JPH0194227A - Pyroelectric detection apparatus and production thereof - Google Patents

Pyroelectric detection apparatus and production thereof

Info

Publication number
JPH0194227A
JPH0194227A JP62251407A JP25140787A JPH0194227A JP H0194227 A JPH0194227 A JP H0194227A JP 62251407 A JP62251407 A JP 62251407A JP 25140787 A JP25140787 A JP 25140787A JP H0194227 A JPH0194227 A JP H0194227A
Authority
JP
Japan
Prior art keywords
pyroelectric
semiconductor substrate
insulating film
heat
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251407A
Other languages
Japanese (ja)
Inventor
Akimasa Tanaka
章雅 田中
Akinaga Yamamoto
晃永 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP62251407A priority Critical patent/JPH0194227A/en
Publication of JPH0194227A publication Critical patent/JPH0194227A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Abstract

PURPOSE:To enhance pyroelectric sensitivity while efficiently storing the quantity of heat of incident infrared rays in a pyroelectric material, by forming a thin insulating film to the upper surface of a semiconductor substrate having a through-hole formed to the predetermined region thereof and arranging a pyroelectric element thereon. CONSTITUTION:An opening 13 is formed to an Si semiconductor substrate 1 under a pyroelectric element 10 and a spacer 14 is arranged to the upper end part of the opening 13 and the insulating film 7 on the under side of the pyroelectric element 10 is made thin by the thickness of said spacer 14. When infrared rays are incident to the pyroelectric element 10 in the direction shown by an arrow A, said infrared rays transmit through an upper electrode 12 to reach a pyroelectric material film 11 and impart the quantity of heat thereto. Since poling is applied to the pyroelectric material film 11, potential is generated in a lower electrode 8b and the electrode 12 by the polarizing effect corresponding to said quantity of heat. Since the insulating film 7 is sufficiently thin, the loss of the quantity of heat by the heat conductivity thereof is extremely low. As a result, the quantity of heat by infrared rays is efficiently stored in the pyroelectric material film 11 and, therefore, detection sensitivity is markedly enhanced. The heat conductivity through the electrode 8b and a conductive film 8a is considered but, since said film 8a is extremely thin, the loss thereof is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焦電検出装置とその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pyroelectric detection device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

焦電検出装置は人間の目と同じように、対象物を見てそ
こからの赤外線を感知する能力を持っており、光電子増
倍管やフォトダイオードのように光源を必要としない。
Pyroelectric detectors have the ability to see objects and detect infrared radiation from them, just like the human eye, and do not require a light source like photomultiplier tubes or photodiodes.

このため、非接触センシングが可能になり、日常生活や
産業分野での活発な利用が期待されている。
This makes non-contact sensing possible and is expected to be actively used in daily life and industrial fields.

焦電検出装置においては、焦電材料として有機高分子材
料を用いたものが取り扱いか簡r4iであり、また赤外
線に対して高い感度を有している。そこて、半導体基板
に有機高分子材料を焦電材料として用いた焦電素子を配
設すると共に、同一の半導体基板に信号処理部を形成し
た焦電検出装置が開発されている。この装置によれば、
有機高分子材料が赤外線を受けると分極効果によって一
対の電極に電位が発生し、これが前述の信号処理部によ
って処理される。
In pyroelectric detection devices, those using organic polymer materials as pyroelectric materials are easy to handle and have high sensitivity to infrared rays. Therefore, a pyroelectric detection device has been developed in which a pyroelectric element using an organic polymer material as a pyroelectric material is disposed on a semiconductor substrate, and a signal processing section is formed on the same semiconductor substrate. According to this device,
When the organic polymer material receives infrared rays, a polarization effect generates a potential between the pair of electrodes, which is processed by the signal processing section described above.

ここで、有機高分子材料の分極効果による電位の発生は
、赤外線による熱量に対応している。従って、効率よく
電位を発生ずるためには、赤外線による熱量を効率よく
利用しなければならない。
Here, the generation of potential due to the polarization effect of the organic polymer material corresponds to the amount of heat generated by infrared rays. Therefore, in order to efficiently generate a potential, it is necessary to efficiently utilize the amount of heat generated by infrared rays.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の焦電検出装置では、有機高分子材
料を用いた焦電素子は絶縁膜等を介して半導体基板上に
形成されていたため、その熱効率は十分てはなかった。
However, in conventional pyroelectric detection devices, the pyroelectric element using an organic polymer material is formed on a semiconductor substrate via an insulating film or the like, so its thermal efficiency is not sufficient.

特に、半導体基板の熱伝導係数が大きいときや、絶縁膜
が薄かったりするときには、赤外線による熱量の多くが
半導体基板側に逃れてしまい、効率よく有機高分子材料
中に蓄えることかできなかった。このため、入射された
赤外線を感度よく検出することかできなかった。
In particular, when the semiconductor substrate has a large thermal conductivity coefficient or the insulating film is thin, much of the heat generated by infrared rays escapes to the semiconductor substrate and cannot be efficiently stored in the organic polymer material. For this reason, it was not possible to detect incident infrared rays with high sensitivity.

一方、特開昭57−28223号公報には基板に開口を
形成し、この開口の上に焦電素子を設ける技術か開示さ
れている。しかし、これは焦電素子の下の絶縁膜が厚く
なってしまうので、蓄熱効果を十分に高めることができ
ない。また、これは集積回路の一部として用いられる焦
電素子に関するものでもない。
On the other hand, Japanese Unexamined Patent Publication No. 57-28223 discloses a technique in which an opening is formed in a substrate and a pyroelectric element is provided above the opening. However, since the insulating film under the pyroelectric element becomes thick, the heat storage effect cannot be sufficiently enhanced. Nor does it relate to pyroelectric elements used as part of integrated circuits.

そこで、本出願の第1の発明は、入射された赤外線の熱
量を焦電材料に効率よく蓄え、焦電感度を向上させるこ
とのできる焦電検出装置を提供することを目的とする。
Therefore, the first invention of the present application aims to provide a pyroelectric detection device that can efficiently store the amount of heat of incident infrared rays in a pyroelectric material and improve the pyroelectric sensitivity.

また、本出願の第2の発明は、上記の焦電検出装置を半
導体基板で歩留りよく、簡単な工程で製造することので
きる焦電検出装置の製造方法を提供することを目的とす
る。
Moreover, a second invention of the present application aims to provide a method for manufacturing a pyroelectric detection device, which allows the above-mentioned pyroelectric detection device to be manufactured using a semiconductor substrate with high yield and through simple steps.

〔問題点を解決するための手段〕[Means for solving problems]

本出願の第1の発明に係る焦電検出装置は、所定の領域
に信号処理部が形成されると共に、この信号処理部以外
の所定の領域に貫通口が形成された半導体基板と、貫通
口の上側開口を少なくとも閉鎖するように半導体基板の
上面に形成された薄い絶縁膜と、貫通口上方の絶縁膜上
に配設された焦電素子とを備えることを特徴とする。
The pyroelectric detection device according to the first invention of the present application includes a semiconductor substrate in which a signal processing section is formed in a predetermined region and a through hole is formed in a predetermined region other than the signal processing section; It is characterized by comprising a thin insulating film formed on the upper surface of the semiconductor substrate so as to at least close the upper opening, and a pyroelectric element disposed on the insulating film above the through-hole.

また、本出願の第2の発明に係る焦電検出装置の製造方
法は、あらかじめ信号処理部か形成された半導体基板」
二面の、少なくとも焦電素子形成予定領域に絶縁膜を形
成する第1の工程と、半導体基板をマスクを介して下面
からエツチングし、焦電素子形成予定領域の半導体基板
に開口を形成する第2の工程とを備え、上記第2の工程
の前もしくは後に、焦電素子形成予定領域の絶縁膜上に
、下側電極、焦電材料膜および上側電極を順次に積層し
て焦電素子を形成する工程を備えることを特徴とする。
Further, the method for manufacturing a pyroelectric detection device according to the second invention of the present application includes a semiconductor substrate on which a signal processing section is formed in advance.
A first step of forming an insulating film on two surfaces, at least in the region where the pyroelectric element is to be formed, and a second step in which the semiconductor substrate is etched from the bottom surface through a mask to form an opening in the semiconductor substrate in the region where the pyroelectric element is to be formed. Before or after the second step, a lower electrode, a pyroelectric material film, and an upper electrode are sequentially laminated on the insulating film in the area where the pyroelectric element is to be formed to form the pyroelectric element. It is characterized by comprising a step of forming.

〔作用〕[Effect]

第1の発明の構成によれば、焦電素子の下側の絶縁膜は
熱伝導が大きくならない程度に薄く形成され、かつこの
下面は半導体基板に接していないので、焦電素子に蓄え
られる熱量か逃れることは少ない。
According to the configuration of the first invention, the insulating film on the lower side of the pyroelectric element is formed to be thin enough not to increase heat conduction, and the lower surface is not in contact with the semiconductor substrate, so the amount of heat stored in the pyroelectric element is There is little chance of escaping.

また、第2の発明の構成によれば、絶縁膜の形成後に半
導体基板がエツチングされるので、第1の発明の焦電検
出装置を歩留りよく製造できる。
Further, according to the configuration of the second invention, since the semiconductor substrate is etched after the insulating film is formed, the pyroelectric detection device of the first invention can be manufactured with high yield.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。な
お、図面の説明において同一の要素には同一の符号を付
し、重複する説明を省略する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted.

第1図は本発明の一実施例に係る焦電検出装置の断面図
である。図示の通り、例えばシリコン(St )で構成
されるp+型の半導体基板]には例えばエピタキシャル
成長法によってn型領域が形成され、これはp+型の素
子分離領域3によって複数の素子領域2に分けられてい
る。そして、接合型電界効果トランジスタ(J−FET
)形成用の素子領域2にはp+型のゲート領域4がイオ
ン注入法などにより形成されると共に、n+型のソース
領域5およびドレイン領域6がイオン注入法なとにより
形成されている。
FIG. 1 is a sectional view of a pyroelectric detection device according to an embodiment of the present invention. As shown in the figure, an n-type region is formed by, for example, epitaxial growth on a p+ type semiconductor substrate made of silicon (St), and this is divided into a plurality of element regions 2 by a p+ type element isolation region 3. ing. And junction field effect transistor (J-FET)
) In the element region 2 for formation, a p+ type gate region 4 is formed by ion implantation or the like, and an n+ type source region 5 and drain region 6 are formed by ion implantation or the like.

一方、半導体基板1の上面には例えば二酸化シリコン(
S102)からなる絶縁膜7が被着形成され、開口を介
して導電膜8aと半導体基板1の各領域4,5とが接続
されている。この信号処理部9における導電膜8aは焦
電素子10の形成予定領域に延設されて下側電極8bと
なり、その上には有機高分子材料からなる焦電材料膜コ
1と、導電性のある上側電極12か順次に積層され、焦
電素子10が形成されている。なお、この焦電材料膜1
]についてはあらかじめポーリングか施されている。こ
こで、ポーリングとは強誘電体の分極方向を一定に揃え
ることで、これにより分極効果による電位の発生か可能
になる。強誘電体は大きな自発分極をもっているか、材
料に何らの処理もしないと自発分極がランダムな方向を
もっている。そこで、この材料に電界および熱を加えて
処理すると、分極方向を膜面の垂直方向に揃えることか
でき、内部電界が形成される。
On the other hand, on the upper surface of the semiconductor substrate 1, for example, silicon dioxide (
An insulating film 7 made of S102) is deposited, and the conductive film 8a and each region 4, 5 of the semiconductor substrate 1 are connected through the opening. The conductive film 8a in the signal processing section 9 is extended to the area where the pyroelectric element 10 is to be formed and becomes the lower electrode 8b, and on top of it is a pyroelectric material film 1 made of an organic polymer material and a conductive film 8b. Certain upper electrodes 12 are sequentially laminated to form a pyroelectric element 10. Note that this pyroelectric material film 1
] has been polled in advance. Here, poling means aligning the polarization direction of the ferroelectric material to a constant level, which enables the generation of a potential due to the polarization effect. Ferroelectric materials either have a large spontaneous polarization or, unless the material is treated in any way, the spontaneous polarization has a random direction. Therefore, if this material is treated by applying an electric field and heat, the polarization direction can be aligned perpendicular to the film surface, and an internal electric field is formed.

本実施例において特徴的なことは、この焦電素子10の
下方の半導体基板1に開口13が形成されていることで
ある。そして、この開口13の上側端部には多結晶シリ
コンなどからなるスペーサ14が配設され、焦電素子1
0の下側の絶縁膜7はその分だけ薄くなっている。
A feature of this embodiment is that an opening 13 is formed in the semiconductor substrate 1 below the pyroelectric element 10. A spacer 14 made of polycrystalline silicon or the like is provided at the upper end of this opening 13, and the spacer 14 is made of polycrystalline silicon or the like.
The insulating film 7 below 0 is thinner by that amount.

次に、上記実施例に係る焦電検出装置の作用を説明する
Next, the operation of the pyroelectric detection device according to the above embodiment will be explained.

第1図の装置において、図中の矢印A方向から赤外線か
入射されると、これは上側電極]2を透過して焦電材料
膜11に達し、これに熱量を与える。ここで、焦電材料
膜11はあらかじめポーリングが施されているので、こ
の熱量に応じた分極効果により下側電極8bおよび上側
電極]2に電位を発生させる。
In the apparatus shown in FIG. 1, when infrared light is incident from the direction of arrow A in the figure, it passes through the upper electrode 2 and reaches the pyroelectric material film 11, giving it heat. Here, since the pyroelectric material film 11 has been subjected to poling in advance, a potential is generated in the lower electrode 8b and the upper electrode 2 by the polarization effect according to the amount of heat.

ところで、焦電材料膜11て発生した熱量のごく一部は
空中に放射されると共に、一部は下側電極8bを介して
半導体基板1側にも伝導する。しかしながら、本実施例
では焦電素子]0の下方の半導体基板1には開口か形成
されており、また絶縁膜7は十分に薄くなっているため
、この熱伝導による熱量の損失は極めて少なくなってい
る。従って、赤外線による熱量は効率よく焦電材料膜1
1中に蓄えられるので、検出感度は著しく高まる。なお
、下側電極8bおよび導電膜8aを経由する熱伝導も考
えられるが、これはごく薄い膜であるためその損失は少
ない。
Incidentally, a small portion of the heat generated in the pyroelectric material film 11 is radiated into the air, and a portion is also conducted to the semiconductor substrate 1 side via the lower electrode 8b. However, in this embodiment, an opening is formed in the semiconductor substrate 1 below the pyroelectric element 0, and the insulating film 7 is sufficiently thin, so the loss of heat due to heat conduction is extremely small. ing. Therefore, the amount of heat generated by infrared rays can be efficiently transferred to the pyroelectric material film 1.
1, the detection sensitivity is significantly increased. Note that heat conduction via the lower electrode 8b and the conductive film 8a is also considered, but since this is a very thin film, the loss is small.

本発明の焦電検出装置は上記のものに限定されない。例
えば、スペーサ14を設けることは必須ではなく、また
信号処理部9をJ−FETて構成せずにMO3型FET
やバイポーラトランジスタで構成してもよい。また、焦
電材料膜11は有機高分子第4料で構成したものに限ら
ず、セラミックスなどの公知の種々の材料を用いること
ができる。
The pyroelectric detection device of the present invention is not limited to the above. For example, it is not essential to provide the spacer 14, and instead of configuring the signal processing unit 9 as a J-FET, it can be configured as an MO3 type FET.
It may also be configured with a bipolar transistor. Further, the pyroelectric material film 11 is not limited to one made of the fourth organic polymer material, and various known materials such as ceramics can be used.

さらに、赤外光は基板側から入射することもてき、この
場合には開口が形成されているので、焦電材料膜1]に
効率よく熱量を与えることができる。
Furthermore, infrared light may be incident from the substrate side, and in this case, since an opening is formed, heat can be efficiently given to the pyroelectric material film 1].

次に、第2図を参照して焦電検出装置の製造方法を説明
する。
Next, a method for manufacturing the pyroelectric detection device will be explained with reference to FIG.

第2図は第1図に示す焦電検出装置を製造するための、
工程別の素子断面図である。まず、p+型シリコン単結
晶板1′を用意し、この上面にn型シリコンからなるエ
ピタキシャル成長層2′を形成して半導体基板]とする
(第2図(a)図示)。ここで、p+型シリコン単結晶
板1′の不純物濃度は1×10〜]−X 10 ”’c
m−”程度に設定され、エピタキシャル成長層2′の不
純物濃度は]×10〜I X 1017cm−3程度に
設定される。また、エピタキシャル成長層2′の厚さは
4〜10μm程度とする。
Figure 2 shows the steps for manufacturing the pyroelectric detection device shown in Figure 1.
FIG. 3 is a cross-sectional view of an element according to each process. First, a p+ type silicon single crystal plate 1' is prepared, and an epitaxial growth layer 2' made of n type silicon is formed on its upper surface to form a semiconductor substrate (as shown in FIG. 2(a)). Here, the impurity concentration of the p+ type silicon single crystal plate 1' is 1×10 ~]−X 10 ”'c
The impurity concentration of the epitaxial growth layer 2' is set to about 10 to 1017 cm-3. The thickness of the epitaxial growth layer 2' is about 4 to 10 μm.

次に、エピタキシャル成長層2′の表面を熱酸化して酸
化膜7aを形成し、公知のフォトリソグラフィ技術を用
いて形成した開口を介してp+型の素子分離領域3を形
成する(第2図(b)図示)。これにより、エピタキシ
ャル成長層2′は素子ごとに分離されて素子領域2とな
る。なお、この素子分離領域3の形成にはイオン注入技
術や熱拡散技術を用いることができ、p型不純物をボロ
ン(B)とするときには濃度は1. X ]、 0 ”
cm −3程度でよい。
Next, the surface of the epitaxial growth layer 2' is thermally oxidized to form an oxide film 7a, and a p+ type element isolation region 3 is formed through an opening formed using a known photolithography technique (see FIG. 2). b) As shown). As a result, the epitaxial growth layer 2' is separated into device regions 2 for each device. Note that ion implantation technology or thermal diffusion technology can be used to form this element isolation region 3, and when boron (B) is used as the p-type impurity, the concentration is 1. X], 0”
About cm −3 is sufficient.

次に、以前に形成された酸化膜7a上に新たな酸化膜を
形成し、フォトリソグラフィ技術によるマスクの開口を
介してp+型のゲート領域4、n+型のソース領域5お
よびドレイン領域6を形成する。ここで、ゲート領域4
はコX 101−”cm−”程度の濃度でボロンをドー
プすることにより形成でき、ソース領域5およびドレイ
ン領域6はn型不純物としてのリン(P)あるいはヒ素
(As )を、1×1019cm−3程度の濃度でドー
プすることにより形成できる。しかる後、」−2の不純
物注入工程で用いられた開口を酸化膜7dで埋めると、
半導体基板1の上面が絶縁膜7て被覆された第2図(c
)の構造を得ることかできる。
Next, a new oxide film is formed on the previously formed oxide film 7a, and a p+ type gate region 4, an n+ type source region 5, and a drain region 6 are formed through the opening of a mask using photolithography technology. do. Here, gate region 4
can be formed by doping boron at a concentration of approximately 101cm-2, and the source region 5 and drain region 6 are formed by doping phosphorus (P) or arsenic (As) as an n-type impurity at a concentration of 1x1019cm- It can be formed by doping at a concentration of about 3. After that, the opening used in the impurity implantation process of "-2" is filled with an oxide film 7d.
FIG. 2 (c) shows the upper surface of the semiconductor substrate 1 covered with an insulating film 7.
) can be obtained.

次に、公知のスピンコード法などによりフォトレジスト
を全面に塗布し、焦電素子形成予定領域Bに開口を設け
て絶縁膜7を選択エツチングし、この部分の半導体基板
1を露出させる(第2図(d)図示)。しかる後、CV
D法などを用いて多結晶シリコンを全面に被着形成し、
焦電素子形成予定領域B以外の領域の多結晶シリコンを
フォトリソグラフィ技術などにより除去し、スペーサ]
4を形成する(第2図(e)図示)。
Next, a photoresist is applied to the entire surface by a known spin code method, an opening is provided in the area B where the pyroelectric element is to be formed, and the insulating film 7 is selectively etched to expose the semiconductor substrate 1 in this area (second Figure (d) (illustrated). After that, CV
Polycrystalline silicon is deposited on the entire surface using the D method, etc.
The polycrystalline silicon in the area other than the area B where the pyroelectric element is planned to be formed is removed by photolithography, etc., and a spacer]
4 (as shown in FIG. 2(e)).

次に、CVD法などによりS ] 02からなる酸化膜
7eを3000〜5000Aの厚さて堆積し、絶縁膜7
にコンタクトホール20,21..22を形成する。こ
のコンタクトホール20〜22は信号処理部9の部分に
形成されるもので、例えばフォトリソグラフィ技術を用
いればよい(第2図(f)図示)。しかる後、全面に導
電材料を被着してパターニングすれば、導電膜8aおよ
び下側電極8bが形成されて第2図(g)の如くなる。
Next, an oxide film 7e made of S]02 is deposited to a thickness of 3000 to 5000 Å by CVD or the like, and the insulating film 7
Contact holes 20, 21 . .. 22 is formed. The contact holes 20 to 22 are formed in the signal processing section 9, and may be formed using, for example, photolithography (as shown in FIG. 2(f)). Thereafter, a conductive material is deposited on the entire surface and patterned to form a conductive film 8a and a lower electrode 8b as shown in FIG. 2(g).

ここで、導電膜8aと下側電極8bは一体となっており
、下側電極8bは焦電素子形成予定領域Bをカバーする
だけの面積を有している。
Here, the conductive film 8a and the lower electrode 8b are integrated, and the lower electrode 8b has an area large enough to cover the region B where the pyroelectric element is to be formed.

次に、スピンコード法やフォトリソグラフィ技術を用い
て半導体基板1の裏面にマスク31を形成し、このマス
ク31−の開口を介して半導体基板]をエツチングする
。このエツチングは例えばウェットエツチングにより行
ない、まず半導体基板]のp+型ンリコン単結晶板1′
およびエピタキシャル成長層2′をエツチングし、その
後]00A程度までスペーサ14を構成する多結晶シリ
コンをオーバーエツチングする。ここで、エピタキシャ
ル成長層2′のエツチングレートは多結晶シリコンのエ
ツチングレートより十分に大きくできるので、上記のオ
ーバーエツチングの過程でエピタキシャル成長層2′は
完全に除去される。
Next, a mask 31 is formed on the back surface of the semiconductor substrate 1 using a spin code method or a photolithography technique, and the semiconductor substrate is etched through the opening of the mask 31-. This etching is performed, for example, by wet etching, and first the p+ type silicon single crystal plate 1' of the semiconductor substrate is
Then, the epitaxial growth layer 2' is etched, and then the polycrystalline silicon constituting the spacer 14 is over-etched to about 00A. Here, since the etching rate of the epitaxially grown layer 2' can be made sufficiently higher than the etching rate of polycrystalline silicon, the epitaxially grown layer 2' is completely removed during the above-mentioned overetching process.

しかる後、スペーサ14をなす多結晶シリコンと絶縁膜
7をなす二酸化シリコンのエツチング選択比が十分に大
きいエッチャント(例えばCF 4ガス)を用い、スペ
ーサ14のみを選択的に気相エツチングする。すると、
第2図(h)の如く焦電素子形成予定領域Bの半導体基
板]に開口13か形成され、かつ絶縁膜7は十分に薄く
なることになる。この絶縁膜7の厚さは、前述のように
CVD法を用いれば所望の厚さに十分に薄く形成でき、
また後述のように熱酸化法を用いれば十分に薄くかつ均
一な厚さにできる。
Thereafter, only the spacer 14 is selectively etched in a vapor phase using an etchant (for example, CF 4 gas) that has a sufficiently high etching selectivity between the polycrystalline silicon forming the spacer 14 and the silicon dioxide forming the insulating film 7 . Then,
As shown in FIG. 2(h), an opening 13 is formed in the semiconductor substrate in the region B where the pyroelectric element is to be formed, and the insulating film 7 is made sufficiently thin. The thickness of this insulating film 7 can be formed sufficiently thin to a desired thickness by using the CVD method as described above.
Further, as described later, by using a thermal oxidation method, the thickness can be made sufficiently thin and uniform.

次に、焦電材料としての有機高分子材料をスピンコード
法により塗布し、フォトリソグラフィ技術を用いてパタ
ーニングすることにより焦電材料膜]1とする。なお、
この厚さは1〜5μm程度でよい。そして、ポーリング
用電極材料としてアルミニウム(Aβ)あるいはニッケ
ル(Nj )とクロム(Cr )の合金などを蒸着し、
フォトリソグラフィ技術を用いて焦電材料膜11上に上
側電極12を形成する。しかる後、焦電材料膜1]のポ
ーリングを実施すれば、第1図のような焦電検出装置が
得られる。
Next, an organic polymer material as a pyroelectric material is applied by a spin code method and patterned using a photolithography technique to form a pyroelectric material film]1. In addition,
This thickness may be about 1 to 5 μm. Then, aluminum (Aβ) or an alloy of nickel (Nj) and chromium (Cr) is deposited as a poling electrode material.
Upper electrode 12 is formed on pyroelectric material film 11 using photolithography technology. Thereafter, by performing poling of the pyroelectric material film 1, a pyroelectric detection device as shown in FIG. 1 is obtained.

本発明の製造方法は」−2の実施例に限定されるもので
はなく、種々の変形か可能である。
The manufacturing method of the present invention is not limited to the embodiment ``-2'', and various modifications are possible.

例えば、焦電素子10を絶縁膜7上に形成した後に、半
導体基板]を裏面からエツチングして開口]3を形成し
てもよい。また、多結晶シリコンからなるスペーサ14
を設けることは必須ではなく、省略してよい。但し、こ
の場合には焦電素子10の下で絶縁膜7か薄く残るよう
にエツチングを制御する必要がある。また、スペーサ1
4上の酸化膜7eはCVD法によらず、スペーサ]4を
構成する多結晶シリコンを熱酸化してもよい。さらに、
半導体、絶縁体、導電体の材料や厚さなどは、適宜に変
更することか可能である。さらにまた、J−FETの製
造工程では絶縁膜をイオン注入のマスクとすることなく
、フォトレジストそのものをマスクとしてもよい。
For example, after the pyroelectric element 10 is formed on the insulating film 7, the opening 3 may be formed by etching the semiconductor substrate from the back surface. In addition, a spacer 14 made of polycrystalline silicon
It is not essential to provide and may be omitted. However, in this case, it is necessary to control the etching so that a thin layer of the insulating film 7 remains under the pyroelectric element 10. Also, spacer 1
The oxide film 7e on the spacer 4 may be formed by thermally oxidizing the polycrystalline silicon forming the spacer 4 instead of using the CVD method. moreover,
The materials, thicknesses, etc. of the semiconductor, insulator, and conductor can be changed as appropriate. Furthermore, in the J-FET manufacturing process, the photoresist itself may be used as a mask instead of using the insulating film as a mask for ion implantation.

〔発明の効果〕 以上、詳細に説明した通り、第1の発明による焦電検出
装置によれば、焦電素子の下側の絶縁膜は薄く形成され
、かつその下面は半導体基板に接していないので、焦電
素子に蓄えられる熱量が逃れることは少ない。そのため
、入射された赤外線の熱量を焦電材料に効率よく蓄える
ことができ、焦電感度を向上させることができる。
[Effects of the Invention] As described above in detail, according to the pyroelectric detection device according to the first invention, the insulating film on the lower side of the pyroelectric element is formed thinly, and the lower surface thereof is not in contact with the semiconductor substrate. Therefore, the amount of heat stored in the pyroelectric element rarely escapes. Therefore, the amount of heat of the incident infrared rays can be efficiently stored in the pyroelectric material, and the pyroelectric sensitivity can be improved.

また、第2の発明による焦電検出装置の製造方法によれ
ば、絶縁膜の形成後に半導体基板がエツチングされるの
で、第1の発明の焦電検出装置を簡単な]二程で歩留り
よく製造できるという効果を奏する。特に、多結晶シリ
コンからなるスペーサを介在さぜれば、焦電素子の下側
の絶縁膜を十分に薄く、かつ均一な厚さにてきる効果が
ある。
Furthermore, according to the method for manufacturing a pyroelectric detection device according to the second invention, the semiconductor substrate is etched after the insulating film is formed, so that the pyroelectric detection device according to the first invention can be manufactured with high yield in just two steps. It has the effect of being able to do it. In particular, interposing a spacer made of polycrystalline silicon has the effect of making the insulating film under the pyroelectric element sufficiently thin and uniform in thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る焦電検出装置の断面図、
第2図は第1図に示す焦電検出装置の製造工程別断面図
である。 1・・・半導体基板、2・・・素子領域、3・・・素子
分離領域、4・・・ゲート領域、5・・ソース領域、6
・・・ドレイン領域、7・・・絶縁膜、8a・・・導電
膜、8b・・下側電極、9・・・信号処理部、]o川焦
用索子、]1・・・焦電材料膜、]2・・・上側電極、
14・・スペーサ。 特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷用  芳  樹1−6一
FIG. 1 is a cross-sectional view of a pyroelectric detection device according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view of the pyroelectric detection device shown in FIG. 1 according to manufacturing steps. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Element region, 3... Element isolation region, 4... Gate region, 5... Source region, 6
... Drain region, 7... Insulating film, 8a... Conductive film, 8b... Lower electrode, 9... Signal processing unit,] o River pyroelectric element, ] 1... Pyroelectric material film, ]2... upper electrode,
14...Spacer. Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Yoshiki Hase 1-61

Claims (1)

【特許請求の範囲】 1、所定の領域に信号処理部が形成されると共に、この
信号処理部以外の所定の領域に貫通口が形成された半導
体基板と、前記貫通口の上側開口を少なくとも閉鎖する
ように前記半導体基板の上面に形成された薄い絶縁膜と
、前記貫通口上方の前記絶縁膜上に下側電極、焦電材料
膜および上側電極を順次に積層して形成された焦電素子
とを備えることを特徴とする焦電検出装置。 2、あらかじめ信号処理部が形成された半導体基板上面
の、少なくとも焦電素子形成予定領域に絶縁膜を形成す
る第1の工程と、 前記半導体基板をマスクを介して下面からエッチングし
、前記焦電素子形成予定領域の前記半導体基板に開口を
形成する第2の工程とを備え、前記第2の工程の前もし
くは後に、前記焦電素子形成予定領域の前記絶縁膜上に
、下側電極、焦電材料膜および上側電極を順次に積層し
て焦電素子を形成する工程を備えることを特徴とする焦
電検出装置の製造方法。
[Claims] 1. A semiconductor substrate in which a signal processing section is formed in a predetermined region and a through hole is formed in a predetermined region other than the signal processing section, and at least an upper opening of the through hole is closed. A pyroelectric element is formed by sequentially laminating a thin insulating film formed on the upper surface of the semiconductor substrate, and a lower electrode, a pyroelectric material film, and an upper electrode on the insulating film above the through hole. A pyroelectric detection device comprising: 2. A first step of forming an insulating film on at least a region where a pyroelectric element is to be formed on the upper surface of the semiconductor substrate on which a signal processing section is formed in advance, and etching the semiconductor substrate from the bottom surface through a mask to remove the pyroelectric element. a second step of forming an opening in the semiconductor substrate in the region where an element is to be formed, and before or after the second step, a lower electrode, a focal point is formed on the insulating film in the region where the pyroelectric element is to be formed; 1. A method for manufacturing a pyroelectric detection device, comprising the step of sequentially laminating an electric material film and an upper electrode to form a pyroelectric element.
JP62251407A 1987-10-05 1987-10-05 Pyroelectric detection apparatus and production thereof Pending JPH0194227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251407A JPH0194227A (en) 1987-10-05 1987-10-05 Pyroelectric detection apparatus and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251407A JPH0194227A (en) 1987-10-05 1987-10-05 Pyroelectric detection apparatus and production thereof

Publications (1)

Publication Number Publication Date
JPH0194227A true JPH0194227A (en) 1989-04-12

Family

ID=17222385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251407A Pending JPH0194227A (en) 1987-10-05 1987-10-05 Pyroelectric detection apparatus and production thereof

Country Status (1)

Country Link
JP (1) JPH0194227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369280A (en) * 1990-04-26 1994-11-29 The Commonwealth Of Australia Semiconductor film bolometer thermal infrared detector
US5583058A (en) * 1992-09-17 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Infrared detection element array and method for fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728223A (en) * 1980-07-26 1982-02-15 New Japan Radio Co Ltd Pyroelectric type radiation wave detector and manufacture thereof
JPS62822A (en) * 1985-06-27 1987-01-06 Matsushita Electric Ind Co Ltd Infrared detecting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728223A (en) * 1980-07-26 1982-02-15 New Japan Radio Co Ltd Pyroelectric type radiation wave detector and manufacture thereof
JPS62822A (en) * 1985-06-27 1987-01-06 Matsushita Electric Ind Co Ltd Infrared detecting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369280A (en) * 1990-04-26 1994-11-29 The Commonwealth Of Australia Semiconductor film bolometer thermal infrared detector
US5583058A (en) * 1992-09-17 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Infrared detection element array and method for fabricating the same

Similar Documents

Publication Publication Date Title
US4746622A (en) Process for preparing a charge coupled device with charge transfer direction biasing implants
JP2616130B2 (en) Superconducting element manufacturing method
JPH01136035A (en) Pyroelectric detection element and manufacture thereof
JP2541458B2 (en) Infrared sensor and manufacturing method thereof
JPH0194227A (en) Pyroelectric detection apparatus and production thereof
JPH02271674A (en) Semiconductor device
JPH07115191A (en) Diamond field effect transistor and its manufacture
JP2864658B2 (en) Method for manufacturing thin film transistor
JPH01114042A (en) Manufacture of semiconductor device
JP2961805B2 (en) Superconducting element and method of manufacturing the same
JP2630444B2 (en) Method for manufacturing semiconductor memory device
JP2876612B2 (en) Method for manufacturing semiconductor device
JPH05190854A (en) Manufacture of semiconductor device
JPH03214774A (en) Semiconductor device
JPS6255305B2 (en)
JP2646614B2 (en) Method for manufacturing semiconductor device
JP2594697B2 (en) Method for manufacturing semiconductor device
JPS61187365A (en) Manufacture of semiconductor device
JPH03196582A (en) Thermopile using silicon single crystal and manufacture thereof
JP2004140062A (en) Method of manufacturing semiconductor device
JPH10173160A (en) Manufacturing method semiconductor device
JPH0414266A (en) High breakdown strength planar type semiconductor element and its manufacture
JPH03289137A (en) Thin film transistor
JPS61248461A (en) Manufacture of stacked cmos fet
JPH04188876A (en) Semiconductor device