JPH0195564A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0195564A
JPH0195564A JP62254146A JP25414687A JPH0195564A JP H0195564 A JPH0195564 A JP H0195564A JP 62254146 A JP62254146 A JP 62254146A JP 25414687 A JP25414687 A JP 25414687A JP H0195564 A JPH0195564 A JP H0195564A
Authority
JP
Japan
Prior art keywords
insulating film
layer
ion implantation
forming
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62254146A
Other languages
Japanese (ja)
Other versions
JPH0543291B2 (en
Inventor
Kazuhiko Inoue
和彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62254146A priority Critical patent/JPH0195564A/en
Priority to US07/253,171 priority patent/US4895811A/en
Priority to DE3886871T priority patent/DE3886871T2/en
Priority to EP88116670A priority patent/EP0311109B1/en
Publication of JPH0195564A publication Critical patent/JPH0195564A/en
Publication of JPH0543291B2 publication Critical patent/JPH0543291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66924Unipolar field-effect transistors with a PN junction gate, i.e. JFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/088J-Fet, i.e. junction field effect transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/10Lift-off masking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/105Masks, metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To position a gate electrode highly accurately by a method wherein, after a first ion implantation layer of a first conductivity has been formed on a semiconductor substrate and a second ion implantation layer of a second conductivity has been formed on it, the first and the second ion implantation layers are activated. CONSTITUTION:Ions of an impurity are implanted into a compound semiconductor substrate 10; first ion implantation layers 11, 12 of a first conductivity type are formed on its surface; a first insulating film 14 is formed on a whole face of the substrate 10. Then, a second insulating film 16 having an opening 15 is formed on the first insulating film 14; ions of an impurity are implanted into the first ion implantation layers 11, 12 through the opening 15 in the second insulating film 16; a second ion implantation layer 13 of a second conductivity type is formed on the surface. Then, the second insulating film 16 is removed; while only a conductor layer 19 on an exposed face of the substrate 10 is left, a surface electrode 20 is formed; after that, an annealing operation is executed; the first and the second ion implantation layers 11-13 are activated. By this setup, a gate electrode can be positioned highly accurately with reference to a gate region of a fine size.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は■−v族の化合物半導体基板を用いた接合型
電界効果型の半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a junction field effect semiconductor device using a ■-v group compound semiconductor substrate.

(従来の技術) 電界効果型の半導体装置いわゆるFETのうち、■−v
族の化合物半導体を基板として用いたちのにGaASF
ET等がある。このGaASFETはジットキーバリヤ
・ゲートを用いた、いわゆるMES型のものがプロセス
の簡便さから広く使用されている。他方、接合型FET
 (以下、J−FETと称する)は、接合のバリヤハイ
ドφBを1V以上と大きくとることができ、ノーマリ−
オフ型としても十分な動作余裕が得られることや、イオ
ン注入によりNチャネル及びPチャネルの両構造のもの
が製造可能であり、相補型回路構成が実現できること、
等の利点がある。しかし、ゲート部の微細加工がMES
型のものに比較して困難であり、その発展が今なお遅れ
ている状況にある。
(Prior art) Among field-effect semiconductor devices, so-called FETs, ■-v
Although GaASF uses a group of compound semiconductors as a substrate,
There are ET etc. A so-called MES type GaASFET using a Jittky barrier gate is widely used because of its simple process. On the other hand, junction type FET
(hereinafter referred to as J-FET), the barrier hide φB of the junction can be set as large as 1V or more, and the normally
It is possible to obtain sufficient operating margin even as an off-type device, and it is possible to manufacture both N-channel and P-channel structures by ion implantation, and a complementary circuit configuration can be realized.
There are advantages such as However, the fine processing of the gate part is
It is more difficult than conventional methods, and its development is still lagging behind.

ところで、J−FETはゲート領域の形成方法によって
、拡散接合型、イオン注入接合型、エピタキシャル成長
接合型等、種々の形式のものがあるが、いずれのものも
ゲート電極の取り出しが問題になっている。すなわち、
従来ではゲート領域を形成した後、この上にマスク合せ
−によってゲート電極を位置合せし、リフトオフ法ある
いはエツチング法で形成する方法や、ゲート領域上には
ゲート電極を直接設けず、ゲート領域と導通した一部の
領域を介してゲート電極とコンタクトをとる方法がある
By the way, there are various types of J-FETs depending on the method of forming the gate region, such as diffusion bonding type, ion implantation bonding type, epitaxial growth bonding type, etc., but in all of them, the problem is that the gate electrode can be taken out. . That is,
Conventionally, after forming a gate region, a gate electrode is aligned by mask alignment on top of the gate electrode, and then formed using a lift-off method or an etching method, or the gate electrode is not directly provided on the gate region, and conduction with the gate region is formed. There is a method of making contact with the gate electrode through a part of the region.

ところで、ゲート領域は微小領域である。その理由は、
素子の性能因子としての相互コンダクタンスgmはW(
チャネル幅)/L(チャネル長)−に比例するため、Q
lllの値を小さくするにはWが細(、かつLが長くな
らざるを得ない。問題はこの1μm〜2μm程度の微小
領域上にゲート電極を位置決めするには、マスク合せの
精度を轟く見積もっても歩留り等の量産性の観点からし
て実施は不可能である。
By the way, the gate region is a minute region. The reason is,
The mutual conductance gm as a performance factor of the element is W(
Q
In order to reduce the value of lll, W must be thin (and L must be long).The problem is that in order to position the gate electrode on this micro region of about 1 μm to 2 μm, it is necessary to estimate the accuracy of mask alignment. However, implementation is impossible from the viewpoint of mass production such as yield.

また、ゲート領域と導通した一部領域を介する方法は、
ゲートの引き回しが半導体層でなされることになり、金
属配線に比べて約1〜2桁だけゲート抵抗が増大する。
In addition, the method using a partial region that is electrically connected to the gate region is
Since the gate is routed through the semiconductor layer, the gate resistance increases by about one to two orders of magnitude compared to metal wiring.

従って、このような方法は、低周波用FETでは影菅は
小さいが、高周波になるに従い素子の性能である雑音指
数(NF)や利得が低下するため、主に高周波の用途で
は好ましくない。
Therefore, although such a method has a small effect on low-frequency FETs, it is not preferable mainly for high-frequency applications because the noise figure (NF) and gain, which are the performance of the device, decrease as the frequency increases.

(発明が解決しようとする問題点) このように従来の製造方法において、ゲート領域に対し
てゲート電極を位置決めする方法は歩留り等の量産性の
観点からして実施は不可能であり、。
(Problems to be Solved by the Invention) As described above, in the conventional manufacturing method, the method of positioning the gate electrode with respect to the gate region is impossible to implement from the viewpoint of mass production such as yield.

ゲート領域と導通した一部領域を介する他の方法では性
能が劣化し、高周波用途には使用できな(Xという問題
がある。
Other methods using a partial region electrically connected to the gate region degrade the performance and cannot be used for high frequency applications (there is a problem called X).

この発明は上記のような事情を考慮してなされたもので
あり、その目的は、微小寸法のゲート領域に対してゲー
ト電極を高精度に位置決めすることができ、かつ高周波
用途に適したものを製造することができる半導体装置の
製造方法を提供することにある。
This invention was made in consideration of the above-mentioned circumstances, and its purpose is to provide a gate electrode that can be positioned with high precision in a gate region of minute dimensions and that is suitable for high frequency applications. An object of the present invention is to provide a method for manufacturing a semiconductor device that can be manufactured.

[発明の構成] (問題点を解決するための手段) この発明の半導体装置の製造方法は、化合物半導体基板
に不純物イオンを注入してその表面に第1導電型の第1
イオン注入層を形成する工程と、上記基板の全面に第1
絶n膜を形成する工程と、一部に第1の開口部を有する
第2絶縁膜を上記第1絶縁膜上に形成する工程と、上記
第2絶縁膜をマスクとして用いた選択蝕刻法により上記
第1絶縁膜に第2の開口部を形成する工程と、上記第2
絶縁膜の第1の開口部を通じて不純物イオンを上記第1
イオン注入層に注入しその表面に第2導電型の第2イオ
ン注入層を形成する工程と、上記第一2絶縁膜を残した
状態で少なくともゝ最下層が高融点金属層もしくは高融
点金属を含む層からなる導電体層を堆積する工程と、上
記第2絶縁膜を除去することによりその表面上の導電体
層を除去し第2絶縁膜の第1の開口部を通じて基板の露
出面上に堆積された導電体層のみを残して表面電極を形
成する工程と、アニール処理を行なって上記第1、第2
イオン注入層を活性化する工程とから構成されている。
[Structure of the Invention] (Means for Solving the Problems) A method for manufacturing a semiconductor device according to the present invention includes implanting impurity ions into a compound semiconductor substrate to form a first conductivity type first impurity ion on the surface of the compound semiconductor substrate.
A step of forming an ion implantation layer and a step of forming a first layer on the entire surface of the substrate.
A step of forming an insulating film, a step of forming a second insulating film having a first opening in a part on the first insulating film, and a selective etching method using the second insulating film as a mask. forming a second opening in the first insulating film;
Impurity ions are introduced into the first opening through the first opening of the insulating film.
A step of implanting ions into the ion-implanted layer and forming a second ion-implanted layer of a second conductivity type on the surface of the ion-implanted layer; and a step of implanting at least a refractory metal layer or a refractory metal layer in the lowermost layer with the first insulating film remaining. a step of depositing a conductive layer comprising a layer containing the second insulating film, and removing the conductive layer on the surface thereof by removing the second insulating film, and depositing the conductive layer on the exposed surface of the substrate through the first opening of the second insulating film. A step of forming a surface electrode while leaving only the deposited conductor layer, and an annealing treatment are performed to
The method consists of a step of activating the ion implantation layer.

さらにこの半導体装置の製造方法は、化合物半導体基板
上に第1導電型の半導体領域を形成する工程と、一部に
開口部を有する絶縁膜を上記半導体領域上に形成する工
程と、上記絶縁膜をマスクとして用いた選択蝕刻法によ
り上記半導体領域の表面に溝を形成する工程と、上記絶
縁膜の開口部を通じて不純物イオンを上記溝内に注入し
半導体領域の表面に第2導電型のイオン注入層を形成す
る工程と、上記絶縁膜を残した状態で少なくとも最下層
が高融点金属層もしくは高融点金属を含む層からなる導
電体層を堆積する工程と、上記絶縁膜を除去することに
よりその表面上の導電体層を除去し、上記絶縁膜の開口
部を通じて半導体領域の表面上に堆積された導電体層の
みを残して表面電極を形成する工程と、アニール処理を
行なって上記イオン注入層を活性化する工程とから構成
されている。
Further, the method for manufacturing a semiconductor device includes a step of forming a first conductivity type semiconductor region on a compound semiconductor substrate, a step of forming an insulating film having an opening in a part on the semiconductor region, and a step of forming the insulating film on the semiconductor region. forming a groove in the surface of the semiconductor region by selective etching using a mask as a mask, and implanting impurity ions into the groove through the opening of the insulating film to implant ions of a second conductivity type into the surface of the semiconductor region. a step of forming a conductive layer, a step of depositing a conductor layer whose bottom layer is at least a refractory metal layer or a layer containing a refractory metal while leaving the insulating film; A process of removing the conductive layer on the surface and forming a surface electrode by leaving only the conductive layer deposited on the surface of the semiconductor region through the opening of the insulating film, and performing an annealing treatment to remove the ion-implanted layer. The process consists of a step of activating the .

(作用) この発明の方法では、ゲート領域形成のためのイオン注
入用のマスクとして使用する絶縁膜をゲート電極材料堆
積用のマスクとしても使用することにより、ゲート領域
に対してゲート電極が自己整合的に形成される。
(Function) In the method of the present invention, the insulating film used as a mask for ion implantation to form a gate region is also used as a mask for depositing gate electrode material, so that the gate electrode is self-aligned with respect to the gate region. is formed.

(実施例) 以下、図面を参照してこの発明を実施例により説明する
(Examples) Hereinafter, the present invention will be explained by examples with reference to the drawings.

第1図(a)ないしくf)は、この発明をイオン注入接
合型のJ−FETの製造方法に実施した場合の各工程を
順次示す断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views sequentially showing each step when the present invention is applied to a method of manufacturing an ion implantation junction type J-FET.

まず、GaAS基板10にSlを選択的にイオン注入す
る。このとき、ソース、ドレイン形成予定領域には、イ
オンの加速電圧Vacを180KeV。
First, ions of Sl are selectively implanted into the GaAS substrate 10. At this time, an ion acceleration voltage Vac of 180 KeV is applied to the regions where the source and drain are to be formed.

ドーズff1Qdを5×1013/cm2の条件でイオ
ン注入を行なってイオン注入層11及び12を形成する
。また、チャネル形成予定領域には、イオンの加速電圧
Vacを100KeV、ドーズ量Qdを3X10’ 2
/cm2の条件でイオン注入を行なってイオン注入層1
3を形成する(第1図(a))。
Ion implantation is performed at a dose of ff1Qd of 5×10 13 /cm 2 to form ion implanted layers 11 and 12. In addition, in the region where the channel is to be formed, the ion acceleration voltage Vac is set to 100 KeV, and the dose amount Qd is set to 3×10' 2
The ion implantation layer 1 was formed by performing ion implantation under the condition of /cm2.
3 (Fig. 1(a)).

次に全面にCVD (化学的気相成長法法)によって5
10211g14を5000人の厚みに形成し、その上
にゲート領域に対応した箇所に開口部15を有するフォ
トレジスト膜16を形成する。続いて、このフォトレジ
ストvA16をマスクに用いて上記5iO21114を
NH4F溶液を用いた等方性エツチング技術によってエ
ツチングし、S i 021114に開口部17を形成
する。この後、上記開口部15及び17を通じてイオン
注入層13の表面にznを加速電圧yacが80KeV
、ドーズ量QdがlX101 ’ /cm”の条件でイ
オン注入し、イオン注入Wi1Bを形成する(第1図(
b))。
Next, the entire surface is coated with 5 layers by CVD (chemical vapor deposition method).
10211g14 is formed to a thickness of 5000 mm, and a photoresist film 16 having an opening 15 at a location corresponding to the gate region is formed thereon. Subsequently, using this photoresist vA16 as a mask, the 5iO21114 is etched by an isotropic etching technique using an NH4F solution to form an opening 17 in the Si021114. After that, zn is applied to the surface of the ion implantation layer 13 through the openings 15 and 17 at an acceleration voltage yac of 80 KeV.
, ion implantation is performed under the condition that the dose amount Qd is lX101'/cm'' to form ion-implanted Wi1B (see Fig. 1).
b)).

次にゲート電極形成用の金属として第1層に1000人
の厚みのTiW層を、第2WAに5000人の厚みのA
u層をそれぞれArガス雰囲気中のスパッタリング法に
より堆積して導電体層19を形成する。このとき、Si
O2膜14膜形4された開口部17を通じてイオン注入
11i13の表面にも導電体層19Aが形成される(第
1図(C))。
Next, as the metal for forming the gate electrode, a TiW layer with a thickness of 1,000 wafers is used as the first layer, and a TiW layer with a thickness of 5,000 wafers is used as the second layer.
A conductor layer 19 is formed by depositing each U layer by sputtering in an Ar gas atmosphere. At this time, Si
A conductive layer 19A is also formed on the surface of the ion implantation layer 11i13 through the opening 17 formed in the O2 film 14 (FIG. 1(C)).

なお、この導電体M19としては、この後のアニールに
よってもゲート領域とのオーミック接触が劣化しないよ
うな材料であればよく、他にTiW層、WN層、WSi
l等からなる高融点金属を含む層やWNiiとAu層の
二層構造等、GaAS基板10と接触する層が高融点金
属からなる構造が使用できる。
The conductor M19 may be made of any material that does not deteriorate the ohmic contact with the gate region even after subsequent annealing, and may be made of a TiW layer, a WN layer, a WSi layer, etc.
A structure in which the layer in contact with the GaAS substrate 10 is made of a high melting point metal, such as a layer containing a high melting point metal such as L or a two-layer structure of WNii and an Au layer, can be used.

次に上記フォトレジスト膜16を除去することによりそ
の表面に形成された導電体層19も同時に除去する。す
なわち、いわゆるリフトオフによって導電体層19を除
去することによってイオン注入層13の表面に形成され
た導電体WJ19Aのみを残し、ゲート電極20を形成
する。(第1図(d))。
Next, by removing the photoresist film 16, the conductor layer 19 formed on the surface thereof is also removed at the same time. That is, by removing the conductor layer 19 by so-called lift-off, only the conductor WJ19A formed on the surface of the ion implantation layer 13 is left, and the gate electrode 20 is formed. (Figure 1(d)).

次に上記5i0211114を除去した後、CVDによ
り全面にPSGg!21を5000人の厚さで形成し、
しかる後、Arガス雰囲気中で800℃、15分のアニ
ール処理を行ない、既にイオン注入した不純物を活性化
してN+型のソース、ドレイン領域22.23、N型の
チャネル領域24及びP型のゲート領域25をそれぞれ
形成する(第1図(e))。
Next, after removing the above 5i0211114, PSGg! is applied to the entire surface by CVD. 21 with a thickness of 5000 people,
Thereafter, an annealing process is performed at 800° C. for 15 minutes in an Ar gas atmosphere to activate the impurities that have been ion-implanted and form the N+ type source and drain regions 22 and 23, the N type channel region 24, and the P type gate. Regions 25 are respectively formed (FIG. 1(e)).

これと同時にゲート電極20がゲート領域25の表面に
対してオーミック接触し、ゲート構造が完成する。
At the same time, the gate electrode 20 comes into ohmic contact with the surface of the gate region 25, completing the gate structure.

最後に、第1層がGeを5%含む2000人の厚みのA
uGe膜及び第2層が1000人の厚みのソース電極2
6及びドレイン電極27を例えばリフトオフ法によって
形成し、この後、400℃で3分間のアロイ化を行なっ
てオーミック接触を図り、所望のJ−FET構造が完成
する(第1図(f))。
Finally, the first layer contains 5% Ge and has a thickness of 2000 people.
Source electrode 2 with uGe film and second layer 1000 μm thick
6 and drain electrode 27 are formed by, for example, a lift-off method, and then alloying is performed at 400° C. for 3 minutes to establish ohmic contact, thereby completing the desired J-FET structure (FIG. 1(f)).

このような方法によって製造されるFETでは、ゲート
領域25上にゲート電極20が直接接触することになる
ので、ゲート抵抗を十分に低減することができ、高周波
における雑音指数や利得を損うことがない。また、P型
のゲート領域25とゲート電極20とはフォトレジスト
g!16の同じ開口部15を通じてイオン注入もしくは
スパッタリングが行なわれることによって形成され、両
者は自己整合的に位置合せが行なわれる。このため、ゲ
ート領域25を微小寸法で形成しても、歩留りを落とさ
ずにゲート電極20を配置することができる。
In the FET manufactured by this method, the gate electrode 20 is in direct contact with the gate region 25, so the gate resistance can be sufficiently reduced, and the noise figure and gain at high frequencies are not impaired. do not have. Furthermore, the P-type gate region 25 and the gate electrode 20 are made of photoresist g! They are formed by performing ion implantation or sputtering through the same openings 15 of 16, and the two are aligned in a self-aligned manner. Therefore, even if the gate region 25 is formed with minute dimensions, the gate electrode 20 can be arranged without reducing the yield.

ところで、上記実施例の方法ではゲート電極20を形成
した後にアニール処理を行なってN+型のソース、ドレ
イン領t4t22.23、N型のチャネル領域24及び
P型のゲート領域25を形成している。そして、イオン
注入11118の活性化の際にゲート領域25は横方向
に伸びるため、ゲート電極20がチャネル領域24と接
触する恐れはほとんどない。しかしながら、イオン注入
される不純物は基板10に対してほぼ垂直に入射するが
、スパッタリング法によるゲート電極材料はプラネタリ
−の設定角度に振られるので、極めて希ではあるがゲー
ト電極20がチャネル領域24と接触することも考えら
れる。
By the way, in the method of the above embodiment, after forming the gate electrode 20, an annealing treatment is performed to form the N+ type source and drain regions t4t22.23, the N type channel region 24, and the P type gate region 25. Since the gate region 25 extends laterally during the activation of the ion implantation 11118, there is almost no possibility that the gate electrode 20 will come into contact with the channel region 24. However, although the impurities to be ion-implanted are incident almost perpendicularly to the substrate 10, the gate electrode material by sputtering is distributed at a planetary setting angle. Contact is also possible.

−第2図(a)ないしは(C)は、上記のようなゲート
電極20とチャーネル領域24との接触を防止できるよ
うにしたこの発明の他の実施例による方法の工程を順次
示す断面図である。この実施例の方法では、前記第1図
(a)から(C)の工程までは同様である。その後、リ
フトオフによって導電体層19を除去し、導電体層19
Aのみを残してゲート電極20を形成する。続いて、前
記S i 02膜14及びゲート電極20をマスクにし
て再びznを加速電圧Vacが80KeV、ドーズlQ
dが1X101!I/cm2の条件でイオン注入するこ
とにより、寸法が拡大されたイオン注入FIJ18を形
成する(第2図(a))。
- FIGS. 2A to 2C are cross-sectional views sequentially showing the steps of a method according to another embodiment of the present invention, which is capable of preventing contact between the gate electrode 20 and the channel region 24 as described above. be. In the method of this embodiment, the steps from FIG. 1(a) to FIG. 1(C) are the same. After that, the conductor layer 19 is removed by lift-off, and the conductor layer 19 is removed.
A gate electrode 20 is formed leaving only A. Subsequently, using the Si 02 film 14 and the gate electrode 20 as a mask, Zn is again accelerated at an acceleration voltage Vac of 80 KeV and a dose lQ.
d is 1X101! By performing ion implantation under the condition of I/cm2, an ion implanted FIJ 18 with enlarged dimensions is formed (FIG. 2(a)).

この後は第1図の場合と同様、まず、CVDにより全面
にPSGg121を5000人の厚さで形成し、しかる
後、Arガス雰囲気中で800℃、15分のアニール処
理を行ない、既にイオン注入した不純物を活性化してN
+型のソース、ドレイン領域22.23、N型のチャネ
ル領域24及びP型のゲート領域25をそれぞれ形成す
る(第2図(b))。
After this, as in the case of Fig. 1, PSGg121 is first formed to a thickness of 5,000 yen on the entire surface by CVD, and then annealing treatment is performed at 800°C for 15 minutes in an Ar gas atmosphere, and ions have already been implanted. Activate the impurities
+-type source and drain regions 22 and 23, an N-type channel region 24, and a P-type gate region 25 are formed (FIG. 2(b)).

続いて、ソース電穫26及びドレイン電極27を形成し
、この後にアロイ化を行なってオーミック接触を図り、
所望のJ−FET構造が完成する(第2図(C))。
Next, a source electrode 26 and a drain electrode 27 are formed, and then alloying is performed to achieve ohmic contact.
The desired J-FET structure is completed (FIG. 2(C)).

このような方法によれば、ゲート電極20に対しゲート
領域25が横方向に広がって形成されるため、ゲート電
極20とチャネル領域24との接触が防止できる。
According to such a method, since the gate region 25 is formed to extend laterally with respect to the gate electrode 20, contact between the gate electrode 20 and the channel region 24 can be prevented.

第3図(a)ないしくe)は、この発明をエピタキシャ
ル成長接合型のJ−FETの製造方法に実施した場合の
各工程を順次示す断面図である。
FIGS. 3(a) to 3(e) are cross-sectional views sequentially showing each step when the present invention is applied to a method for manufacturing an epitaxially grown junction type J-FET.

まず、GaAS基板30上にエピタキシャル成長法によ
ってN型のGaAS半導体領域31を形成する。次に、
その上にゲート領域に対応した箇所に開口部32を有す
るフォトレジストWA33を形成し、続いて、このフォ
トレジスト[133をマスクに用いて上記N型GaAS
半導体領域31をエツチングし、目的とする同値に対応
した深さの溝34を形成する。
First, an N-type GaAS semiconductor region 31 is formed on a GaAS substrate 30 by epitaxial growth. next,
A photoresist WA33 having an opening 32 at a location corresponding to the gate region is formed thereon, and then, using this photoresist [133 as a mask, the N-type GaAS
The semiconductor region 31 is etched to form a trench 34 having a depth corresponding to the desired equivalent value.

このときのエツチングは、例えばリン酸が3、過酸化水
溶液が1、−純水が50の容積比のエツチンーグ溶液を
用いて行なう(第3図(a))。
Etching at this time is carried out using an etching solution having a volume ratio of, for example, 3 parts of phosphoric acid, 1 part of aqueous peroxide solution, and 50 parts of pure water (FIG. 3(a)).

この後、上記フォトレジストll33の開口部32を通
じて溝34の底部に対応したN型GaAs半導体領域3
1にznを加速電圧VaCが80KeV、ドーズ量Qd
が1X101’/Cm2の条件でイオン注入し、イオン
注入1l135を形成する(第3図(b))。
After that, the N-type GaAs semiconductor region 3 corresponding to the bottom of the groove 34 is passed through the opening 32 of the photoresist ll33.
1, acceleration voltage VaC is 80 KeV, dose amount Qd
Ion implantation is performed under the condition of 1.times.101'/Cm2 to form ion implantation 11135 (FIG. 3(b)).

次iゲート電極形成用の金属として第1層に1000、
人の厚みのTiW層を、第21に5000人の厚みのA
u1mをそれぞれArガス雰囲気中のスパッタリング法
により堆積して導電体H36を形成する。このとき、フ
ォトレジスト膜33に形成された開口部32を通じてイ
オン注入層35の表面にも導電体層36Aが形成される
(第3図(C))。なお、第1図の実施例の場合と同様
、この導電体層36としてはこの後のアニールによって
もゲート領域とのオーミック接触が劣化しないような材
料であればよく、他にTiW層、WNil。
1000 in the first layer as a metal for forming the gate electrode,
A TiW layer with a thickness of 5000 people was added to the 21st TiW layer with a thickness of 5000 people.
A conductor H36 is formed by depositing u1m by sputtering in an Ar gas atmosphere. At this time, a conductive layer 36A is also formed on the surface of the ion implantation layer 35 through the opening 32 formed in the photoresist film 33 (FIG. 3(C)). As in the case of the embodiment shown in FIG. 1, the conductor layer 36 may be made of any material that does not deteriorate the ohmic contact with the gate region even after subsequent annealing, and other materials include TiW layer and WNil.

WSili等からなる高融点金属を含む層やWN層とA
u層の二層構造等、N型GaAs半導体領域31と接触
する層が高融点金属からなる構造が使用できる。
A layer containing a high melting point metal such as WSili or a WN layer and A
A structure in which the layer in contact with the N-type GaAs semiconductor region 31 is made of a high melting point metal, such as a two-layer structure of a u layer, can be used.

次に上記フォトレジストWi33を除去することにより
、その表面に形成された導電体層36を同時に除去する
。すなわち、いわゆるリフトオフによって導電体層36
を除去し、これによりN型GaAs半導体領域31の表
面に形成された導電体層36Aのみを残すことによって
ゲート電極37を形成する。
Next, by removing the photoresist Wi33, the conductor layer 36 formed on its surface is also removed at the same time. That is, the conductor layer 36 is removed by so-called lift-off.
is removed, thereby leaving only the conductor layer 36A formed on the surface of the N-type GaAs semiconductor region 31, thereby forming the gate electrode 37.

この後、CVDにより全面にPSGli38を5000
人の厚さで形成し、しかる後、Arガス雰囲気中で80
0℃、15分のアニール処理を行ない、既にイオン注入
した不純物を活性化してP型のゲート領域39を形成す
る(第3図(d))。
After that, apply 5000 coats of PSGli38 to the entire surface by CVD.
Formed to a thickness of about 100 yen, and then heated to 80° C. in an Ar gas atmosphere.
Annealing treatment is performed at 0° C. for 15 minutes to activate the impurities already ion-implanted and form a P-type gate region 39 (FIG. 3(d)).

これと同時にゲート電極37がゲート領域39の表面に
対してオーミック接触し、ゲート構造が完成する。
At the same time, the gate electrode 37 comes into ohmic contact with the surface of the gate region 39, completing the gate structure.

最後に、第1WJがGeを5%含む2OoO人の厚みの
AuGe膜及び第2層が1000人の厚みのソース電極
40及びドレイン電極41を例えばリフトオフ法によっ
て形成し、この後、400℃で、3分間のアロイ化を行
なってオーミック接触を図り、所望のJ−FET構造が
完成する(第3図(e))。
Finally, the first WJ is an AuGe film with a thickness of 2000 μm containing 5% Ge, and the second layer is a source electrode 40 and a drain electrode 41 with a thickness of 1000 μm, for example, formed by a lift-off method, and then at 400° C. Alloying is performed for 3 minutes to achieve ohmic contact, and the desired J-FET structure is completed (FIG. 3(e)).

このような方法によって製造されるFETでも、ゲート
領域39上にゲート電極31が直接接触することになる
ので、ゲート抵抗を十分に低減することができ、高周波
における雑音指数や利得を損うことがない。また、P型
のゲート領域39とゲート電極37とはフォトレジスト
11133の同じ開口部32を通じてイオン注入もしく
はスパッタリングが行なわれることによって形成され、
両者は自己整合的に位置合せが行なわれる。このため、
ゲート領域39を微小寸法で形成しても、歩留りを落と
さずにゲ−上電極37を配置することができる。
Even in the FET manufactured by this method, the gate electrode 31 is in direct contact with the gate region 39, so the gate resistance can be sufficiently reduced, and the noise figure and gain at high frequencies will not be impaired. do not have. Further, the P-type gate region 39 and the gate electrode 37 are formed by ion implantation or sputtering through the same opening 32 of the photoresist 11133,
Both are aligned in a self-aligning manner. For this reason,
Even if the gate region 39 is formed with minute dimensions, the upper gate electrode 37 can be placed without reducing the yield.

[発明の効果] 以上説明したようにこの発明の方法によれば、微小寸法
のゲート領域に対してゲート電極を高精度に位置決めす
ることができ、かつ高周波用途に適したものを製造する
ことができる。
[Effects of the Invention] As explained above, according to the method of the present invention, it is possible to position the gate electrode with high precision in a gate region of minute dimensions, and to manufacture a device suitable for high frequency applications. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないしくf)はこの発明の一実施例の方法
による工程を順次示す断面図、第2図(a)ないしくC
)はこの発明の他の実施例の方法による工程を順次示す
断面図、第3図(a)ないしくe)はこの発明のさらに
他の実施例の方法による工程を順次示す断面図である。 10、30・G a A S I板、11.12.13
.18.35−・・イオン注入層、14・・・SiO2
膜、15.17.32・・・開口部、16.33・・・
フォトレジスト膜、11・・・開口部、19、36・・
・導電体層、20.37・・・ゲート電極、21.38
・・・PSG膜、22・・・ソース領域、23・・・ド
レイン領域。 24・・・チャネル領域、25.39・・・ゲート領域
、26.40・・・ソース電極、27.41・・・トレ
イン電極、31・・・GaAs半導体領域、34・・・
溝。 出願人代理人 弁理士 鈴江武彦 j111図 第1図 2イ
FIGS. 1(a) to 1f) are cross-sectional views sequentially showing steps according to a method according to an embodiment of the present invention, and FIGS. 2(a) to C
) are cross-sectional views sequentially showing steps according to a method according to another embodiment of the present invention, and FIGS. 3(a) to 3e) are cross-sectional views sequentially showing steps according to a method according to still another embodiment of the present invention. 10, 30・G a A S I board, 11.12.13
.. 18.35--Ion implantation layer, 14-SiO2
Membrane, 15.17.32... Opening, 16.33...
Photoresist film, 11...opening, 19, 36...
・Conductor layer, 20.37... Gate electrode, 21.38
...PSG film, 22...source region, 23...drain region. 24... Channel region, 25.39... Gate region, 26.40... Source electrode, 27.41... Train electrode, 31... GaAs semiconductor region, 34...
groove. Applicant's agent Patent attorney Takehiko Suzue J111 Figure 1 Figure 2 A

Claims (11)

【特許請求の範囲】[Claims] (1)化合物半導体基板に不純物イオンを注入してその
表面に第1導電型の第1イオン注入層を形成する工程と
、上記基板の全面に第1絶縁膜を形成する工程と、一部
に第1の開口部を有する第2絶縁膜を上記第1絶縁膜上
に形成する工程と、上記第2絶縁膜をマスクとして用い
た選択蝕刻法により上記第1絶縁膜に第2の開口部を形
成する工程と、上記第2絶縁膜の第1の開口部を通じて
不純物イオンを上記第1イオン注入層に注入しその表面
に第2導電型の第2イオン注入層を形成する工程と、上
記第2絶縁膜を残した状態で少なくとも最下層が高融点
金属層もしくは高融点金属を含む層からなる導電体層を
堆積する工程と、上記第2絶縁膜を除去することにより
その表面上の導電体層を除去し第2絶縁膜の第1の開口
部を通じて基板の露出面上に堆積された導電体層のみを
残して表面電極を形成する工程と、アニール処理を行な
って上記第1、第2イオン注入層を活性化する工程とを
具備したことを特徴とする半導体装置の製造方法。
(1) A step of implanting impurity ions into a compound semiconductor substrate to form a first ion-implanted layer of a first conductivity type on the surface thereof, a step of forming a first insulating film on the entire surface of the substrate, and a step of forming a first insulating film on the entire surface of the substrate; forming a second insulating film having a first opening on the first insulating film; and forming a second opening in the first insulating film by selective etching using the second insulating film as a mask. a step of injecting impurity ions into the first ion implantation layer through the first opening of the second insulating film to form a second ion implantation layer of a second conductivity type on the surface thereof; 2. A step of depositing a conductor layer whose bottom layer is at least a high melting point metal layer or a layer containing a high melting point metal while leaving the second insulating film, and removing the second insulating film to remove the conductor layer on the surface. forming a surface electrode by removing the layer and leaving only the conductor layer deposited on the exposed surface of the substrate through the first opening of the second insulating film, and performing an annealing treatment to remove the first and second layers. 1. A method for manufacturing a semiconductor device, comprising the step of activating an ion implantation layer.
(2)前記基板に不純物イオンを注入してその表面に第
1導電型の第1イオン注入層を形成する工程が、不純物
イオンの加速エネルギー及びドーズ量が異なつた2回の
イオン注入工程により行なわれる特許請求の範囲第1項
に記載の半導体装置の製造方法。
(2) The step of implanting impurity ions into the substrate to form a first ion implantation layer of the first conductivity type on the surface thereof is performed by two ion implantation steps with different impurity ion acceleration energies and doses. A method for manufacturing a semiconductor device according to claim 1.
(3)前記第1絶縁膜に第2の開口部を形成する工程が
等方性蝕刻法により行なわれる特許請求の範囲第1項に
記載の半導体装置の製造方法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming the second opening in the first insulating film is performed by an isotropic etching method.
(4)前記導電体層を堆積する工程がスパッタリング法
により行なわれる特許請求の範囲第1項に記載の半導体
装置の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the step of depositing the conductor layer is performed by a sputtering method.
(5)前記化合物半導体基板がIII−V族化合物半導体
基板である特許請求の範囲第1項に記載の半導体装置の
製造方法。
(5) The method for manufacturing a semiconductor device according to claim 1, wherein the compound semiconductor substrate is a III-V group compound semiconductor substrate.
(6)前記第2絶縁膜が感光性樹脂膜である特許請求の
範囲第1項に記載の半導体装置の製造方法。
(6) The method for manufacturing a semiconductor device according to claim 1, wherein the second insulating film is a photosensitive resin film.
(7)前記表面電極を形成した後にこの表面電極及び前
記第1絶縁膜をマスクに第2導電型の不純物イオンを前
記第1イオン注入層内に注入するようにした特許請求の
範囲第1項に記載の半導体装置の製造方法。
(7) After forming the surface electrode, impurity ions of a second conductivity type are implanted into the first ion implantation layer using the surface electrode and the first insulating film as a mask. A method for manufacturing a semiconductor device according to.
(8)化合物半導体基板上に第1導電型の半導体領域を
形成する工程と、一部に開口部を有する絶縁膜を上記半
導体領域上に形成する工程と、上記絶縁膜をマスクとし
て用いた選択蝕刻法により上記半導体領域の表面に溝を
形成する工程と、上記絶縁膜の開口部を通じて不純物イ
オンを上記溝内に注入し半導体領域の表面に第2導電型
のイオン注入層を形成する工程と、上記絶縁膜を残した
状態で少なくとも最下層が高融点金属層もしくは高融点
金属を含む層からなる導電体層を堆積する工程と、上記
絶縁膜を除去することによりその表面上の導電体層を除
去し、上記絶縁膜の開口部を通じて半導体領域の表面上
に堆積された導電体層のみを残して表面電極を形成する
工程と、アニール処理を行なつて上記イオン注入層を活
性化する工程とを具備したことを特徴とする半導体装置
の製造方法。
(8) A step of forming a semiconductor region of a first conductivity type on a compound semiconductor substrate, a step of forming an insulating film having an opening in a part on the semiconductor region, and a selection using the insulating film as a mask. forming a groove on the surface of the semiconductor region by etching; and implanting impurity ions into the groove through the opening of the insulating film to form an ion-implanted layer of a second conductivity type on the surface of the semiconductor region. , a step of depositing a conductor layer whose bottom layer is at least a refractory metal layer or a layer containing a refractory metal while leaving the insulating film; and removing the insulating film to form a conductor layer on the surface. a step of removing the insulating film and leaving only the conductor layer deposited on the surface of the semiconductor region through the opening of the insulating film to form a surface electrode; and a step of activating the ion implantation layer by performing an annealing treatment. A method for manufacturing a semiconductor device, comprising:
(9)前記導電体層を堆積する工程がスパッタリング法
により行なわれる特許請求の範囲第8項に記載の半導体
装置の製造方法。
(9) The method of manufacturing a semiconductor device according to claim 8, wherein the step of depositing the conductor layer is performed by a sputtering method.
(10)前記化合物半導体基板がIII−V族化合物半導
体基板である特許請求の範囲第8項に記載の半導体装置
の製造方法。
(10) The method for manufacturing a semiconductor device according to claim 8, wherein the compound semiconductor substrate is a III-V group compound semiconductor substrate.
(11)前記絶縁膜が感光性樹脂膜である特許請求の範
囲第8項に記載の半導体装置の製造方法。
(11) The method for manufacturing a semiconductor device according to claim 8, wherein the insulating film is a photosensitive resin film.
JP62254146A 1987-10-08 1987-10-08 Manufacture of semiconductor device Granted JPH0195564A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62254146A JPH0195564A (en) 1987-10-08 1987-10-08 Manufacture of semiconductor device
US07/253,171 US4895811A (en) 1987-10-08 1988-10-04 Method of manufacturing semiconductor device
DE3886871T DE3886871T2 (en) 1987-10-08 1988-10-07 Method for producing a field effect transistor with a transition gate.
EP88116670A EP0311109B1 (en) 1987-10-08 1988-10-07 Method of manufacturing a field-effect transistor having a junction gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254146A JPH0195564A (en) 1987-10-08 1987-10-08 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH0195564A true JPH0195564A (en) 1989-04-13
JPH0543291B2 JPH0543291B2 (en) 1993-07-01

Family

ID=17260862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254146A Granted JPH0195564A (en) 1987-10-08 1987-10-08 Manufacture of semiconductor device

Country Status (4)

Country Link
US (1) US4895811A (en)
EP (1) EP0311109B1 (en)
JP (1) JPH0195564A (en)
DE (1) DE3886871T2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273937A (en) * 1988-01-08 1993-12-28 Kabushiki Kaisha Toshiba Metal semiconductor device and method for producing the same
US5011785A (en) * 1990-10-30 1991-04-30 The United States Of America As Represented By The Secretary Of The Navy Insulator assisted self-aligned gate junction
DE4113969A1 (en) * 1991-04-29 1992-11-05 Telefunken Electronic Gmbh METHOD FOR PRODUCING OHMS CONTACTS FOR CONNECTING SEMICONDUCTORS
US5536677A (en) * 1994-12-01 1996-07-16 Motorola, Inc. Method of forming conductive bumps on a semiconductor device using a double mask structure
US6609652B2 (en) * 1997-05-27 2003-08-26 Spheretek, Llc Ball bumping substrates, particuarly wafers
US6051856A (en) * 1997-09-30 2000-04-18 Samsung Electronics Co., Ltd. Voltage-controlled resistor utilizing bootstrap gate FET

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178376A (en) * 1981-04-27 1982-11-02 Sumitomo Electric Ind Ltd Junction type field-effect transistor
JPS57178374A (en) * 1981-04-27 1982-11-02 Sumitomo Electric Ind Ltd Junction type field-efect transistor and its manufacture
JPS61163664A (en) * 1985-01-11 1986-07-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS61177780A (en) * 1985-02-01 1986-08-09 Mitsubishi Electric Corp Manufacture of semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2824026A1 (en) * 1978-06-01 1979-12-20 Licentia Gmbh Barrier layer FET - mfd. by under etching bottom mask layer to cover barrier layer surface
DE3150412A1 (en) * 1981-12-19 1983-07-14 Drägerwerk AG, 2400 Lübeck NOTATEM PROTECTION DEVICE
JPS58143586A (en) * 1982-02-22 1983-08-26 Toshiba Corp Manufacture of field effect transistor
JPS58145158A (en) * 1982-02-23 1983-08-29 Toshiba Corp Field-effect transistor and its manufacture
US4561169A (en) * 1982-07-30 1985-12-31 Hitachi, Ltd. Method of manufacturing semiconductor device utilizing multilayer mask
FR2579827B1 (en) * 1985-04-01 1987-05-15 Thomson Csf METHOD FOR PRODUCING A SELF-ALIGNED GATE METALLIZATION FIELD-EFFECT TRANSISTOR
JPS6273676A (en) * 1985-09-26 1987-04-04 Nec Corp Manufacture of junction type field-effect transistor
US4729967A (en) * 1987-04-09 1988-03-08 Gte Laboratories Incorporated Method of fabricating a junction field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178376A (en) * 1981-04-27 1982-11-02 Sumitomo Electric Ind Ltd Junction type field-effect transistor
JPS57178374A (en) * 1981-04-27 1982-11-02 Sumitomo Electric Ind Ltd Junction type field-efect transistor and its manufacture
JPS61163664A (en) * 1985-01-11 1986-07-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS61177780A (en) * 1985-02-01 1986-08-09 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
DE3886871T2 (en) 1994-06-09
DE3886871D1 (en) 1994-02-17
US4895811A (en) 1990-01-23
EP0311109A3 (en) 1989-07-12
JPH0543291B2 (en) 1993-07-01
EP0311109A2 (en) 1989-04-12
EP0311109B1 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPH0260217B2 (en)
JPS60220975A (en) Gaas field-effect transistor and manufacture thereof
JPH03774B2 (en)
JPH0195564A (en) Manufacture of semiconductor device
JPS627165A (en) Manufacture of semiconductor device
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
JP2005166947A (en) Etching method, semiconductor device, and manufacturing method thereof
JPH02113583A (en) Manufacture of semiconductor device
JPH03239322A (en) Semiconductor device and its manufacture
JPH0439773B2 (en)
JPH02260539A (en) Manufacture of semiconductor device
JPS6347982A (en) Semiconductor device
JPS62210669A (en) Semiconductor device and manufacture thereof
JPS6086871A (en) Manufacture of field effect transistor
JPH02292818A (en) Manufacture of semiconductor device
JPS58201361A (en) Semiconductor device
JPS61196579A (en) Manufacture of semiconductor device
JPH03280548A (en) Manufacture of npn transistor
JPH0783026B2 (en) Method for manufacturing field effect transistor
JPS60130863A (en) Manufacture of semiconductor device
JPH01283964A (en) Manufacture of semiconductor device
JPH03283627A (en) Manufacture of field-effect semiconductor device
JPS62193281A (en) Manufacture of semiconductor device
JPS6037176A (en) Manufacture of field effect transistor
JPS60261178A (en) Manufacture of semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees