JPH02114960A - Artificial bone - Google Patents

Artificial bone

Info

Publication number
JPH02114960A
JPH02114960A JP63270135A JP27013588A JPH02114960A JP H02114960 A JPH02114960 A JP H02114960A JP 63270135 A JP63270135 A JP 63270135A JP 27013588 A JP27013588 A JP 27013588A JP H02114960 A JPH02114960 A JP H02114960A
Authority
JP
Japan
Prior art keywords
core material
surface layer
inorg
bone
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63270135A
Other languages
Japanese (ja)
Inventor
Yoshiro Yagi
八木 芳郎
Toru Araya
徹 新家
Takashi Furuya
降矢 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBERUKO KAKEN KK
Kobe Steel Ltd
Original Assignee
KOBERUKO KAKEN KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBERUKO KAKEN KK, Kobe Steel Ltd filed Critical KOBERUKO KAKEN KK
Priority to JP63270135A priority Critical patent/JPH02114960A/en
Publication of JPH02114960A publication Critical patent/JPH02114960A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate exfoliation, detachment and chipping by forming a surface layer gradually increasing in the concn. of the constitutional elements of an biologically active inorg. material toward the outer surface thereof to the surface layer part of a core material composed of a metal material or high strength ceramics material. CONSTITUTION:As a core material of an artificial bone, a metal material such as SUS 316 or a high strength ceramics material is used and a surface layer based on biologically active inorg. material components strongly integrated with the core material is formed to the surface layer part of the core material by the ion injection of the constitutional elements of the biologically active inorg. material or by the combination of the vapor deposition of the core material and the ion injection of said constitutional elements. This biologically active inorg. material has characteristics reacting with the peripheral bone tissue in a living body to form the strong chemical bond to a natural bone and, for example, apatites are used to bring about biocompatibility and natural bone bondability. By this method, the inorg. material can be bonded to the natural bone rapidly and fast fixing can be kept over a long period of time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は生体の骨欠損部を補填する為の人工骨に関する
ものであって、残存自家骨に対して早期に強力な結合を
形成し、しかもその強力な結合状態を長期に亘ってしっ
かりと維持することのできる人工骨に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an artificial bone for filling bone defects in a living body, which forms a strong bond to the remaining autologous bone at an early stage, Furthermore, the present invention relates to an artificial bone that can firmly maintain its strong bond over a long period of time.

[従来の技術] 事故や疾病あるいは抜歯等によって管損傷を来した場合
、骨欠損部あるいは空隙部への補填のための人工骨が必
要となる。
[Prior Art] When canal damage occurs due to an accident, disease, tooth extraction, etc., artificial bone is required to fill in the bone defect or void.

このような人工骨は補填箇所に応じた強度を有すると共
に生体に対して無害であることはいうまでもなく、自家
骨に対して早期に且つしっかり固定され長期使用に亘っ
てゆるみなどを生じない様なものでなくてはならない。
It goes without saying that such artificial bone has a strength commensurate with the replacement site and is harmless to living organisms, and it is quickly and firmly fixed to the autologous bone and does not loosen over long-term use. It must be something similar.

人工骨材料としては5US316等のステンレス鋼、T
iおよびTi合金、パイタリウム等の金属材料やアルミ
ナ、ジルコニア、窒化珪素等の高強度セラミックス材料
が用いられてきた。しかしこれらの材料は耐食性や機械
的強度を主体にして選択されており、生体に対する親和
性や自家骨に対する結合性は不十分であった。
As artificial bone materials, stainless steel such as 5US316, T
Metal materials such as Ti and Ti alloys, and pitalium, and high-strength ceramic materials such as alumina, zirconia, and silicon nitride have been used. However, these materials are selected based on their corrosion resistance and mechanical strength, and their affinity for living organisms and bonding properties to autologous bone are insufficient.

一方生体内で周囲の骨組織と反応し、自家骨との間に化
学結合を形成する特性を有するものとして生体活性無機
材料、例えばアパタイト類、特に水酸化アパタイト[C
a ro (P 04)a・(OH)2]やアパタイト
を含む無機材料が知られている。これらの材料は生体親
和性や自家骨結合性に優れているものの機械的強度が極
めて低いという欠点がある。
On the other hand, bioactive inorganic materials such as apatites, especially hydroxyapatite [C
Inorganic materials containing aro (P 04)a·(OH)2] and apatite are known. Although these materials have excellent biocompatibility and autogenous bone integration, they have the drawback of extremely low mechanical strength.

そこで両者の長所をミックスした複合材料が提案される
に至り、例えば特開昭52−82893号公報には「金
属製インブラントの芯材をヒドロキシアパタイト粉末又
はそれを含む組成物粉末で溶射被覆したもの」が開示さ
れており、特開昭60−116362号公報には「金属
、合金又は高強度セラミックスを芯材とし、該芯材の表
面をCaO及びp2o、を合計量で少なくとも25重量
%含むガラス又はガラスセラミックスで被覆してなる人
工骨及び人工歯根」が開示されている。
Therefore, a composite material that combines the advantages of both has been proposed, and for example, Japanese Patent Application Laid-open No. 82893/1983 describes that ``The core material of a metal implant is thermally sprayed coated with hydroxyapatite powder or a composition powder containing the same. JP-A-60-116362 discloses ``a core material made of metal, alloy, or high-strength ceramics, and a surface of the core material containing at least 25% by weight of CaO and P2O in total. "Artificial bone and artificial tooth root coated with glass or glass ceramics" are disclosed.

また特開昭62−57548号公報には「金属から成る
芯材の表面にヒドロキシアパタイトを含む粉末を溶射装
置で溶射し、ついで該溶射物をヒドロキシアパタイトを
実質的に溶解せず、かつ酸化カルシウムを溶解し得る水
溶液で処理することによりアルカリ性の溶出成分を除去
した骨内インブラント」が開示されている。
Furthermore, Japanese Patent Application Laid-open No. 62-57548 states that ``a powder containing hydroxyapatite is thermally sprayed onto the surface of a core material made of metal using a thermal spraying device, and then the sprayed material is coated with calcium oxide without substantially dissolving the hydroxyapatite. An intraosseous implant in which alkaline eluted components are removed by treatment with an aqueous solution capable of dissolving the alkaline components is disclosed.

これらの複合材料における共通の基本構成は、ステンレ
ス鋼、チタン、チタン合金、Co−Cr合金等の金属材
料の表面にヒドロキシアパタイトあるいは生体活性ガラ
スを溶射あるいは化学的析出手段により被覆して金属と
生体活性材料を複合化した点にある。
The common basic structure of these composite materials is that the surface of metal materials such as stainless steel, titanium, titanium alloys, Co-Cr alloys, etc. is coated with hydroxyapatite or bioactive glass by thermal spraying or chemical precipitation to bond the metal and bioactive glass. The point is that the active materials are composited.

[発明が解決しようとする課題] これらの複合材料は芯材による機械的強度と被覆材によ
る生体親和性および自家骨結合性とを備えた材料である
が、もともと芯材と被覆材とは異性質の材質であるから
前記開示例の様に芯材に直接被覆材を被覆した様なもの
では、両者の界面における接合強度が不十分であり、長
期に亘って使用しているうちに、あるいは大きな外力が
加わった場合に、両者の接合部において剥離・脱落欠損
してしまうという問題があった。
[Problems to be solved by the invention] These composite materials are materials that have mechanical strength due to the core material and biocompatibility and autogenous bone integration properties due to the covering material, but the core material and the covering material are originally different. If the core material is directly coated with the covering material as in the disclosed example, the bonding strength at the interface between the two will be insufficient, and after long-term use, There is a problem in that when a large external force is applied, the bonded portion between the two may peel off, fall off, or be damaged.

この様な状況に鑑み本発明においては機械的強度および
生体親和性および自家骨結合性が良好であることはもち
ろん使用中の剥離・脱落欠損等のない人工骨材料につい
て検、討した。
In view of this situation, in the present invention, an artificial bone material that not only has good mechanical strength, biocompatibility, and autogenous bone integration, but also does not peel off or fall off during use, has been investigated.

[課題を解決するための手段] 上記課題を解決することのできた本発明の人工骨とは芯
材として金属材料または高強度セラミックス材料を用い
、該芯材の表層部に生体活性無機材料構成成分元素をそ
れぞれイオン注入することにより、あるいは前記芯材構
成成分の蒸着と生体活性無機材料構成成分元素のイオン
注入とを組み合わせることにより、前記芯材の表面に芯
材との一体性の強い生体活性無機材料成分を主体とする
表面層が形成されていることを要旨とする、そしてこの
人工骨の表面に生体活性無機材料を被覆したものは生体
親和性および自家骨結合性に優れたものどなる。
[Means for Solving the Problems] The artificial bone of the present invention that can solve the above problems uses a metal material or a high-strength ceramic material as a core material, and a bioactive inorganic material component in the surface layer of the core material. By ion-implanting each element, or by combining the vapor deposition of the core material component and the ion implantation of the bioactive inorganic material component element, the surface of the core material has a bioactive material that is highly integrated with the core material. The main feature of this artificial bone is that a surface layer mainly composed of inorganic material components is formed, and the surface of this artificial bone is coated with a bioactive inorganic material, and has excellent biocompatibility and autogenous bone integration.

[作用] 本発明において芯材として用いる金属材料あるいは高強
度セラミックスは十分な強度を有し、人体に対する為害
作用が極めて少ないものでなくてはならない。この様な
ものとして、5U5316等のステンレス鋼、”rtあ
るいはTi−6AI−4V等のチタン合金、Co−Cr
合金等の金属材料が例示され、また高強度セラミックス
材料としてアルミナ、ジルコニア、窒化珪素等が挙げら
れる。
[Function] The metal material or high-strength ceramic used as the core material in the present invention must have sufficient strength and have extremely little harmful effect on the human body. Examples of such materials include stainless steel such as 5U5316, titanium alloy such as RT or Ti-6AI-4V, Co-Cr
Examples include metal materials such as alloys, and high-strength ceramic materials include alumina, zirconia, silicon nitride, and the like.

また生体活性無機材料とは、生体内で周囲の骨組織と反
応し、自家骨との間に強い化学結合を形成する特性を有
するものであり、例えばアパタイト類、特に水酸化アパ
タイト[Ca、。(PO4)6・(OH)2]、アパタ
イトを含むアルミナあるいはジルコニアセラミックス、
β−3CaO。
Furthermore, bioactive inorganic materials have the property of reacting with surrounding bone tissue in vivo and forming strong chemical bonds with autologous bone, such as apatites, especially hydroxyapatite [Ca. (PO4)6・(OH)2], alumina or zirconia ceramics containing apatite,
β-3CaO.

P、 O!、 Na20−CaO−3in2P20!1
系ガラス(バイオガラス)、第1表に示す様な系のアパ
タイト含有結晶化ガラス等が例示される。
P, O! , Na20-CaO-3in2P20!1
Examples include glass-based glass (bioglass), apatite-containing crystallized glass as shown in Table 1, and the like.

イオン注入法の特徴は、金属に溶解しない元素でも添加
できること、室温での添加が可能であること、イオン電
流あるいは時間の管理によって注入量が比較的容易に調
節できること、添加深さも調節でき、添加元素を高純度
化できること、などである。本発明はこの様なイオン注
入法の特徴を利用するものであって、芯材の表面に形成
される芯材との一体性の強い生体活性無機材料成分を主
体とする表面層の形成手段はつぎの2方法に大別される
The characteristics of the ion implantation method are that it is possible to add elements that do not dissolve in metals, that it can be added at room temperature, that the amount of implantation can be adjusted relatively easily by controlling the ion current or time, that the depth of addition can be adjusted, and that For example, elements can be highly purified. The present invention utilizes the characteristics of such an ion implantation method, and the means for forming the surface layer formed on the surface of the core material, which is mainly composed of a bioactive inorganic material component that has strong integration with the core material, is as follows. It is broadly divided into two methods.

■芯材の表層部に生体活性無機材料構成成分元素をそれ
ぞれイオン注入する。
■Ion-implant each of the constituent elements of bioactive inorganic material into the surface layer of the core material.

■芯材構成成分の蒸着と生体活性無機材料構成成分のイ
オン注入とを組み合わせる。
■ Combining vapor deposition of core material components and ion implantation of bioactive inorganic material components.

次ぎに本発明で採用されるイオン注入法について説明す
る。
Next, the ion implantation method employed in the present invention will be explained.

まず前記■について、Caのイオン注入例を挙げ説明す
ると下記の通りである。第1図は芯材(例えばTi−6
AI−4V合金)にCaを注入エネルギー50keV、
  ドーズレートIXLO171ons/cm2でイオ
ン注入したもの、および注入エネルギーtookeV、
 ドーズレート5×10I7tons/cm2でイオン
注入したものについて、表面からの深さ位置とCa原子
濃度の関係を示したものである。イオン注入の総量は電
渣×時間=電気量によって決定されると共に、濃度分布
および深さは注入エネルギー(注入電圧)および被注入
材の種類によって変化する。この様な濃度分布状態は各
元素によって異なるので、本発明の実施に当たっては予
め個々の生体活性無機材料構成成分元素について注入条
件と芯材表層部における濃度分布および深さ状態の関係
を知り、芯材表層部において目的とする生体活性無機材
料構成成分組成が形成される様な注入条件をそれぞれの
元素について設定することが望まれる0例えばヒドロキ
シアパタイト成分を注入する場合にはCa:P:O:H
=10:6:26:2で示される組成比となる様にCa
、P、OおよびHを夫々イオン注入する。他の生体活性
無機材料を形成したい場合についても、上記と同様にそ
の希望成分組成比となる様にイオン注入を行なう、この
様にして得られた層の最表層部では各成分がガウス分布
を呈しており(第1図および第2図参照)、最表面側で
は一般的に低濃度となっていると共に求める成分組成濃
度が得られないので最適組成濃度値を示す深さの所まで
表面研磨することが望ましい(第3図参照)。
First, regarding the above-mentioned (2), an example of Ca ion implantation will be explained as follows. Figure 1 shows the core material (e.g. Ti-6).
Ca was implanted into AI-4V alloy at an energy of 50 keV.
Ion implantation at a dose rate IXLO 171 ons/cm2 and an implantation energy tookeV,
This figure shows the relationship between the depth position from the surface and the Ca atom concentration for ions implanted at a dose rate of 5×10 I7 tons/cm 2 . The total amount of ion implantation is determined by electric residue x time = quantity of electricity, and the concentration distribution and depth vary depending on the implantation energy (implantation voltage) and the type of material to be implanted. Since the concentration distribution state differs depending on each element, when implementing the present invention, it is necessary to know in advance the relationship between the injection conditions and the concentration distribution and depth state in the surface layer of the core material for each component element of the bioactive inorganic material. It is desirable to set injection conditions for each element such that the desired bioactive inorganic material constituent composition is formed in the surface layer of the material.For example, when injecting a hydroxyapatite component, Ca:P:O: H
= Ca so that the composition ratio is 10:6:26:2.
, P, O, and H are each ion-implanted. When it is desired to form other bioactive inorganic materials, ion implantation is performed in the same way as above to achieve the desired component composition ratio.In the outermost layer of the layer obtained in this way, each component has a Gaussian distribution. (See Figures 1 and 2), and since the concentration is generally low on the outermost surface side and the desired component concentration cannot be obtained, the surface is polished to a depth that shows the optimum composition concentration value. It is desirable to do so (see Figure 3).

■の方法において併用される蒸着手段としてはEB蒸着
、イオンブレーティング、スパッタリング等通常の蒸着
手段を用いることができる。この際、芯材構成成分の1
種以上の蒸着と生体活性無機材料の構成成分の1種以上
の元素のイオン注入を同時に行なっても良く、あるいは
蒸着とイオン注入を交互に行なっても良いが、これらの
作業は以下の要領で繰返し行なうのが良い(但し、蒸着
と注入を同時に行なう時は蒸着元素の供給装置、例えば
EB加熱溶解装置とイオン注入元素の供給源であるイオ
ンガンの両者を処理室内に組込まなければならないので
装置は複雑となる)。
As the vapor deposition means used in conjunction with the method (2), ordinary vapor deposition methods such as EB vapor deposition, ion blasting, and sputtering can be used. At this time, 1 of the core material constituents
The vapor deposition of one or more species and the ion implantation of one or more elements constituting the bioactive inorganic material may be performed simultaneously, or the vapor deposition and ion implantation may be performed alternately, but these operations can be performed in the following manner. It is better to repeat the process repeatedly (however, when performing vapor deposition and implantation at the same time, both the vapor deposition element supply device, such as the EB heating melting device and the ion gun, which is the supply source of the ion implantation elements, must be installed in the processing chamber, so the device must be (complicated).

即ち、当初は芯材の蒸着量の割合を多く、生体活性無機
材料の主要元素であるCa、Pイオン注入量の割合を少
なくし、層厚を増すにしたがって後者の割合を増し、最
表層に近いところからはCa、Pの他にO,Hの注入も
行ない(はじめからO,Hを加えると材料の脆化がおこ
る心配がある)、最表層においては、Ca、P、O,H
の生体活性無機材料のみのイオン注入を行なう。■にお
けるイオン注入も前記■におけると同様にその注入条件
および各成分元素の濃度分布状態を知ってイオン注入を
行う必要がある。
That is, initially, the ratio of the amount of vapor deposition of the core material was increased and the ratio of the amount of implanted Ca and P ions, which are the main elements of bioactive inorganic materials, was decreased, and as the layer thickness increased, the ratio of the latter was increased, and In addition to Ca and P, O and H are also injected from nearby areas (there is a risk of embrittlement of the material if O and H are added from the beginning), and in the outermost layer, Ca, P, O, and H are injected into the outermost layer.
Perform ion implantation of only bioactive inorganic materials. Similar to the above-mentioned case (2), the ion implantation in (2) requires knowledge of the implantation conditions and the concentration distribution state of each component element before performing the ion implantation.

またイオン注入層を厚くしたい場合には、前記■におい
ては注入エネルギーを変えてイオン注入することおよび
■においては、これによって得られる層を何層か重ねて
も良い。
If it is desired to make the ion-implanted layer thicker, the ion implantation may be performed by changing the implantation energy in (1) above, and the resulting layers may be stacked in several layers in (2).

以上の様にして芯材の表層部に形成されたイオン注入層
は、深部の方では生体活性無機材料成分の濃度が低く、
それらの原子は芯材構成成分の結晶格子を形成している
原子間の空隙、あるいはそれらの原子と置換された状態
で結晶内部に芯材構成成分と一体化した状態で存在する
。また表面側に行くほど濃度が高くなっており、最表面
側ではほぼ希望する通りの生体活性無機材料成分組成と
なっている。即ち芯材の表面に芯材と一体性の強い生体
活性無機材料成分の皮膜が形成される。
The ion-implanted layer formed on the surface layer of the core material as described above has a lower concentration of bioactive inorganic material components in the deeper part.
These atoms exist in the voids between atoms forming the crystal lattice of the core component, or in a state where they are replaced with those atoms and are integrated with the core component inside the crystal. The concentration increases toward the surface, and the composition of the bioactive inorganic material is almost as desired at the outermost surface. That is, a film of a bioactive inorganic material component that is highly integrated with the core material is formed on the surface of the core material.

従ってこの様なイオン注入層を有する人工骨を骨欠損部
に補填したときは、生体親和性を示し、自家骨に対して
強い結合性を有するものとなる。
Therefore, when an artificial bone having such an ion-implanted layer is used to fill a bone defect, it exhibits biocompatibility and has strong bonding properties to autologous bone.

さらに生体活性無機材料層を厚くするために、ゾル−ゲ
ル法等の化学的方法あるいはその他の方法で生体活性無
機材料層を形成させても良い。
Furthermore, in order to increase the thickness of the bioactive inorganic material layer, the bioactive inorganic material layer may be formed by a chemical method such as a sol-gel method or by other methods.

この様な人工骨は股関節をはじめ膝、肘、肩。These artificial bones are used in the hip joint, knee, elbow, and shoulder.

指などの関節用あるいはその他の長管骨用等の代替とし
であるいは人工歯根用などに適用できる。
It can be used as a substitute for joints such as fingers, other long bones, etc., or for artificial tooth roots.

[実施例] 実施例1 母材としてTi−6AI−4V合金を用い、Caを注入
エネルギー100keV、  ドーズレー)−1,9x
 10” tons/cm2の条件でイオン注入゛し、
ざらにPを100 k e V 、 1.1 x 10
” tons/cm2の条件でイオン注入した。同様に
引続きOを100 k e V 、 5.Ox 101
7tons/cm’  Hを100 k e V 、 
0.38x 1017tons/cm’の条件で注入し
た。
[Example] Example 1 Using a Ti-6AI-4V alloy as the base material, Ca was implanted at an energy of 100 keV (Doseley)-1.9x
Ion implantation was performed under the condition of 10" tons/cm2,
Roughly P 100 ke V, 1.1 x 10
Ion implantation was carried out under the conditions of "tons/cm2.Similarly, O was implanted at 100 k e V, 5.Ox 101
7 tons/cm'H at 100 k e V,
Injection was performed under the condition of 0.38x 1017 tons/cm'.

この試料表面部のAESによる深さ方向プロフィールを
第2図に示す。第2図から明らかな様に表面層がヒドロ
キシアパタイトに近い組成になっていた。特に表面層か
ら掻くわずか(約0.1μm)内部に最適組成値が存在
していたので、実用に当たっては最適成分組成が表面に
露出するまで約0゜1μmの表面研磨を行なった。第3
図に研磨後のAES分析を行なった結果を示す。最表面
層の成分比はCa : P : O: I(−9: 5
 : 28 :2であり、ヒドロキシアパタイトCa:
P:O:H−10:6:26:2に極めて近い成分組成
にな)ていた。
FIG. 2 shows the AES profile of the surface of this sample in the depth direction. As is clear from FIG. 2, the surface layer had a composition close to hydroxyapatite. In particular, since the optimum composition value existed within a small distance (approximately 0.1 μm) from the surface layer, in practical use, the surface was polished by about 0.1 μm until the optimum component composition was exposed on the surface. Third
The figure shows the results of AES analysis after polishing. The component ratio of the outermost layer is Ca: P: O: I (-9: 5
:28:2, and hydroxyapatite Ca:
The composition was extremely close to P:O:H-10:6:26:2.

実施例2 母材としてTi−6AI−4V合金を用い、Tiを蒸着
しながらCaを注入エネルギー100keV、  ドー
ズレート1.9 x 10” 1ons/cm”の条件
でイオン注入(イオンミキシング)した。Ti蒸着の成
膜速度は2A/secであった。このようにして1μm
厚さの成膜を行なった。この試料にさらに注入エネルギ
ー100KeV、  ドーズレート1.Ox 1017
tons/cm2でCaを注入し、引続きPを100 
k e V 、 1.1 x 10”1ons/cm2
、Oを100 k e V 、 5.Ox 10”to
ns/cm2、Hを100k e V 、 0.38x
 10I7ions/cm’の条件でイオン注入を行な
った。
Example 2 A Ti-6AI-4V alloy was used as a base material, and while Ti was being vapor-deposited, Ca was ion-implanted (ion mixing) at an implantation energy of 100 keV and a dose rate of 1.9 x 10" 1 ons/cm". The film formation rate of Ti vapor deposition was 2 A/sec. In this way, 1 μm
A thick film was formed. This sample was further implanted with an energy of 100 KeV and a dose rate of 1. Ox 1017
Ca was injected at tons/cm2, followed by P at 100
k e V , 1.1 x 10”1ons/cm2
, O at 100 k e V, 5. Ox 10"to
ns/cm2, H at 100k e V, 0.38x
Ion implantation was performed under the condition of 10 I7 ions/cm'.

この試料をAESにより表面深さ方向の原子濃度プロフ
ィールをみたところ第4図の如くであり、T 1−6A
 1−4V(D母材の上にTiが成膜されていることが
明らかである。イオンミキシングを行なったCaは母材
表面からTi蒸着膜にかけて一様に分布しており、この
Caは母材とTi膜の密着性強化に役立っている。さら
に実施例1と同様に約0.1μmの表面研磨を行なった
ところ実施例1と同様の結果が得られた。
When we looked at the atomic concentration profile of this sample in the direction of surface depth using AES, it was as shown in Figure 4, and T 1-6A.
1-4V (D It is clear that a Ti film is formed on the base material.Ca that has undergone ion mixing is uniformly distributed from the base material surface to the Ti vapor deposited film, and this Ca This is useful for strengthening the adhesion between the material and the Ti film. Furthermore, when the surface was polished to a depth of about 0.1 μm in the same manner as in Example 1, the same results as in Example 1 were obtained.

実施例3 母材としてTi−6A1−4V合金を用い、(1) T
 i −e A 1−4 V合金を蒸着速度2人/se
cで蒸着しながら、caを注入エネルギー100keV
、  ドーズレート0.6  x 10”1ons/c
m2でイオン注入(イオンミキシング)した。ついで同
チタン合金を同様に蒸着しつつ、Pを100k e V
 、 0.4 x 1017tons/cm2でイオン
注入(イオンミキシング)した。
Example 3 Using Ti-6A1-4V alloy as the base material, (1) T
i -e A 1-4 V alloy deposition rate 2 persons/se
While depositing with c, the injection energy of ca was 100 keV.
, Dose rate 0.6 x 10”1oz/c
Ion implantation (ion mixing) was performed at m2. Next, the same titanium alloy was deposited in the same manner, and P was applied at 100 k e V.
, ion implantation (ion mixing) was performed at 0.4 x 1017 tons/cm2.

(2)ざらにTf−6AI−4V合金を蒸着速度1.4
 A/secで蒸着しCaを100keV、!、2x 
10” tons/cm2でイオン注入し、ついで同チ
タン合金を同様に蒸着しつつ、Pを100keV。
(2) Vapor deposition rate of Tf-6AI-4V alloy roughly 1.4
Ca was evaporated at A/sec at 100 keV! , 2x
Ion implantation was performed at 10" tons/cm2, and then the same titanium alloy was similarly deposited while P was applied at 100 keV.

ドーズレース0.8 x 10171ons/cm2で
イオン注入した。
Ion implantation was performed at a dose rate of 0.8 x 10171 ons/cm2.

(3)さらにまたTi−6A1−4V合金を蒸着速度0
.7A/secで蒸着し、Caを100k e V、 
1.9 x 10” fans/cm2でイオン注入し
、ついで同チタン合金を同様に蒸着しつつ、Pを100
 k e V、 1.1 x 10” 1ons/cm
”でイオン注入した。
(3) Furthermore, the Ti-6A1-4V alloy was deposited at a evaporation rate of 0.
.. Vapor deposition was performed at 7 A/sec, Ca was evaporated at 100 k e V,
Ion implantation was carried out at 1.9 x 10" fans/cm2, and then the same titanium alloy was deposited in the same manner while 100% P was added.
k e V, 1.1 x 10” 1oz/cm
”Ion implantation was performed.

(4)このようにTL−6AI−4V合金を蒸着しつつ
Ca、Pを交互にイオン注入して厚さ1μmの皮膜が形
成された試料に、ざらにCaを100 k e V 、
 1.9 x 10I7tons/cm”でイオン注入
し、引続きPを100 k e V、 1.1 x 1
0” tons/cm2で、ついでOを100keV、
 5.OxlO17tons/cm2で、Hを100 
k a V 、 0.38x 10’71ons/cm
2でイオン注入した。
(4) In this way, Ca and P were ion-implanted alternately while depositing TL-6AI-4V alloy to form a 1 μm thick film, and then Ca was roughly added to the sample at 100 k e V.
Ion implantation was performed at 1.9 x 10I7tons/cm", followed by P at 100 k e V, 1.1 x 1
0” tons/cm2, then O at 100 keV,
5. OxlO17tons/cm2, H 100
k a V , 0.38x 10'71ons/cm
Ion implantation was performed in step 2.

この試料をオージェ分析装置により、表面深さ方向の元
素濃度プロフィールを調べたところ第5図に示す様にな
った。Ti−6A1−4V合金母材の上にT i −A
 I −V合金皮膜が形成されており、CaおよびPが
母材表面からチタン合金皮膜にかけて交互に注入されて
いると共に次第に濃度が高くなっていおり、このCa、
Pは母材と表面層を強固に結合するものである。また最
表面側には実施例1と同様の皮膜が形成されていた。
The element concentration profile in the depth direction of the surface of this sample was examined using an Auger analyzer, and the profile was as shown in FIG. Ti-A on Ti-6A1-4V alloy base material
An I-V alloy film is formed, and Ca and P are alternately injected from the base metal surface to the titanium alloy film, and the concentration gradually increases.
P firmly bonds the base material and the surface layer. Further, a film similar to that in Example 1 was formed on the outermost surface side.

実施例4 前記実施例3と同様にして得た試料上に化学的な方法(
ゾル−ゲル法)で厚さ数μmのヒドロキシアパタイト層
被覆を形成した。本例は、芯材表面に既にヒドロキシア
パタイト核が形成されている上にヒドロキシアパタイト
を被覆するものであるから従来技術の芯材に直接ヒドロ
キシアパタイトをTi材につけるのに比し、結合力は一
段と向上した。
Example 4 A chemical method (
A hydroxyapatite layer coating with a thickness of several μm was formed using a sol-gel method. In this example, hydroxyapatite cores have already been formed on the surface of the core material, and the hydroxyapatite is coated on top, so the bonding strength is lower than that of the prior art, in which hydroxyapatite is directly attached to the Ti material on the core material. It has improved a lot.

さらに実施例4と同様にして得た試料(人工骨)をイヌ
股関節に埋設したところ14日後には生体骨と結合し、
歩ける様になった。
Furthermore, when the sample (artificial bone) obtained in the same manner as in Example 4 was implanted in the hip joint of a dog, it merged with the living bone after 14 days.
I can now walk.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されているので、本発明の人工
骨は自家骨に対して早期に結合し、しかも長期に亘って
しっかりとした固定を維持する。
Since the present invention is constructed as described above, the artificial bone of the present invention can be bonded to the autologous bone at an early stage, and can maintain firm fixation over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は芯材(TL−6AI−4V合金)にCaをイオ
ン注入した例を示す図、第2図は芯材(TI−6AI−
4V合金)にca、P、O,Hをイオン注入した際の、
表層部における濃度状態図、第3図は第2図における濃
度状態のイオン注入物の最表面を研磨して得たイオン注
入物の濃度状態図、第4図は芯材(Ti−6AI−4V
合金)上にTiを蒸着しつつCaをイオン注入し、さら
にCa、P、O,Hをイオン注入した際における表層部
濃度状態図、第5図は芯材(T i −6A 1−4V
合金)上ニT 1−6A l−4V合金を蒸着しつつC
a、Pを交互にイオン注入した後、さらにCa、P、O
,Hをイオン注入した際における表層部の濃度状態図で
ある。
Figure 1 shows an example of Ca ion implantation into the core material (TL-6AI-4V alloy), and Figure 2 shows the core material (TI-6AI-4V alloy).
When ion-implanting ca, P, O, H into 4V alloy),
Figure 3 is a concentration diagram of the ion implanted material obtained by polishing the outermost surface of the ion implanted product with the concentration shown in Figure 2. Figure 4 is a diagram of the concentration status of the ion implanted material in the surface layer.
Fig. 5 is a surface layer concentration state diagram when Ca is ion-implanted while Ti is vapor-deposited on the core material (T i -6A 1-4V alloy), and Ca, P, O, and H are further ion-implanted.
Alloy) C while depositing T 1-6A l-4V alloy on top
After ion implantation of a and P alternately, Ca, P, and O
, H is a concentration state diagram of the surface layer portion when ions are implanted.

Claims (3)

【特許請求の範囲】[Claims] (1)芯材として金属材料または高強度セラミックス材
料を用い、該芯材の表層部に生体活性無機材料構成成分
元素濃度が外表面にいくに従って漸増する表面層が形成
されていることを特徴とする人工骨。
(1) A metal material or a high-strength ceramic material is used as the core material, and a surface layer is formed in the surface layer of the core material in which the concentration of the constituent elements of the bioactive inorganic material gradually increases toward the outer surface. artificial bone.
(2)芯材として金属材料または高強度セラミックス材
料を用い、該芯材の表層部に生体活性無機材料構成成分
元素をそれぞれイオン注入することにより、あるいは前
記芯材構成成分の蒸着と生体活性無機材料構成成分元素
のイオン注入とを組み合わせることにより、前記芯材の
表面に芯材との一体性の強い生体活性無機材料成分を主
体とする表面層が形成されていることを特徴とする人工
骨。
(2) By using a metal material or a high-strength ceramic material as a core material and ion-implanting the constituent elements of a bioactive inorganic material into the surface layer of the core material, or by vapor deposition of the core material constituent elements and a bioactive inorganic material. An artificial bone characterized in that a surface layer mainly composed of bioactive inorganic material components having strong integration with the core material is formed on the surface of the core material by combining ion implantation of material constituent elements. .
(3)請求項(1)及び(2)の人工骨の表面に生体活
性無機材料を被覆したものである人工骨。
(3) An artificial bone obtained by coating the surface of the artificial bone according to claims (1) and (2) with a bioactive inorganic material.
JP63270135A 1988-10-25 1988-10-25 Artificial bone Pending JPH02114960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63270135A JPH02114960A (en) 1988-10-25 1988-10-25 Artificial bone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63270135A JPH02114960A (en) 1988-10-25 1988-10-25 Artificial bone

Publications (1)

Publication Number Publication Date
JPH02114960A true JPH02114960A (en) 1990-04-27

Family

ID=17482041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63270135A Pending JPH02114960A (en) 1988-10-25 1988-10-25 Artificial bone

Country Status (1)

Country Link
JP (1) JPH02114960A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114657A (en) * 1990-09-05 1992-04-15 Erusoru Prod Kk Artificial bone and manufacture thereof and ceramic for artificial bone
JP2011078749A (en) * 2009-09-10 2011-04-21 Tokyo Metropolitan Industrial Technology Research Institute Artificial bone member
JP2014524904A (en) * 2011-06-24 2014-09-25 ストラウマン ホールディング アーゲー Body made from ceramic material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114657A (en) * 1990-09-05 1992-04-15 Erusoru Prod Kk Artificial bone and manufacture thereof and ceramic for artificial bone
JPH0669484B2 (en) * 1990-09-05 1994-09-07 エルソルプロダクツ株式会社 Artificial bone, manufacturing method thereof, and ceramics for artificial bone
JP2011078749A (en) * 2009-09-10 2011-04-21 Tokyo Metropolitan Industrial Technology Research Institute Artificial bone member
JP2014524904A (en) * 2011-06-24 2014-09-25 ストラウマン ホールディング アーゲー Body made from ceramic material
US9649407B2 (en) 2011-06-24 2017-05-16 Straumann Holding Ag Body made of a ceramic material
JP2017148497A (en) * 2011-06-24 2017-08-31 ストラウマン ホールディング アーゲー Main body made from ceramic material

Similar Documents

Publication Publication Date Title
EP0678300B1 (en) Bone substitute material and process for producing the same
US8703294B2 (en) Bioactive graded zirconia-based structures
Xue et al. In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity
JP4091728B2 (en) Bioimplant material and its manufacturing method
US4702930A (en) Method of producing implantable bone replacement materials
US5344456A (en) Materials for living hard tissue replacements
WO2008002750A2 (en) Laser based metal deposition (lbmd) of antimicrobials to implant surfaces
JPH0148774B2 (en)
Kim et al. Highly adhesive hydroxyapatite coatings on alumina substrates prepared by ion-beam assisted deposition
JP2761339B2 (en) Novel surface coating for prosthetic devices and prosthetic devices coated thereby
US5482731A (en) Method for bonding a calcium phosphate coating to stainless steels and cobalt base alloys for bioactive fixation of artificial implants
Ozeki et al. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment
JPH02114960A (en) Artificial bone
JP2000514343A (en) Methods for improving the osteointegration of bone fixation implants
Safi et al. Effects of long durations of RF–magnetron sputtering deposition of hydroxyapatite on titanium dental implants
JP6045078B2 (en) Monolithic ceramic body having mixed oxide marginal region and metal surface, method for its production and use
JP3325529B2 (en) Biomaterial coated with biocompatible thin film
DE4006379C2 (en) Process for the production of bioactive and mechanically highly resilient implants
JP2775523B2 (en) Bone substitute material and its manufacturing method
JP4625943B2 (en) Bone substitute material and manufacturing method thereof
JPH08117324A (en) Method for manufacturing a bio-implant material
JPH09122223A (en) Organism implant material and manufacture thereof
Yamamoto et al. Optimization of humid conditions using an ultrasonic nebulizer for the fabrication of hydroxyapatite film with the Er: YAG laser deposition method
JPS63160646A (en) Metal implant material
JPH09238965A (en) Bone repair material and bone repair material with apatite film and manufacture thereof