JPH0191956A - Method for casting spherical graphite cast iron casting - Google Patents

Method for casting spherical graphite cast iron casting

Info

Publication number
JPH0191956A
JPH0191956A JP25023487A JP25023487A JPH0191956A JP H0191956 A JPH0191956 A JP H0191956A JP 25023487 A JP25023487 A JP 25023487A JP 25023487 A JP25023487 A JP 25023487A JP H0191956 A JPH0191956 A JP H0191956A
Authority
JP
Japan
Prior art keywords
casting
hole
cooling
mold
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25023487A
Other languages
Japanese (ja)
Inventor
Rokuya Nakaishi
中石 六哉
Tamotsu Tao
田尾 存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP25023487A priority Critical patent/JPH0191956A/en
Publication of JPH0191956A publication Critical patent/JPH0191956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve the strength and fatigue strength of a product by loading the core having a through-hole on a mold and cooling the vicinity of the hollow hole of a casting by flowing a cooling medium in the through-hole of the core. CONSTITUTION:The cavity 7 of a product member 1 is formed by abutting upper and lower split faces 5a, 3a and the shell core 8 having a hollow hole is fitted by penetrating the center part thereof vertically. The metal made panel body 11 pressing the center part thereof is arranged and a molten metal is poured from a sprue 14 with feeding the pressurizing air for cooling from an air feeding port 16 to execute casting. Even after completion of casting the air for cooling is fed extending over the specified time. Since the cooling speed of the circumference of the hole 1a of a product is increased the spherical graphite particle of the product is refined. Both the strength and fatigue strength of the product are thus enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は中空孔を有する球状黒鉛鋳鉄鋳物の鋳造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for casting spheroidal graphite iron castings having hollow holes.

〔従来技術〕[Prior art]

従来、自動車の前後輪を支持するす・ノクル部材等の中
空孔を有する鋳鉄鋳物は球状黒鉛鋳鉄により鋳造される
場合が多く、その鋳造方法では中空孔を形成する中実中
子を鋳型にセットし、この鋳型に溶湯を注湯後自然放熱
により冷却凝固させて行なわれている。
Conventionally, iron castings with hollow holes, such as the wheels and nocle parts that support the front and rear wheels of automobiles, are often cast from spheroidal graphite cast iron, and in this casting method, a solid core forming a hollow hole is set in a mold. After pouring the molten metal into the mold, it is cooled and solidified by natural heat radiation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の球状黒鉛鋳鉄鋳物の製造方法では、鋳型内への溶
湯の注湯後鋳物の全体を自然放熱により冷却凝固させる
のが一般的であり、そのときの冷却速度は比較的小さい
値になっている。例えば、中空孔を有する上記ナックル
部材の中空孔形成部に中実中子を用いて球状黒鉛で鋳造
する場合、中空孔の付近の比較的厚肉部の冷却速度は約
2.0℃/ s e cであり、球状黒鉛の粒径は約4
0μmと大きくなり、その部分の疲労強度は約26kg
/mm!と小さくなる。
In the conventional manufacturing method of spheroidal graphite iron castings, after pouring the molten metal into the mold, the entire casting is generally cooled and solidified by natural heat radiation, and the cooling rate at this time is relatively small. There is. For example, when casting spherical graphite using a solid core in the hollow hole forming part of the above-mentioned knuckle member having a hollow hole, the cooling rate of the relatively thick walled part near the hollow hole is about 2.0°C/s. e c, and the particle size of spheroidal graphite is approximately 4
The size becomes 0 μm, and the fatigue strength of that part is approximately 26 kg.
/mm! becomes smaller.

このように、鋳造後の冷却速度が小さいので、微細な球
状黒鉛の金属組織が得られず、その強度及び疲労強度が
低いものとなる。鋳造品の中空孔には、ベアリングや軸
部材を圧入することも多いが、その圧入荷重は非常に大
きいので圧入時クラッチが発生するという問題があり、
また球状黒鉛の粒径が大きいので中空孔を切削したり研
磨したりするときの切削性が悪くなるという問題もある
As described above, since the cooling rate after casting is low, a fine spheroidal graphite metal structure cannot be obtained, resulting in low strength and fatigue strength. Bearings and shaft members are often press-fitted into the hollow holes of cast products, but the press-fitting load is very large, so there is a problem that clutching occurs during press-fitting.
Furthermore, since the particle size of spherical graphite is large, there is also the problem that machinability is poor when cutting or polishing hollow holes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る球状黒鉛鋳鉄鋳物の鋳造方法は、中空孔を
有する球状黒鉛鋳鉄鋳物を鋳造する鋳造方法において、
上記中空孔を形成する中子として貫通孔を有する中子を
用い、上記中子を鋳型にセットしたのち、鋳型に形成し
た通路を介して、少なくとも溶湯の鋳込み後中子の貫通
孔に冷却流体を流して鋳物の中空孔の近傍部を冷却する
ものである。
The method for casting spheroidal graphite iron castings according to the present invention is a casting method for casting spheroidal graphite iron castings having hollow holes.
A core having a through hole is used as the core forming the hollow hole, and after the core is set in a mold, at least after the molten metal is poured, a cooling fluid is supplied to the through hole of the core through the passage formed in the mold. is used to cool the area near the hollow hole of the casting.

〔作用〕[Effect]

本発明に係る球状黒鉛鋳鉄鋳物の鋳造方法においては、
貫通孔を形成した中子と冷却流体の通路を形成した鋳型
を用い、この鋳型内の通路と中子の貫通孔が連通ずるよ
うにして中子を鋳型にセントし、少なくとも溶湯の鋳込
み後この貫通孔に冷却流体を流し、鋳物の中空孔の近傍
部を冷却するので、凝固時の冷却速度が大きくなって中
子近傍の溶湯の冷却速度がその他部分の冷却速度に比べ
大きくなり黒鉛粒子の粗大化が抑制され、微細な黒鉛粒
子からなる機械的強度に優れた金属Mi織となる。
In the method for casting spheroidal graphite iron castings according to the present invention,
Using a core with through-holes and a mold with cooling fluid passages, the core is placed in the mold so that the passages in the mold communicate with the through-holes in the core, and at least after the molten metal is poured, Since cooling fluid is flowed through the through holes to cool the area near the hollow hole of the casting, the cooling rate during solidification increases, and the cooling rate of the molten metal near the core is faster than that of other parts, resulting in the formation of graphite particles. Coarsening is suppressed, resulting in a metal Mi weave made of fine graphite particles and excellent in mechanical strength.

〔発明の効果〕〔Effect of the invention〕

本発明に係る球状黒鉛鋳鉄鋳物の鋳造方法によれば、以
上説明したように、少なくとも溶湯の鋳込み後、中子の
貫通孔に冷却流体を流すという簡単な方法によって、中
空孔の周囲部分の冷却速度を高めて黒鉛粒を微細化し、
その部分の強度並びに疲労強度等を高め且つ切削性を改
善することが出来る。
According to the method for casting spheroidal graphite iron castings according to the present invention, as explained above, at least after the molten metal is poured, the surrounding portion of the hollow hole is cooled by a simple method of flowing cooling fluid through the through hole of the core. Increase the speed to make graphite particles finer,
It is possible to increase the strength, fatigue strength, etc. of that part and improve machinability.

(実施例〕 以下、本発明の実施例を図面に基いて説明する。(Example〕 Embodiments of the present invention will be described below with reference to the drawings.

最初に、実施例に係る球状黒鉛鋳鉄鋳物の鋳造方法で鋳
造する鋳物と鋳造方法に供する鋳型について説明する。
First, the casting to be cast by the method for casting spheroidal graphite iron castings according to the embodiment and the mold used in the casting method will be described.

この鋳型は、中空孔を有する自動車の後輪支持用ナック
ル部材を鋳造するためのもので、上記ナックル部材1は
第1図に示すように後輪支持機構に必要な構成部材で、
鋳造後スピンドル装着孔1a(中空孔)を切削加工し、
そこに鋼製スピンドルを圧入するようになっている。
This mold is for casting a knuckle member for supporting a rear wheel of an automobile having a hollow hole, and the knuckle member 1 is a component necessary for a rear wheel support mechanism as shown in FIG.
After casting, the spindle mounting hole 1a (hollow hole) is cut,
A steel spindle is press-fitted there.

上記ナックル部材1を球状黒鉛鋳鉄材料を用いて鋳造す
る為の鋳型Mは、第2図・第3図に示すように金属製定
盤2の上に、下型鋳型(以下、下型という)3が載置さ
れ、この下型3の外周部には鋳型枠4が設けられており
、また下型3の上には上型鋳型5 (以下、上型という
)が載置され、この上型5の外周部には鋳型枠6が設け
られ、上型5の上面にはウェイト11が載置されている
A mold M for casting the knuckle member 1 using spheroidal graphite cast iron material is a lower mold mold (hereinafter referred to as lower mold) 3 placed on a metal surface plate 2 as shown in FIGS. 2 and 3. A mold frame 4 is provided on the outer periphery of the lower mold 3, and an upper mold 5 (hereinafter referred to as the upper mold) is placed on the lower mold 3. A mold frame 6 is provided on the outer periphery of the upper mold 5, and a weight 11 is placed on the upper surface of the upper mold 5.

上記下型3と上型5とを組合せてから、両鋳型枠4・6
はボルト・ナツトで結合される。
After combining the lower mold 3 and upper mold 5, both mold flasks 4 and 6 are assembled.
are connected with bolts and nuts.

上記上型5と下型3の構造について説明すると、下型3
の割面3aの略中央部にはナックル部材1の半分のキャ
ビティ7aが凹設され、また上型5の割面5aの略中央
部にはナックル部材1の残り半分のキャビティ7bが凹
設され、上下の割面5a・3aを当接させて上型3を下
型5上に載置すると、ナックル部材1のキャビティ7が
形成される。このキャビティ7の中央部を上下に貫くよ
うにスピンドル装着孔1aとしての中空孔を形成するシ
ェル中子8が配設され、シェル中子8はスピンドル装着
孔1aを形成する円筒部8aと、この円筒部8aの上方
および下方に夫々形成されたテーパ61sabと、シェ
ル中子8の全長に互って中心部に上下方向に透設された
貫通孔8cとからなり、円筒部8aはキャビティ7内に
配設され、また上下のテーパ部8bは上型5と下型3の
テーパ状係合部に夫々係合されている。尚、上記シェル
中子8はコーテツドサンドを成型焼結させて製作された
ものである。上型5と下型3には貫通孔8cに連通ずる
エア導入孔9a・9bが夫々立向きに形成され、下型3
のエア導入孔9bの下端開口部と連通ずるエア噴出口1
0が定盤2の中央部に開口されている。尚、図中符号1
4は湯口、15は湯道、13は湯溜である。
To explain the structure of the upper mold 5 and lower mold 3, the lower mold 3
A cavity 7a for half of the knuckle member 1 is recessed approximately in the center of the split surface 3a, and a cavity 7b for the remaining half of the knuckle member 1 is recessed approximately in the center of the split surface 5a of the upper mold 5. When the upper die 3 is placed on the lower die 5 with the upper and lower split surfaces 5a and 3a in contact with each other, the cavity 7 of the knuckle member 1 is formed. A shell core 8 that forms a hollow hole as the spindle mounting hole 1a is disposed so as to vertically penetrate through the center of the cavity 7, and the shell core 8 has a cylindrical portion 8a that forms the spindle mounting hole 1a, and It consists of a taper 61sab formed above and below the cylindrical part 8a, and a through hole 8c vertically permeable in the center along the entire length of the shell core 8. The upper and lower tapered portions 8b are engaged with the tapered engaging portions of the upper mold 5 and the lower mold 3, respectively. The shell core 8 is manufactured by molding and sintering coated sand. Air introduction holes 9a and 9b communicating with the through hole 8c are formed vertically in the upper mold 5 and the lower mold 3, respectively.
The air outlet 1 communicates with the lower end opening of the air introduction hole 9b.
0 is opened in the center of the surface plate 2. In addition, code 1 in the figure
4 is a sprue, 15 is a runner, and 13 is a hot water reservoir.

尚、上記ウェイト11は上型5を下型3に上方から押圧
するための金属製盤体であり、このウェイト11には上
記の湯口14に連なる開口穴11aが設けられるととも
に、その内部には上型5のエア導入孔9aの上端部に連
なるエア供給通路16が透設され、エア供給通路16の
上流端は右側面中央部に開端し、そのエア供給口16a
に図示外のエア供給装置からホースを介して冷却用加圧
エアが供給されると、そのエアはエア供給通路16・上
型5のエア導入孔9a・シェル中子8の貫通孔8C・下
型3のエア導入孔9bを通って流れ、エア噴出口10か
ら噴出するようになっている。
The weight 11 is a metal plate for pressing the upper mold 5 against the lower mold 3 from above, and this weight 11 is provided with an opening hole 11a that connects to the sprue 14, and has an opening hole 11a in its interior. An air supply passage 16 connected to the upper end of the air introduction hole 9a of the upper die 5 is transparently provided, and the upstream end of the air supply passage 16 opens at the center of the right side, and the air supply opening 16a
When pressurized air for cooling is supplied from an air supply device (not shown) through a hose, the air flows through the air supply passage 16, the air introduction hole 9a of the upper mold 5, the through hole 8C of the shell core 8, and the lower The air flows through the air introduction hole 9b of the mold 3 and is ejected from the air ejection port 10.

以下、鋳造ステージにおいて、上記の鋳型Mを用いて球
状黒鉛鋳銖材料でナックル部材1を鋳造するときの鋳造
方法について説明する。
Hereinafter, a casting method for casting the knuckle member 1 from spheroidal graphite cast iron material using the above mold M in the casting stage will be described.

先ず、第3図に図示のように定盤2の上に鋳型Mをセッ
トし、エア供給口16aにエア供給装置のエア供給ホー
スを接続し、所定圧力(約4.0kg / Cl1N)
の冷却用加圧エアを供給してエア供給通路16・上型5
のエア導入孔9a・シェル中子8の貫通孔8C・下型3
のエア導入孔9bへ流し、エア噴出口10から噴出させ
る。
First, as shown in FIG. 3, set the mold M on the surface plate 2, connect the air supply hose of the air supply device to the air supply port 16a, and apply a predetermined pressure (approximately 4.0 kg / Cl1N).
Pressurized air for cooling is supplied to the air supply passage 16 and the upper mold 5.
Air introduction hole 9a, through hole 8C of shell core 8, lower mold 3
The air flows into the air introduction hole 9b and is ejected from the air outlet 10.

上記冷却エアを供給しつつ、開口穴11aと湯口14と
から球状黒鉛鋳鉄の溶湯を注湯して、キャビティ7と湯
溜13と湯道15とに充填し鋳造する。
While supplying the cooling air, molten spheroidal graphite cast iron is poured from the opening hole 11a and the sprue 14, filling the cavity 7, the sump 13, and the runner 15, and casting.

上記鋳込み完了後、溶湯が凝固し冷却される所定の時間
(約90〜120秒)に亙って冷却用エアを供給し続け
る。
After the casting is completed, cooling air is continued to be supplied for a predetermined period of time (approximately 90 to 120 seconds) during which the molten metal is solidified and cooled.

尚、上記のように注湯前には必ずしも冷却用エアを供給
する必要はなく、注湯後凝固しつつ球状黒鉛の金属組織
が形成される過程で冷却用エアを供給すればよく、この
ときのスピンドル装着孔1aの周囲部分の溶湯の冷却速
度が約3.0〜4.0℃/ s e c程度になるよう
に冷却すればよい。
As mentioned above, it is not necessarily necessary to supply cooling air before pouring, but it is sufficient to supply cooling air during the process of solidifying after pouring and forming the metallic structure of spheroidal graphite. The molten metal around the spindle mounting hole 1a may be cooled at a cooling rate of about 3.0 to 4.0° C./sec.

上記所定時間に亙る冷却後、冷却用エアの供給を停止し
、その後従来方法と同様の所定の条件下に鋳型Mを解体
し、ナックJL/NB材1の鋳物を取出す。
After cooling for the predetermined time, the supply of cooling air is stopped, and then the mold M is dismantled under the same predetermined conditions as in the conventional method, and the casting of the Knack JL/NB material 1 is taken out.

上記のように、少なくとも鋳込み後の溶湯凝固の過程で
冷却用エアでシェル中子8を介してスピンドル装着孔1
aの周囲の部分を冷却すると、その冷却速度はその他の
部分の冷却速度よりも大きくなり球状黒鉛の粒子の粗大
化が抑制されて球状黒鉛粒子が微細化する。
As mentioned above, at least during the process of solidifying the molten metal after casting, cooling air is applied to the spindle mounting hole 1 through the shell core 8.
When the area around a is cooled, the cooling rate thereof becomes higher than the cooling rate of other areas, suppressing the coarsening of the spherical graphite particles and making the spherical graphite particles finer.

このように、球状黒鉛の粒子が微細化するので強度及び
疲労強度が著しく向上するうえ、切削・研磨の加工性も
向上する。
In this way, since the particles of spherical graphite are made finer, strength and fatigue strength are significantly improved, and workability in cutting and polishing is also improved.

上記実施例の鋳造方法にて鋳造したナックル部材1と、
中実中子を用いて特別に冷却することなく鋳造したナッ
クル部材について得られた実験結果は第4図・第5図に
示すとおりであり、本実施例ではスピンドル装着孔1a
の周辺部の冷却速度が約3.5℃で点状黒鉛の粒径が約
25μmと微細化しており、比較例では冷却速度が約2
.0 ℃/secで点状黒鉛の粒径が約40μmと大き
くなっている。
A knuckle member 1 cast by the casting method of the above embodiment,
The experimental results obtained for the knuckle member cast using a solid core without special cooling are shown in Figs. 4 and 5, and in this example, the spindle mounting hole 1a
When the cooling rate in the peripheral area of the graphite was approximately 3.5°C, the particle size of the point graphite was reduced to approximately 25 μm, and in the comparative example, the cooling rate was approximately 25 μm.
.. At 0° C./sec, the particle size of the dotted graphite becomes as large as about 40 μm.

また、本実施例に係る鋳物のスピンドル装着孔laの周
辺部の疲労強度が約29.5kg/mu”  (応力振
幅)となり、比較例に係る鋳物のスピンドル装置、孔1
aの周辺部の疲労強度が約26.0kg/ms”となっ
ている。
Furthermore, the fatigue strength of the peripheral part of the cast spindle mounting hole la according to the present example is approximately 29.5 kg/mu" (stress amplitude), and the cast spindle device according to the comparative example, hole 1
The fatigue strength of the surrounding area of a is approximately 26.0 kg/ms''.

上記実験データからも明らかなように、本実施例の球状
黒鉛鋳鉄鋳物の鋳造方法によれば、鋳物の中空孔の周辺
部の金属組織中の球状黒鉛を微細化して、その強度・疲
労強度・切削性等を著しく向上させることが出来る。
As is clear from the above experimental data, according to the casting method of the spheroidal graphite iron casting of this example, the spheroidal graphite in the metal structure around the hollow holes of the casting is refined, and its strength, fatigue strength, Cutting performance etc. can be significantly improved.

尚、上記ナックル部材1は一実施例を示すものにすぎず
、本発明の鋳造方法は各種の中空孔を有する球状黒鉛鋳
鉄鋳物を鋳造する鋳造方法に適用し得るものである。ま
た、中子として必らずしもシェル中子を用いる必要はな
く所定の熱伝導性のある中子であればよいし、冷却用エ
アに代えてその他の冷却用気体或いは冷却水・冷却油を
用いることも可能である。
The knuckle member 1 described above is merely one example, and the casting method of the present invention can be applied to casting methods for casting spheroidal graphite iron castings having various hollow holes. In addition, it is not necessary to use a shell core as the core, and any core with a specified thermal conductivity may be used, and instead of cooling air, other cooling gas, cooling water, or cooling oil may be used. It is also possible to use

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係るもので、第1回はナックル
部材の側面図、第2図は下型の平面図、第3図は鋳型の
断面図、第4図は冷却速度と黒鉛粒子粒径の関係を示す
グラフ、第5図は疲労強度特性を示す線図である。 M・・鋳型、 8・・シェル中子、 8C・・貫通孔、
 9a・9b・・エア導入孔、 16・・エア供給通路
The drawings relate to embodiments of the present invention; the first drawing is a side view of the knuckle member, the second drawing is a plan view of the lower mold, the third drawing is a cross-sectional view of the mold, and the fourth drawing is a cooling rate and graphite particles. A graph showing the relationship between grain sizes, and FIG. 5 is a diagram showing fatigue strength characteristics. M...Mold, 8...Shell core, 8C...Through hole,
9a, 9b...Air introduction hole, 16...Air supply passage.

Claims (1)

【特許請求の範囲】[Claims] (1)中空孔を有する球状黒鉛鋳鉄鋳物を鋳造する鋳造
方法において、 上記中空孔を形成する中子として貫通孔を有する中子を
用い、上記中子を鋳型にセットしたのち、鋳型に形成し
た通路を介して、少なくとも溶湯の鋳込み後中子の貫通
孔に冷却流体を流して鋳物の中空孔の近傍部を冷却する
ことを特徴とする球状黒鉛鋳鉄鋳物の鋳造方法。
(1) In a casting method for casting a spheroidal graphite cast iron casting having a hollow hole, a core having a through hole is used as the core forming the hollow hole, the core is set in a mold, and then formed in the mold. 1. A method for casting spheroidal graphite iron castings, the method comprising: flowing a cooling fluid into a through hole of a core through a passage, at least after pouring the molten metal, to cool the vicinity of a hollow hole of the casting.
JP25023487A 1987-10-02 1987-10-02 Method for casting spherical graphite cast iron casting Pending JPH0191956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25023487A JPH0191956A (en) 1987-10-02 1987-10-02 Method for casting spherical graphite cast iron casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25023487A JPH0191956A (en) 1987-10-02 1987-10-02 Method for casting spherical graphite cast iron casting

Publications (1)

Publication Number Publication Date
JPH0191956A true JPH0191956A (en) 1989-04-11

Family

ID=17204827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25023487A Pending JPH0191956A (en) 1987-10-02 1987-10-02 Method for casting spherical graphite cast iron casting

Country Status (1)

Country Link
JP (1) JPH0191956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888314A (en) * 1991-01-08 1999-03-30 Nippon Steel Corporation Process for preparation of oriented electrical steel sheet having high flux density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888314A (en) * 1991-01-08 1999-03-30 Nippon Steel Corporation Process for preparation of oriented electrical steel sheet having high flux density

Similar Documents

Publication Publication Date Title
US5299620A (en) Metal casting surface modification by powder impregnation
US5383513A (en) Hard facing casting surfaces with wear-resistant sheets
US6979023B2 (en) Die cast sub-frame
GB1057535A (en) Metal castings and processes for their production
JPH0191956A (en) Method for casting spherical graphite cast iron casting
US2163022A (en) Method of producing vehicle wheels
US2949652A (en) Continuous casting of metals
JPH05106667A (en) Brake disk and manufacture thereof
JPS63268551A (en) Light alloy casting
JPH1099953A (en) Centrifugal casting method
US2679079A (en) Method of forming axle bearings
US6401797B1 (en) Mold and method for casting a vehicle wheel
JP2984826B2 (en) Casting method and mold
US20180029113A1 (en) Direct squeeze casting
JPS60191654A (en) Piston for internal-combustion engine and production thereof
JPH0347951B2 (en)
JPH084809A (en) Brake disc and its manufacture
JPH0420697B2 (en)
JPS5893557A (en) Production of composite fibrous metallic material
JP2000355206A (en) Suspension member for automobile
JPH084186Y2 (en) Partition plate for casting
JP3226421B2 (en) Aluminum-based composite disk rotor
CN85102053A (en) Vacuum sealed molding part and component metal surface composite alloy metallization processes
JP2002028765A (en) Method for injection molding metallic material
JPH04327356A (en) Low pressure casting method for mg alloy-made wheel in two wheeler