JPH02104124A - Pulse width modulation system - Google Patents

Pulse width modulation system

Info

Publication number
JPH02104124A
JPH02104124A JP25754588A JP25754588A JPH02104124A JP H02104124 A JPH02104124 A JP H02104124A JP 25754588 A JP25754588 A JP 25754588A JP 25754588 A JP25754588 A JP 25754588A JP H02104124 A JPH02104124 A JP H02104124A
Authority
JP
Japan
Prior art keywords
pulse width
modulation
signal
pulse
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25754588A
Other languages
Japanese (ja)
Inventor
Susumu Morikura
晋 森倉
Kiyoshi Kubo
潔 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25754588A priority Critical patent/JPH02104124A/en
Publication of JPH02104124A publication Critical patent/JPH02104124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maximize S/N at the time of demodulation by specifying the size of pulse width to be changed by modulation in accordance with the period of a repeated pulse signal. CONSTITUTION:An input signal (a) is sampled by a repeated pulse signal (b) with a period T and the pulse width of the repeated pulse signal (b) is changed by the sample value. When it is defined that the size of the pulse width to be changed by modulation is DELTAW and the degree (m) of modulation is m=DELTAW/T, the degree (m) of modulation is proportional tp the amplitude of the input signal. On the other hand, the frequency component (spectrum distribution) of a signal can be found out by Fourier analysis and a repeated pulse signal can be found out by Fourier series expansion. Consequently, the value of DELTAW maximizing the S/N is DELTAW=(2/3)T. When the size of the pulse width to be changed by modulation is set up to 2/3 of the period of a repeated pulse, the S/N at the time of modulation can be maximized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、入力信号の情報を、繰シ返しパルスのパルス
幅を変化させることによって、伝送または記録するパル
ス幅変調方式に関するものであム従来の技術 入力信号の情報により、繰り返しパルスのパラメータを
変化させるパルス変調方式の一つとし一パルス幅変調方
式がある(例えば、通信方式、電子通信学会績、PP2
29−233)。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pulse width modulation method for transmitting or recording information of an input signal by changing the pulse width of a repetitive pulse. One of the pulse modulation methods that changes the parameters of the repetitive pulse according to the information of the technical input signal is the pulse width modulation method (e.g., communication method, IEICE, PP2).
29-233).

パルス幅変調方式では、入力信号を標本化し、その標本
値によって繰り返しパルスのパルス幅を変化させる。
In the pulse width modulation method, an input signal is sampled, and the pulse width of a repetitive pulse is varied depending on the sample value.

変調及び復調の具体的方法については、上記文献を始め
多数の文献に記述されているのでここでは省略する。
Specific methods of modulation and demodulation are described in numerous documents including the above-mentioned document, so they will be omitted here.

発明が解決しようとする課題 上述のパルス幅変調方式では、復調時の信号対雑音比は
、変調によって変化するパルス幅の大きさと伝送路の帯
域に依存するが、従来、伝送路の帯域については、十分
な注意が払われていなかった。
Problems to be Solved by the Invention In the pulse width modulation method described above, the signal-to-noise ratio during demodulation depends on the size of the pulse width that changes due to modulation and the band of the transmission line. , not enough attention was paid.

本発明はかかる点に鑑みてなされたもので、伝送路の帯
域に対し、変調のために変化するパルス幅の大きさを最
適値に設定することにより、高品質の信号を伝送または
記録することが出来るパルス幅変調方式を提供すること
を目的としている。
The present invention has been made in view of this point, and it is possible to transmit or record high-quality signals by setting the magnitude of the pulse width that changes for modulation to an optimal value for the band of the transmission path. The purpose of this study is to provide a pulse width modulation method that allows for

課題を解決するための手段 本発明は上記開聞点を解決するため、入力信号を標本化
する繰り返しパルス信号の周期をTとμその標本値によ
り変化するパルス幅の大きさをΔWとするとき、 ΔW=(X)T とするものである。
Means for Solving the Problems In order to solve the above problem, the present invention provides the following equation: where T is the period of a repetitive pulse signal that samples an input signal, μ is the magnitude of the pulse width that changes depending on the sample value, and ΔW is the period of the repetitive pulse signal that samples the input signal. ΔW=(X)T.

作  用 本発明は上記した方式により、入力信号の情報を高品質
のまま伝送または記録することができる。
Operation The present invention can transmit or record input signal information with high quality by using the above-described method.

実施例 本発明方式を説明するため、パルス幅変調信号波形の1
例を第1図に示す。
Example In order to explain the method of the present invention, one of the pulse width modulation signal waveforms will be explained.
An example is shown in FIG.

第1図に示すように、パルス幅変調方式では、入力信号
aを周期Tの繰シ返しパルス信号すで標本化し、その標
本値によυ繰シ返しパルス信号すのパルス幅を変化させ
る。同図aは、繰り返しパルス信号すのパルスの立ち下
がりを変化させた場合を示している。ここで、変調によ
り変化するパルス幅の大きさをΔWとし、変調度mをm
=ΔW/T         ・・・・・・(1)とす
れば、変調度mは入力信号の振幅の大きさに比例してい
る。
As shown in FIG. 1, in the pulse width modulation method, an input signal a is sampled using a repetitive pulse signal with a period T, and the pulse width of the repetitive pulse signal υ is varied according to the sampled value. Figure a shows a case where the falling edge of the pulse of the repetitive pulse signal S is changed. Here, the magnitude of the pulse width that changes due to modulation is ΔW, and the modulation degree m is m
=ΔW/T (1), then the modulation degree m is proportional to the amplitude of the input signal.

一方、信号の周波数成分(スペクトル分布)はフーリエ
解析することによυ求められ、繰り返しパルス信号につ
いては、フーリエ級数展開することによυ求められる。
On the other hand, the frequency component (spectral distribution) of the signal is found by Fourier analysis, and the repetitive pulse signal is found by Fourier series expansion.

周期Tの繰り返しパルス信号に対し、そのパルス幅を変
化させた時のスペクトル分布の計算結果の1例を第2図
(a)〜(d)に示も第2図(a)〜(d)は、それぞ
れ、パルス幅γが繰り返しパルス信号の周期Tの(a)
34−(ト))%、(C)%、(4%の場合の各信号波
形とそのスペクトル分布を示している。スペクトル分布
を示すグラフでは、横軸は周波数、縦軸は各周波数成分
に対する複素振幅である。図より明らかなように、繰り
返しパルス信号では、高い周波数成分は急速に減衰する
An example of the calculation results of the spectral distribution when the pulse width is changed for a repetitive pulse signal with period T is shown in Fig. 2 (a) to (d). are (a) where the pulse width γ is the period T of the repetitive pulse signal, respectively.
34-(G)%, (C)%, (4%) Each signal waveform and its spectral distribution are shown. In the graph showing the spectral distribution, the horizontal axis is the frequency, and the vertical axis is the frequency for each frequency component. It is a complex amplitude.As is clear from the figure, in a repetitive pulse signal, high frequency components attenuate rapidly.

また、パルス幅が狭くなるにつれ、その周波数成分は高
域に広がる。したがって、例えばパルス幅rが繰り返し
周期TのZの場合(c)、スペクトル成分は、fo、2
.fo、3.fo(fo=1/T)に存在し、4%0以
上ではほぼ零になる。このため、信号(0)を伝送し、
復調する場合、実用上伝送路の周波数帯域は4fO=f
ohればよい。このfoを遮断周波数と呼ぶ。一般に、
パルス幅rをγ= T/Nとすれば、そのパルス信号に
対する遮断周波数fcは、fo= 1/r=Nx(1/
T) となり、パルス幅γのほぼ逆数となる。
Furthermore, as the pulse width becomes narrower, its frequency components spread to higher frequencies. Therefore, for example, if the pulse width r is Z with a repetition period T (c), the spectral components are fo, 2
.. fo, 3. fo (fo=1/T), and becomes almost zero at 4%0 or more. Therefore, the signal (0) is transmitted,
When demodulating, the practical frequency band of the transmission path is 4fO=f
Just oh. This fo is called the cutoff frequency. in general,
If the pulse width r is γ = T/N, the cutoff frequency fc for that pulse signal is fo = 1/r = Nx (1/
T), which is approximately the reciprocal of the pulse width γ.

これより、パルス幅変調でその繰り返しパルスのパルス
幅の大きさをΔW変化させた場合、その最小パルス幅は
(T−ΔW)/2となるため、伝送路の遮断周波数f。
From this, when the magnitude of the pulse width of the repetitive pulse is changed by ΔW by pulse width modulation, the minimum pulse width is (T-ΔW)/2, so the cutoff frequency f of the transmission path.

は、 f  =2/(T−ΔW)   ・・・・・・・・・・
・・・・・(2)となる。
is f = 2/(T-ΔW) ・・・・・・・・・
...(2).

ここで、伝送路の雑音は、通常ランダムであるため、伝
送路の遮断周波数f0は雑音帯域に等しい。
Here, since the noise on the transmission path is usually random, the cutoff frequency f0 of the transmission path is equal to the noise band.

以上より、復調時の相対的な信号パワ一対雑音パワー(
相対SN比)は、変調度mと伝送路の遮断周波数f0を
用いて、d/foとなる。
From the above, the relative signal power versus noise power during demodulation (
The relative SN ratio is d/fo using the modulation degree m and the cutoff frequency f0 of the transmission path.

(1) 、 (2)式よシ相対S/N比 frI/fo
を計算し1、整理すると、 ガf  =(TΔW2−ΔW’)/2T2 ・・・・・
・・・・(@となる。(鴫式より、相対SN比は、変化
するパルス幅の大きさΔWの3乗の関数になる。1例と
して、T = 8ns  とした場合の計算結果を第3
図に示す。なお、第3図では、縦軸の最大値が1になる
ように、規格化している。
According to equations (1) and (2), the relative S/N ratio frI/fo
Calculate 1 and rearrange as follows: f = (TΔW2−ΔW')/2T2...
...(@). (From the Shizuru formula, the relative SN ratio is a function of the cube of the changing pulse width ΔW. As an example, the calculation result when T = 8 ns is 3
As shown in the figure. Note that in FIG. 3, the values are standardized so that the maximum value on the vertical axis is 1.

第3図に示すように、mすなわち変調のために変化する
パルス幅の大きさが大きくなるにつれ、相対SN比の値
もまた増加するが、変化するパルス幅の大きさがある値
より大きくなると相対SN比の値は減少する。
As shown in Figure 3, as m, that is, the magnitude of the pulse width that changes due to modulation, increases, the value of the relative SNR also increases, but when the magnitude of the pulse width that changes becomes larger than a certain value. The relative signal-to-noise ratio value decreases.

したがって、パルス幅変調方式では伝送帯域foに対し
S/N比が最大になるパルス幅の大きさΔWが存在する
Therefore, in the pulse width modulation method, there is a pulse width size ΔW at which the S/N ratio is maximum for the transmission band fo.

S/N比を最大にするΔWの値は、(@式を微分するこ
とにより d Crrf/f0)/d (ΔW)=02TΔW−Δ
W2=。
The value of ΔW that maximizes the S/N ratio is obtained by differentiating the equation (@d Crrf/f0)/d (ΔW)=02TΔW−Δ
W2=.

Δ’W=(2/3)T 即ち、変調により変化するパルス幅の大きさ〃(繰シ返
しパルスの周期の%のとき、復調時のS/N比が最大に
なる。
Δ'W=(2/3)T That is, when the magnitude of the pulse width that changes due to modulation (% of the period of the repetitive pulse), the S/N ratio during demodulation becomes maximum.

発明の効果 以上述べたように、変調により変化するパルス幅の大き
さを、繰り返しパルス信号の周期のほぼ%とすることに
より、復調時のS/N比が最大になるので、実用上極め
て有用なパルス幅変調方式を提供することが出来る。
Effects of the Invention As stated above, by setting the magnitude of the pulse width that changes due to modulation to approximately % of the period of the repetitive pulse signal, the S/N ratio during demodulation is maximized, which is extremely useful in practice. A pulse width modulation method can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するためのパルス幅変調信号の1
例を示す図、第2図は同変調信号のスペクトル分布の1
例を示す図、第3図は伝送路の帯域を考慮した復調時の
相対S/N比の計算結果を示す図である。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第1
図 //7=2紐i
FIG. 1 shows one example of a pulse width modulation signal for explaining the present invention.
Figure 2 shows an example of the spectral distribution of the modulated signal.
FIG. 3, which is a diagram showing an example, is a diagram showing calculation results of the relative S/N ratio during demodulation taking into consideration the band of the transmission path. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1st
Figure //7 = 2 strings i

Claims (1)

【特許請求の範囲】 入力信号を標本化する繰り返しパルス信号の周期をTと
し、その標本値により変化するパルス幅の最大変化量を
ΔWとするとき、 ΔW=(2/3)T の関係にあることを特徴とするパルス幅変調方式。
[Claims] When the cycle of a repetitive pulse signal that samples an input signal is T, and the maximum amount of change in the pulse width that changes depending on the sample value is ΔW, the relationship ΔW=(2/3)T holds true. A pulse width modulation method characterized by:
JP25754588A 1988-10-13 1988-10-13 Pulse width modulation system Pending JPH02104124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25754588A JPH02104124A (en) 1988-10-13 1988-10-13 Pulse width modulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25754588A JPH02104124A (en) 1988-10-13 1988-10-13 Pulse width modulation system

Publications (1)

Publication Number Publication Date
JPH02104124A true JPH02104124A (en) 1990-04-17

Family

ID=17307773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25754588A Pending JPH02104124A (en) 1988-10-13 1988-10-13 Pulse width modulation system

Country Status (1)

Country Link
JP (1) JPH02104124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068979A (en) * 1999-07-19 2001-03-16 Mannesmann Vdo Ag Modulating method for base clock for digital circuit and clock modulator
JP2001068980A (en) * 1999-07-19 2001-03-16 Mannesmann Vdo Ag Modulating method of base clock for digital circuit and modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068979A (en) * 1999-07-19 2001-03-16 Mannesmann Vdo Ag Modulating method for base clock for digital circuit and clock modulator
JP2001068980A (en) * 1999-07-19 2001-03-16 Mannesmann Vdo Ag Modulating method of base clock for digital circuit and modulator
JP4597326B2 (en) * 1999-07-19 2010-12-15 マンネスマン ファウ デー オー アクチエンゲゼルシャフト Base clock modulation method and clock modulator for digital circuit

Similar Documents

Publication Publication Date Title
US4626803A (en) Apparatus for providing a carrier signal with two digital data streams I-Q modulated thereon
JP2004527157A (en) Digital modulator in system and method of using same
EP0266409A1 (en) Apparatus useful in channel equalization adjustment
US4726039A (en) Constant amplitude PSK modulator
US6744825B1 (en) Method and system for quadrature modulation and digital-to-analog conversion
JPS5551351A (en) Sound stereoscopic image pickup system
JPH02104124A (en) Pulse width modulation system
Peterson Frequency detection and speech formants
AU703191B2 (en) Digital center line filter
US5740805A (en) Ultrasound beam softening compensation system
US4267600A (en) Modulation monitoring apparatus
GB2029675A (en) Circuit arrangement for generating sampling pulses for use in receiving stations of data transmission
US5748667A (en) Spread spectrum modulation using time varying linear filtering
Broch et al. On the frequency analysis of mechanical shocks and single impulses
JPS61247109A (en) Low carrier fm demodulator
Straessner et al. Some Experience with the Computerized Noise Monitoring System at Stuttgart Airport
JPS605637A (en) Spread spectrum communication system
Bickel Real‐Time Shock‐Spectrum Analyzer Employing Time Compression and Synthesizing Undamped Response Characteristics
SU915282A1 (en) Method of automatic aligning of rasters
JPS59132267A (en) Waveform shaping circuit of burst data signal of transmitter of slave station for multidirection multiplex communication
SU736164A1 (en) Device for reproducing signals from magnetic carrier
Galloway et al. Real‐Time Spectral Analysis of Aircraft Flyover Noise
SU834577A1 (en) Method of signal spectrum analysis
KR930004264B1 (en) Digital signal modulation circuit
James Analysis of an impulse noise suppressor for FM demodulators