and polyethylene terephthalate film, or a glass epoxy substrate with a thickness of 0.05 to 0.1 mm may be used. It is possible to use polyimide film, but polyimide film is more preferable because of its excellent heat resistance and dimensional stability. In that case, a commercially available B-stage adhesive sheet for polyimide adhesion can be used as the film adhesive.

第1図(C)に示すように、孔あけは、絶縁基板10お
よび接着剤11の複合体すなわち絶縁層12に対して行
われる。
As shown in FIG. 1(C), drilling is performed on a composite of an insulating substrate 10 and an adhesive 11, that is, an insulating layer 12.

ここで、第1図(A) に示す導体層81および82の
孔径をC1微細孔9の周辺の最小導体(ランド)幅を8
と定義すると絶縁層に設けられた微細孔13の孔径りは
、B≦D≦Cの関係である。孔径りは、孔あけ時の絶縁
層12のパリあるいは接着時の接着剤の流動性および位
置ズレ等を考慮すると、好ましくは(3B/44C/4
)≦D≦(B/4◆3C/4)、さらに好ましくは、(
2B/3+C/3)≦D≦(B/4+3C/4)である
Here, the hole diameter of the conductor layers 81 and 82 shown in FIG.
Defining this, the diameter of the micropores 13 provided in the insulating layer is in the relationship B≦D≦C. The hole diameter is preferably (3B/44C/4
)≦D≦(B/4◆3C/4), more preferably (
2B/3+C/3)≦D≦(B/4+3C/4).

孔あけ方法はトリルあるいはパンチング等のような機誠
的方法、あるいは絶縁層12のエツチングによる方法を
用いるが、精度および生産性に優れた数値制御機能を有
するドリルによる方法がより好ましい。
For the drilling method, a mechanical method such as trilling or punching, or a method by etching the insulating layer 12 is used, but a method using a drill having a numerical control function with excellent accuracy and productivity is more preferable.

第1図(D)に示すように、上述の位置合わせには、基
準孔および基準ビンを用いたビン合わせ方式、あるいは
位置合わせマークを適宜設け、光学的な位置合わせおよ
び仮接着を行う方法等によるが、ビン合わせ方式の場合
、ビンへのセット時等に基準孔が破損され、位置ずれを
生ずる場合があるので、光学的位置合わせ方法がより好
ましい。
As shown in FIG. 1(D), the above-mentioned alignment can be achieved by a bin alignment method using a reference hole and a reference bottle, or by providing alignment marks as appropriate and performing optical alignment and temporary bonding. However, in the case of the bin alignment method, the reference hole may be damaged during setting in the bin, resulting in positional deviation, so an optical alignment method is more preferable.

接着は通常、加熱加圧によるプレス加熱が使用される。For adhesion, press heating using heat and pressure is usually used.

この場合、接着時における接着剤層11の孔内部へのは
み出しの程度および導体層81および82と絶縁基板1
0との接着強度を考慮し、使用する接着剤に応じてプレ
ス加熱条件が決定される。
In this case, the degree of protrusion of the adhesive layer 11 into the hole during bonding and the extent to which the conductor layers 81 and 82 and the insulating substrate 1
Press heating conditions are determined depending on the adhesive used, taking into consideration the adhesive strength with 0.

般に、接着の初期において、圧力および温度を低くして
接着剤の流動性を抑制し、徐々にまたは段階的に圧力お
よび温度を上げていくことによって、接着強度を増大さ
せることが好ましい。また、接着工程以前の段階、例え
ば第1図(B)に示す工程の後または第1図(C)に示
す工程の後に、接着剤を予備加熱することによって硬化
度を上げておくことは、接着剤が孔内部へはみ出すこと
を抑制するという効果がある。さらに、1度、プレス加
熱を終了した後で、例えば第1図(E)に示す工程の後
に、1度目のプレス条件よりも強い条件で再プレスを行
うことは、接着強度を向上させることに効果がある。
Generally, it is preferable to lower the pressure and temperature at the initial stage of bonding to suppress the fluidity of the adhesive, and to increase the bond strength by gradually or stepwise increasing the pressure and temperature. Furthermore, increasing the degree of curing by preheating the adhesive before the adhesion step, for example after the step shown in FIG. 1(B) or after the step shown in FIG. 1(C), This has the effect of suppressing the adhesive from protruding into the hole. Furthermore, after completing press heating once, for example after the step shown in FIG. 1(E), performing re-pressing under conditions stronger than the first pressing conditions will improve the adhesive strength. effective.

なお再プレス加熱では、接着剤の硬化度が進んでいるた
めに、孔内部への接着剤のはみ出しの増加はほとんど起
こらない。仮に一度目のプレス加熱時に導体層81およ
び82と接着剤11どの間に気泡が残ったために接着が
不完全である場合も第1図(D)に示す工程の後に再プ
レス加熱することにより気泡を除去し接着を回復させる
ことが可能である。
Note that in the re-press heating, since the degree of hardening of the adhesive has progressed, there is almost no increase in the adhesive protruding into the inside of the hole. Even if the adhesion is incomplete due to air bubbles remaining between the conductor layers 81 and 82 and the adhesive 11 during the first press heating, the air bubbles can be removed by re-press heating after the step shown in FIG. 1(D). It is possible to remove it and restore the adhesion.

予備加熱条件としては、温度80℃〜200℃、圧力0
〜0.5kg/cm2というように低圧力で硬化度を高
めることができる。プレス加熱条件としては、温度12
0℃〜250℃、圧力0.5kg/cm2〜30kg/
cm2で行うことが好ましい。さらに、再プレス加熱条
件としては、温度120℃〜250℃、圧力5kg/c
m2〜30kg/cm2で行うことが好ましい。なお、
再プレス加熱を行う場合のプレス加熱条件は、圧力を0
.5kg/cm’ 〜5kg/cm2 とすることが好
ましい。
Preheating conditions include temperature 80℃~200℃, pressure 0
The degree of curing can be increased at low pressures such as ~0.5 kg/cm2. As press heating conditions, temperature 12
0℃~250℃, pressure 0.5kg/cm2~30kg/
Preferably, it is carried out in cm2. Furthermore, the re-press heating conditions include a temperature of 120°C to 250°C and a pressure of 5kg/c.
It is preferable to carry out at m2 - 30 kg/cm2. In addition,
The press heating conditions when performing press heating again are to reduce the pressure to 0.
.. It is preferable to set it as 5 kg/cm' - 5 kg/cm2.

第1図(E)に示すように、担体基板7を除去する方法
は、機械的剥離あるいはエツチングによる除去方法があ
るが、微細孔を破損する可能性のないエツチングによる
除去が好ましい6導体81および82が銅またはニッケ
ル等であり、担体基板7がアルミニウム等であり、エツ
チング特性が実現する場合は、水酸化ナトリウム溶液あ
るいは塩酸溶液等により担体基板7をエツチング除去す
ることかできる。
As shown in FIG. 1(E), the carrier substrate 7 can be removed by mechanical peeling or etching, but it is preferable to remove the 6 conductors 81 and If 82 is copper or nickel or the like, and the carrier substrate 7 is aluminum or the like, and if etching properties are achieved, the carrier substrate 7 can be etched away using a sodium hydroxide solution, a hydrochloric acid solution, or the like.

なお、微細多孔配線板の表面および裏面上に防錆層およ
び絶縁層を形成することも可能であり好ましい。
Note that it is also possible and preferable to form a rust preventive layer and an insulating layer on the front and back surfaces of the microporous wiring board.

[作 用] 本発明においては、微細多孔配線板における導体層の微
細孔をフォトファブリケーションにより形成することに
より、パリ等の発生はなく、微細孔の真円度および形状
精度が良い。また、絶縁層の微細孔形成は導体層への孔
形成とは別に行われることにより、導体層の孔径を絶縁
層の孔径よりも小さくすることができる。
[Function] In the present invention, by forming the micropores of the conductor layer in the microporous wiring board by photofabrication, there is no generation of burrs, etc., and the circularity and shape accuracy of the micropores are good. Further, by forming micropores in the insulating layer separately from forming holes in the conductor layer, the diameter of the pores in the conductor layer can be made smaller than the diameter of the pores in the insulating layer.

[実施例] 以下、本発明を実施例に基づいて詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail based on examples.

第1図(八)ないし第1図(E)は本発明実施例の工程
(1)ないしく5)を示す。
FIG. 1(8) to FIG. 1(E) show steps (1) to 5) of the embodiment of the present invention.

(1)第1図(A)に示すように、厚さ80μmのアル
ミニウム担体基板7上に液状ネガ型レジスト(コダック
社製KMR747)を塗布し、プリベークした。
(1) As shown in FIG. 1(A), a liquid negative resist (KMR747 manufactured by Kodak) was coated on an 80 μm thick aluminum carrier substrate 7 and prebaked.

次に、フォトマスクを通して露光を行い、次いで現像お
よびボストベークを行い厚さ4μmのレジスタパターン
を形成した。
Next, exposure was performed through a photomask, followed by development and post baking to form a resist pattern with a thickness of 4 μm.

次いで、アルミニウム担体基板7をカソードとして、ピ
ロリン酸銅メツキ浴を使用し、厚さが10μmとなるよ
うに銅メツキを行った。さらにレジスト剥離液(ナガセ
産業社製N−500)を用いてレジストの剥離を行い、
第2図(A)および(C)に示すように多数の微細孔9
を配線パターン内に有する表および具用の一組の導体層
81および82を形成した。導体層81および82の孔
部直径Bは200μm。
Next, using the aluminum carrier substrate 7 as a cathode, copper plating was performed using a copper pyrophosphate plating bath to a thickness of 10 μm. Furthermore, the resist was removed using a resist removal solution (N-500 manufactured by Nagase Sangyo Co., Ltd.).
A large number of micropores 9 as shown in FIGS. 2(A) and (C)
A pair of conductor layers 81 and 82 for the front and the fixture were formed, each having a wiring pattern in the wiring pattern. The hole diameter B of the conductor layers 81 and 82 is 200 μm.

微細孔9の周辺の最小導体層幅Cは400μmであった
The minimum conductor layer width C around the micropores 9 was 400 μm.

(2)第1図(B) に示すように、絶縁基板IOとな
る厚さ125μmのポリイミドフィルム(東し・デュポ
ン社製カプトン)の両側に厚さ25μmのフィルム状の
接着剤層11(デュポン・ジャパン社製パイララ・ンク
スWへ/へ)をラミネートし1次で120℃で20分間
の予備加熱を行って接着剤層11の酸化状態を調整した
(2) As shown in FIG. 1(B), a 25 μm thick film-like adhesive layer 11 (Dupont Co., Ltd.) is placed on both sides of a 125 μm thick polyimide film (Kapton manufactured by DuPont) that will serve as the insulating substrate IO.・The oxidation state of the adhesive layer 11 was adjusted by laminating Pyrara Nx W (manufactured by Japan Co., Ltd.) and preheating at 120° C. for 20 minutes.

(3)数値制御機能をもつドリラーを用いて、直径30
0μmの多数個の微細孔13をあけた。
(3) Using a driller with numerical control function,
A large number of micropores 13 with a diameter of 0 μm were made.

(4)第1図(D) に示すように、導体層81および
82および絶縁基板10上に設定した位置合わせマーク
を用いて光学的方法により位置合わせを行い、導体層8
1および82および絶縁基板lOの各微細孔を対応させ
て仮接着を行い、さらに温度180℃、圧力IJ/cm
’で1時間のプレス加熱を行った。
(4) As shown in FIG. 1(D), alignment is performed by an optical method using alignment marks set on the conductor layers 81 and 82 and the insulating substrate 10, and the conductor layer 8
1 and 82 and the insulating substrate 10 are made to correspond to each other, temporary bonding is performed, and the temperature is 180°C and the pressure is IJ/cm.
' Press heating was performed for 1 hour.

(5)第1図(E)に示すように、10%の塩酸溶液に
よりアルミニウム担体基板7のエツチング除去を行った
。さらに190℃、 8kg/cm2で30分間の再プ
レス加熱を行い、微細多孔配線板を作製した。
(5) As shown in FIG. 1(E), the aluminum carrier substrate 7 was etched away using a 10% hydrochloric acid solution. Further press heating was performed at 190° C. and 8 kg/cm 2 for 30 minutes to produce a microporous wiring board.

得られた製品の微細孔の断面を観察したところ接着剤の
はみ出し、絶縁層のノですおよび凹凸は10μm以下の
大きさであった。また導体層81および82の剥離強度
は1.4kg/cm2以上てあった。
When the cross section of the micropores of the obtained product was observed, it was found that the adhesive protruded, the insulating layer was bulged, and the irregularities were less than 10 μm in size. Further, the peel strength of the conductor layers 81 and 82 was 1.4 kg/cm2 or more.

[発明の効果] 以上説明したように、本発明によれば、導体層に形成さ
れる微細孔はフォトファブリケーションにより形成され
るので、パリ等の発生はなく孔の真円度および精度に優
れ、また導体層部分の孔径は絶縁層部分の孔径よりも小
さいので、絶縁層に凹凸があった場合も導体層孔部分へ
の影響は無視でき、荷電粒子あるいは荷電分子の通過運
動を妨げることなく、また荷電分子を発生する場合にも
効率的に発生し得る。
[Effects of the Invention] As explained above, according to the present invention, the fine holes formed in the conductor layer are formed by photofabrication, so there is no generation of particles and the holes have excellent roundness and precision. In addition, since the pore diameter of the conductor layer is smaller than that of the insulating layer, even if the insulating layer has unevenness, the effect on the pores of the conductor layer can be ignored, and the passage of charged particles or molecules is not hindered. , can also be efficiently generated when generating charged molecules.

そこで、本発明によれば印字品質に優れたブリンタ用ヘ
ット部品に使用するための微細多孔配線板を製造するこ
とができる。
Therefore, according to the present invention, it is possible to manufacture a microporous wiring board for use in printer head components with excellent printing quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の製造工程の説明図、第2図(A
)ないし第2図(D)および第3図は従来の微細多孔配
線板を示す図、 第4図は従来の製造方法により製造された微細孔の断面
図である。 7・・・アルミニウム担体基板、 9.13・・・微細孔、 lO・・・絶縁基板、 11・・・接着剤層、 12・・・絶縁層、 81.82・・・導体層。 第4図 手続補正帯 昭和63年11月29日 特願昭63−273001号 2、発明の名称 微細多孔配線板の製造方法 3、補正をする者 事件との関係 特許出願人 旭化成工業株式会社 4、代理人 〒107 東京都港区赤坂5丁目1番31号 第6セイコービル3階 電   話   (03)589−1201  (代表
)明細書の「2、特許請求の範囲」の欄および「3、発
明の詳細な説明」の欄 7、補正の内容 (1)特許請求の範囲を別紙の通り補正する。 (2)明細書第5頁第9〜lO行の「第1および第2担
体基板上に」を削除する。 (3)同第8頁第7行の「C」をr B Jに補正する
。 (4)同第8頁第8行の「B」を「C」に補正する。 (5)同第10頁第4行の「再プレス」を「再プレス加
熱」に補正する。 (6)同第11頁第8〜9行の「実現する」を「異なる
」に補正する。 (7)同第13頁第11行の「酸化」を「硬化」に補正
する。 (8)同第14頁第8行のr 1.4kg/cm2Jを
rl、4kg/CmJに補正する。 以   上 別紙 特許請求の範囲 1)所定の導体パターン上の所定位置に多数の第1微細
孔を有する第1および第2導体層をフォトファブリケー
ションによ■成する工程と、前記第1微細孔の直径以上
の直径をもつ多数の第2微細孔を絶縁基板を貫通して形
成する工程と、該絶縁基板の両面を前記第1および第2
の導体層で挟み、前記第1および第2微細孔を対応させ
て、前記絶縁基板と導体層とを接着させる工程とを含む
ことを特徴とする微細多孔配線板の製造方法。 (以下余白)
Figure 1 is an explanatory diagram of the manufacturing process of the embodiment of the present invention, and Figure 2 (A
) to FIG. 2(D) and FIG. 3 are diagrams showing conventional microporous wiring boards, and FIG. 4 is a cross-sectional view of micropores manufactured by the conventional manufacturing method. 7... Aluminum carrier substrate, 9.13... Micropore, lO... Insulating substrate, 11... Adhesive layer, 12... Insulating layer, 81.82... Conductor layer. Figure 4 Procedures for Amendment Band November 29, 1988 Japanese Patent Application No. 63-273001 2 Name of the invention Method for manufacturing a microporous wiring board 3 Relationship with the person making the amendment Case Patent applicant Asahi Kasei Kogyo Co., Ltd. 4 , Agent No. 6 Seiko Building 3rd Floor, 5-1-31 Akasaka, Minato-ku, Tokyo 107 Telephone: (03) 589-1201 (Representative) Column "2. Scope of Claims" and "3. Column 7 of ``Detailed Description of the Invention'' Contents of Amendment (1) The scope of claims is amended as shown in the attached sheet. (2) Delete "on the first and second carrier substrates" from lines 9 to 10 on page 5 of the specification. (3) Correct "C" on page 8, line 7 to r B J. (4) Correct "B" in line 8 of page 8 to "C". (5) "Re-press" in the 4th line of page 10 is corrected to "re-press heating." (6) "Realize" in lines 8-9 of page 11 is corrected to "different." (7) "Oxidation" on page 13, line 11 is corrected to "hardening." (8) Correct r 1.4 kg/cm2J on page 14, line 8 to rl, 4 kg/cmJ. Claims 1) Forming first and second conductor layers having a large number of first micropores at predetermined positions on a predetermined conductor pattern by photofabrication; forming a large number of second micropores having a diameter larger than or equal to the diameter of the insulating substrate;
A method for manufacturing a microporous wiring board, comprising the step of adhering the insulating substrate and the conductor layer by sandwiching the conductor layer between the conductor layers and making the first and second micropores correspond to each other. (Margin below)

Claims (1)

【特許請求の範囲】[Claims] 1)所定の導体パターン上の所定位置に多数の第1微細
孔を有する第1および第2導体層をフオトファブリケー
ションにより第1および第2担体基板上に形成する工程
と、前記第1微細孔の直径以上の直径をもつ多数の第2
微細孔を絶縁基板を貫通して形成する工程と、該絶縁基
板の両面を前記第1および第2の導体層で挟み、前記第
1および第2微細孔を対応させて、前記絶縁基板と導体
層とを接着させる工程とを含むことを特徴とする微細多
孔配線板の製造方法。
1) forming first and second conductor layers having a large number of first micropores at predetermined positions on a predetermined conductor pattern on first and second carrier substrates by photofabrication; a large number of second
forming a microhole through the insulating substrate, sandwiching both surfaces of the insulating substrate between the first and second conductor layers, matching the first and second micropores, and forming the insulating substrate and the conductor layer; A method for manufacturing a microporous wiring board, comprising the step of adhering the layers.
JP27300188A 1988-10-31 1988-10-31 Method for manufacturing microporous wiring board Expired - Lifetime JP2744445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27300188A JP2744445B2 (en) 1988-10-31 1988-10-31 Method for manufacturing microporous wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27300188A JP2744445B2 (en) 1988-10-31 1988-10-31 Method for manufacturing microporous wiring board

Publications (2)

Publication Number Publication Date
JPH02120059A true JPH02120059A (en) 1990-05-08
JP2744445B2 JP2744445B2 (en) 1998-04-28

Family

ID=17521765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27300188A Expired - Lifetime JP2744445B2 (en) 1988-10-31 1988-10-31 Method for manufacturing microporous wiring board

Country Status (1)

Country Link
JP (1) JP2744445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024585A1 (en) * 1998-10-28 2000-05-04 Matsushita Electric Industrial Co., Ltd. Image forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024585A1 (en) * 1998-10-28 2000-05-04 Matsushita Electric Industrial Co., Ltd. Image forming device
US6394587B1 (en) 1998-10-28 2002-05-28 Matsushita Electric Industrial Co., Ltd. Image forming device

Also Published As

Publication number Publication date
JP2744445B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
CN110494936B (en) Method for manufacturing circuit board by selective etching of seed layer
JP5046350B2 (en) Manufacturing method of electronic parts adopting wet etching, electronic parts and hard disk suspension
KR101058695B1 (en) Copper foil coated laminate used for printed circuit board manufactured by copper direct laser processing and manufacturing method of printed circuit board using same
JPH0141272B2 (en)
JPH05243735A (en) Manufacture of multilayer wiring board
US7135119B2 (en) Method for making a multilayer module with high-density printed circuits
JP2001127429A (en) Method for producing multilayer printed wiring board
KR20040085374A (en) Method for making through-hole of multi-layer flexible printed circuit board
JPH02120059A (en) Manufacture of finely perforated wiring board
JPH11195849A (en) Flexible printed wiring board and method for manufacturing it
JP2006140216A (en) Double-sided circuit board and its manufacturing method
JPH11204942A (en) Manufacture of multilayer wiring board
JPH11121900A (en) Production of circuit board
JP4523232B2 (en) Printed coil manufacturing method and printed wiring board manufacturing method
KR101009729B1 (en) A multi layer fpcb for forming bvh by using pth and a method thereof
JP4571436B2 (en) Wiring board manufacturing method
JPH0918119A (en) Wiring pattern layer and formation thereof
JP2002151829A (en) Substrate for transferring metal section pattern, manufacturing method thereof, and manufacturing method of heat-resistant wiring board using the same
JPS61140194A (en) Multilayer circuit board and manufacture thereof
JPS63280496A (en) Manufacture for multilayer circuit board
JP2003154537A (en) Method for folding and manufacturing copper foil-clad base and intermediate member for folding copper foil- clad base used therefor
JPS6182497A (en) Manufacture of printed circuit board
JPH04354180A (en) Manufacture of multilayer printed wiring board
JP2986673B2 (en) Manufacturing method of cream printing mask
JP2006186110A (en) Method for manufacturing multilayer wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11