JPH0154658B2 - - Google Patents

Info

Publication number
JPH0154658B2
JPH0154658B2 JP22140783A JP22140783A JPH0154658B2 JP H0154658 B2 JPH0154658 B2 JP H0154658B2 JP 22140783 A JP22140783 A JP 22140783A JP 22140783 A JP22140783 A JP 22140783A JP H0154658 B2 JPH0154658 B2 JP H0154658B2
Authority
JP
Japan
Prior art keywords
reaction
photometry
light
prism
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22140783A
Other languages
Japanese (ja)
Other versions
JPS60114744A (en
Inventor
Yoichi Kiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22140783A priority Critical patent/JPS60114744A/en
Publication of JPS60114744A publication Critical patent/JPS60114744A/en
Publication of JPH0154658B2 publication Critical patent/JPH0154658B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、順次に移送される反応管内における
試料の直接測光を行う自動化学分析装置に係り、
さらに詳しくは、液中測光用プリズムを用いた自
動化学分析装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an automatic chemical analyzer that performs direct photometry of a sample in a reaction tube that is sequentially transferred.
More specifically, the present invention relates to an automatic chemical analyzer using an in-liquid photometric prism.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来より、反応管中の試料を恒温槽内で直接測
光する方法が行なわれている。この方法によれ
ば、反応管内の試料を吸引してフローセル内で測
光を行うフローセル方式に比べ、温度管理が容易
であり、クロスコンタミの弊害も少ない。
Conventionally, a method has been used in which the light of a sample in a reaction tube is directly measured in a constant temperature bath. According to this method, temperature control is easier and there are fewer adverse effects of cross contamination than in the flow cell method in which a sample in a reaction tube is sucked and photometry is performed in a flow cell.

ここで、従来の直接測光方式による自動化学分
析装置の例を第1図を参照して説明する。第1図
において、自動化学分析装置は、図面の裏面から
表面に向かう方向に沿つて移動する反応管1と、
内部に液体2を収納して前記反応管1内の試料を
恒温に維持する恒温槽3と、該恒温槽3の両側壁
に設けられた透光窓4,4と、該透過等の両側に
対向配置されたプリズム5,5と、一方のプリズ
ム5に光を入射するための光源6及びレンズ7と
から成つている。
Here, an example of a conventional automatic chemical analyzer using direct photometry will be explained with reference to FIG. In FIG. 1, the automatic chemical analyzer includes a reaction tube 1 that moves along the direction from the back side to the front side of the drawing,
A constant temperature bath 3 that stores a liquid 2 inside and maintains the sample in the reaction tube 1 at a constant temperature, transparent windows 4 provided on both side walls of the constant temperature bath 3, and transparent windows 4, 4 on both sides of the transparent etc. It consists of prisms 5, 5 arranged opposite to each other, a light source 6 and a lens 7 for inputting light into one of the prisms 5.

以上の構成を有する自動化学分析装置は、反応
管1内の試料への測光に際して、恒温槽3の側壁
に設けた透光窓4,4を介して行なう構造となつ
ている。このため、同一恒温槽内に複数の反応ラ
インを有する自動化学分析装置では直接測光が行
えない欠点がある。光の経路に複数の反応管が位
置することになるからである。上記構成によつて
複数の反応ラインに対して直接測光を行うように
するためには、各反応ライン毎に反応管の取り付
け位置をずらし、光路中に順次各反応ラインの反
応管が位置するうにしなければならない。このよ
うにすれば、反応管の取付けピツチが大きくな
り、ひいては装置の大型化を招くことになる。
The automatic chemical analyzer having the above configuration has a structure in which photometry of the sample in the reaction tube 1 is carried out through light-transmitting windows 4 provided on the side wall of the thermostatic chamber 3. For this reason, an automatic chemical analyzer having a plurality of reaction lines in the same thermostatic chamber has the disadvantage that direct photometry cannot be performed. This is because a plurality of reaction tubes are located in the light path. In order to perform direct photometry on multiple reaction lines with the above configuration, the mounting positions of the reaction tubes for each reaction line are shifted, and the reaction tubes of each reaction line are positioned sequentially in the optical path. must be done. If this is done, the mounting pitch of the reaction tube will become larger, which will lead to an increase in the size of the apparatus.

そこで、同一恒温槽内で複数の反応ラインのそ
れぞれに対して直接測光を行い、然も装置の大型
化を防止する要請に応えて、本出願人は液中測光
用プリズムを用いた自動化学分析装置として先に
出願をした(特願昭58−54674)。
Therefore, in response to the request to perform direct photometry on each of multiple reaction lines in the same thermostatic chamber and to prevent the equipment from increasing in size, the present applicant developed an automated chemical analysis method using a submerged photometric prism. An application was filed earlier as a device (Japanese Patent Application No. 58-54674).

ところが、前記出願によると、第2図に示すよ
うに、恒温槽10内において複数の反応ライン
(図中では4列)に沿つて反応管11a,11b,
11c,11dを順次に移送すると共に、該反応
管11a〜11dのそれぞれの移送経路(反応ラ
イン)を挟んで対向配置された一対の液中測光用
のプリズム12a,12b,12c,12dが各
反応管11a〜11dの移送方向に対して同列に
一直線に配置されているため、その列の間隔がプ
リズムの寸法により決定されてしまい、相互に隣
合う反応管11aと11b,11bと11c,1
1cと11dの各間隔を二個分のプリズム以下の
寸法に縮めることができず、その結果として装置
全体の小型化の要請に充分に応えることができな
かつた。ちなみに、通常、プリズムは一辺が10mm
は必要であり、反応管とプリズム全面との隙間を
も考慮すると、相互に隣合う各反応管の間隔は最
小限25mm程度になつてしまい、最終的には装置全
体が大型化してしまう。
However, according to the above application, as shown in FIG. 2, reaction tubes 11a, 11b,
11c and 11d are sequentially transferred, and a pair of in-liquid photometric prisms 12a, 12b, 12c, and 12d, which are disposed opposite to each other across the transfer path (reaction line) of each of the reaction tubes 11a to 11d, transfer each reaction. Since the tubes 11a to 11d are arranged in a straight line in the same row with respect to the transfer direction, the spacing between the rows is determined by the dimensions of the prism, and the reaction tubes 11a and 11b, 11b and 11c, and 11c are adjacent to each other.
It was not possible to reduce the distance between 1c and 11d to a size equal to or less than the size of two prisms, and as a result, it was not possible to sufficiently meet the demand for miniaturization of the entire device. By the way, prisms are usually 10mm on each side.
is necessary, and considering the gap between the reaction tube and the entire surface of the prism, the distance between adjacent reaction tubes is at least about 25 mm, which ultimately increases the size of the entire device.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に基づいてなされたものであ
り、液中測光用プリズムの数を減少して各反応間
の間隙を縮めることにより装置の小形化に寄与で
き得る液中測光用プリズムを用いた自動化学分析
装置を提供することを目的とする。
The present invention has been made based on the above circumstances, and uses a prism for in-liquid photometry that can contribute to miniaturization of the apparatus by reducing the number of prisms for in-liquid photometry and narrowing the gap between each reaction. The purpose is to provide an automatic chemical analyzer.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明の概要は、液
中恒温槽内において、複数の反応ラインに沿つて
反応管を順次に移送すると共に、該反応管内の試
料を液中測光用プリズムを用いて直接測光を行う
自動化学分析装置において、前記反応ラインの隣
合う2本の反応管を反射部材を介して接合し、こ
れにより形成した一対の反応管を挟んで液中測光
用プリズムを対向配置し、各液中測光用プリズム
の下方に光の入射及び出射を兼ねる光路部を設け
たことを特徴とする。
The outline of the present invention for achieving the above object is to sequentially transfer reaction tubes along a plurality of reaction lines in a submerged thermostatic chamber, and to measure a sample in the reaction tube using a submerged photometric prism. In an automatic chemical analyzer that performs direct photometry, two adjacent reaction tubes of the reaction line are joined via a reflective member, and prisms for in-liquid photometry are placed facing each other across the pair of reaction tubes thus formed. , is characterized in that an optical path section is provided below each of the in-liquid photometry prisms, which serves both as input and output of light.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照し
ながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明装置の測光系を反応ラインを含
めて示す模式図である。同図において、恒温槽2
4内には反応管の移送方向と並列に保持するカセ
ツト28により、第1、第2、第3及び第4の反
応ライン41,42,43,44が設けられてお
り、一方の隣合う前記反応ライン、すなわち、第
1の反応ライン41の反応管29aと第2の反応
ライン42の反応管29bが反射部材30Aを介
して接合され、この接合により形成された一対の
反応管を挟んで一対の液中測光用プリズム(以下
プリズムと略称する)27a,27bが対向配置
されており、この各プリズム27a,27bのそ
れぞれの下方に光の入射及び出射を兼ねる光路部
25a,25bが設けられている。また、他方の
隣合う前記反応ライン、すなわち、第3の反応ラ
イン43の反応管29cと第4の反応ライン44
の反応管29dも同様に反射部材30Bを介して
接合され、この接合により形成された一対の反応
管を挟んで一対のプリズム27c,27dのそれ
ぞれの下方に光の入射及び入射を兼ねる光路部2
5c,25dが設けられている。
FIG. 3 is a schematic diagram showing the photometric system of the apparatus of the present invention, including a reaction line. In the same figure, constant temperature bath 2
4, first, second, third, and fourth reaction lines 41, 42, 43, and 44 are provided by a cassette 28 held in parallel with the transfer direction of the reaction tube, and one of the adjacent The reaction lines, that is, the reaction tubes 29a of the first reaction line 41 and the reaction tubes 29b of the second reaction line 42 are joined via the reflective member 30A, and the pair of reaction tubes formed by this joining is sandwiched between the reaction tubes 29a and 29b of the second reaction line 42. Prisms 27a and 27b for in-liquid photometry (hereinafter abbreviated as prisms) are arranged to face each other, and optical path sections 25a and 25b, which also serve as input and output of light, are provided below each of the prisms 27a and 27b. There is. In addition, the other adjacent reaction lines, that is, the reaction tube 29c of the third reaction line 43 and the fourth reaction line 44
The reaction tubes 29d are similarly joined via the reflective member 30B, and an optical path portion 2 serving as the input and input of light is placed below each of the pair of prisms 27c and 27d across the pair of reaction tubes formed by this joining.
5c and 25d are provided.

前記各光路部25a〜25dのそれぞれには、
集光レンズ26が備えられていると共に一本にバ
ンドルされた光分配フアイバ23の出力端と受光
フアイバ31の入力端とが接続されている。ここ
で、前記の一本にバンドルされた各フアイバ2
3,31は第4図に示すように、パイプ50の中
に光分配フアイバの素線(白丸で示す)23aと
受光フアイバの素線(黒丸で示す)31aとがラ
ンダムに配列されており、その多数の素線のう
ち、光分配フアイバの素線23aはまとまつて後
述するランプからの光を入射し、また、受光フア
イバの素線31a同志がまとまつて後述する光ス
イツチ手段へ光の伝達を行うようになつている。
Each of the optical path sections 25a to 25d includes:
A condensing lens 26 is provided, and the output end of the light distribution fiber 23 bundled into one and the input end of the light receiving fiber 31 are connected. Here, each fiber 2 bundled into the above-mentioned one
3 and 31, as shown in FIG. 4, light distribution fiber strands 23a (indicated by white circles) and light receiving fiber strands 31a (indicated by black circles) are randomly arranged in the pipe 50. Among the many strands, the strands 23a of the optical distribution fiber collectively receive light from a lamp, which will be described later, and the strands 31a of the light receiving fiber collectively transmit light to an optical switch means, which will be described later. I'm starting to do it.

次に、以上説明した本発明装置を使用して、第
1の反応ライン41における反応管29a内にあ
る試料39aを測光する動作について、第3図を
参照しながら詳しく説明する。光源21から出た
光がレンズ22で収光され、光分配バンドルフア
イバ23により恒温槽24の下部を切欠して設け
られた光路部25aに分配されて入射され、さら
に入射された光は前記光路部25aにある集光レ
ンズ26により収光されてプリズム27aにより
水平方向に光路変換され、反応管29a内の試料
39aを照射した後、その光は反射部材30Aに
より反射されて再び前記反応管29a内の試料3
9aを通過して、元の経部、すなわち、プリズム
27aを介して前記光路部25aに戻り、集光レ
ンズ26により収光されて、ついには受光バンド
ルフアイバ31の端面に達する。ここで受光バン
ドルフアイバ31により受光された光は、光スイ
ツチ手段32へ導びかれ、この光スイツチ手段3
2の切換ミラー32aによる間歇的な回転により
光路が選択されると、レンズ33に導かれ、スリ
ツト34を通つた後、回折格子35により前記光
が分光されて検出器36により感知され、反応管
29a内にある試料39aの測光が行われる。
Next, the operation of photometrically measuring the sample 39a in the reaction tube 29a in the first reaction line 41 using the apparatus of the present invention described above will be described in detail with reference to FIG. The light emitted from the light source 21 is collected by the lens 22, and distributed by the optical distribution bundle fiber 23 to the optical path section 25a provided by cutting out the lower part of the thermostatic chamber 24, and the incident light is further transmitted to the optical path section 25a. The light is collected by the condensing lens 26 in the section 25a, converted into an optical path in the horizontal direction by the prism 27a, and after irradiating the sample 39a in the reaction tube 29a, the light is reflected by the reflection member 30A and returns to the reaction tube 29a. Sample 3 inside
9a, returns to the optical path section 25a via the original meridian, that is, the prism 27a, is condensed by the condenser lens 26, and finally reaches the end face of the light-receiving bundle fiber 31. Here, the light received by the light receiving bundle fiber 31 is guided to the optical switch means 32.
When the optical path is selected by intermittent rotation by the switching mirror 32a of No. 2, the light is guided to the lens 33, passes through the slit 34, is separated by the diffraction grating 35, is sensed by the detector 36, and is sent to the reaction tube. Photometry of the sample 39a located within the sample 39a is performed.

同様にして、第2の反応ライン42における反
応管29b内ある試料39bを測光する場合に
は、光配分バンドルフイテバ23から光路部25
bに入射された光がプリズム27bにより光路変
換して前記試料39bを照射した後に、反射部材
30Aにより反射されて再び試料39bを通過し
て元の経路に戻り、受光バンドルフアイバ31に
より光スイツチ手段32へ導かれ、切換ミラー3
2aにより光路が選択されて回折格子35に導か
れて分光され、検出器36により感知されて試料
39bの測光が行われる。
Similarly, when photometrically measuring the sample 39b in the reaction tube 29b in the second reaction line 42, the optical path section 25 is
After the light incident on b is changed in optical path by the prism 27b and irradiates the sample 39b, it is reflected by the reflection member 30A, passes through the sample 39b again, returns to the original path, and is switched by the light receiving bundle fiber 31 to the light switch means. 32, switching mirror 3
An optical path is selected by 2a, and the light is guided to a diffraction grating 35 for spectroscopy, and is sensed by a detector 36 to perform photometry of a sample 39b.

一方、第3の反応ライン43における反応管2
9cにある試料39c及び第4の反応ライン44
における反応管29dにある試料39dを測光す
る場合の測光位置は、第5図に示すように、反応
管の移送方向Xにおいて一ステツプすらした位置
であり、同様に、試料39cはプリズム27cと
反射部材30Bを利用して測光が行われ、試料3
9dはプリズム27dと反射部材30Bを利用し
て測光が行われる。
On the other hand, the reaction tube 2 in the third reaction line 43
Sample 39c at 9c and fourth reaction line 44
The photometric position when photometrically measuring the sample 39d in the reaction tube 29d is, as shown in FIG. Photometry is performed using member 30B, and sample 3
9d, photometry is performed using the prism 27d and the reflecting member 30B.

尚、前記反射部材30A,30Bは、例えば、
アルミ板を反応管と反応管の間に挟み込んで接着
して形成してもよく、或いは一方の反応管の外面
の所定個所にアルミ蒸着を行い、他方の反応管を
その横に接着してもよい。また、耐水性の点を考
慮すれば蒸着面は反応管の奥行寸法よりやや小さ
目に形成した後にエポキシ系の接着剤を用いるの
がよい。前記実施例を示す図面では反応管の上下
方向の全長にわたつて反射部材30A,30Bを
形成しているが、必ずしもこのような全長にする
必要はなく、測光の光束の当たる部分だけに反射
部材を形成してもよい。
Note that the reflecting members 30A and 30B are, for example,
It may be formed by sandwiching an aluminum plate between the reaction tubes and gluing them together, or by vapor-depositing aluminum at a predetermined location on the outer surface of one reaction tube and gluing the other reaction tube next to it. good. In addition, in consideration of water resistance, it is preferable to use an epoxy adhesive after forming the vapor deposition surface to be slightly smaller than the depth of the reaction tube. In the drawings showing the above-mentioned embodiment, the reflective members 30A and 30B are formed over the entire length of the reaction tube in the vertical direction, but it is not necessarily necessary to have such a full length, and the reflective members are formed only in the part that is hit by the photometric light beam. may be formed.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、反応ラインの隣
合う2本の反応管を反射部材を介して相互に接合
し、この接合により形成された一対の反応管を挟
んで一対の液中測光用プリズムを対向配置するよ
うに構成することにより、前記プリズムの数を減
少して各反応管の間隙を縮めして装置の小型化に
寄与でき得る液中測光用プリズムを用いた自動化
学分析装置を提供することができる。
As explained above, the present invention involves joining two adjacent reaction tubes of a reaction line to each other via a reflective member, and placing a pair of submerged photometry prisms on both sides of the pair of reaction tubes formed by this joining. Provided is an automatic chemical analyzer using a prism for in-liquid photometry, which can contribute to miniaturization of the apparatus by reducing the number of prisms and shortening the gap between each reaction tube by arranging the prisms so as to face each other. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直接測光方式による自動化学分
析装置の断面図、第2図は複数の反応ラインの場
合における従来の直接測光方式による自動化学分
析装置の断面図、第3図は本発明に係わる液中測
光用プリズムを用いた自動化学分析装置において
の測光系を反応ラインを含めて示す模式図、第4
図は一本のバンドルされた光分配フアイバと受光
フアイバの端面を示す説明図、第5図は測光位置
を示すための反応ラインの平面図である。 24……恒温槽、25a〜25d……光路部、
27a〜27d……プリズム(液中測光用プリズ
ム)、29a〜29d……反応管、41〜44…
…第1〜第4の反応ライン。
Figure 1 is a cross-sectional view of an automatic chemical analyzer using a conventional direct photometry method, Figure 2 is a cross-sectional view of an automatic chemical analyzer using a conventional direct photometry method in the case of multiple reaction lines, and Figure 3 is a cross-sectional view of an automatic chemical analyzer using a conventional direct photometry method. A schematic diagram showing a photometry system including a reaction line in an automatic chemical analyzer using a related in-liquid photometry prism, No. 4
The figure is an explanatory view showing the end faces of a single bundled light distribution fiber and light receiving fiber, and FIG. 5 is a plan view of a reaction line for showing photometric positions. 24... Constant temperature chamber, 25a to 25d... Optical path section,
27a-27d...prism (prism for photometry in liquid), 29a-29d...reaction tube, 41-44...
...First to fourth reaction lines.

Claims (1)

【特許請求の範囲】[Claims] 1 液体恒温槽内において、複数の反応ラインに
沿つて反応管を順次に移送すると共に、該反応管
内の試料を液中測光用ブリズムを用いて直接測光
を行う自動化学分析装置において、前記反応ライ
ンの隣合う2本の反応管を反射部材を介して接合
し、これにより形成した一対の反応管を挟んで液
中測光用プリズムを対向配置し、各液中測光用プ
リズムの下方に光の入射及び出射を兼ねる光路部
を設けたことを特徴とする液中測光用プリズムを
用いた自動化学分析装置。
1 In an automatic chemical analyzer that sequentially transfers reaction tubes along a plurality of reaction lines in a liquid constant temperature bath, and directly measures the light of the sample in the reaction tubes using a submerged photometric prism, the reaction lines Two adjacent reaction tubes are joined via a reflective member, and prisms for in-liquid photometry are placed facing each other across the pair of reaction tubes thus formed, and light is incident below each prism for in-liquid photometry. An automatic chemical analysis device using a prism for in-liquid photometry, characterized in that it is provided with an optical path section that also serves as an output.
JP22140783A 1983-11-26 1983-11-26 Automatic chemical analyzer using prism for measuring light in liquid Granted JPS60114744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22140783A JPS60114744A (en) 1983-11-26 1983-11-26 Automatic chemical analyzer using prism for measuring light in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22140783A JPS60114744A (en) 1983-11-26 1983-11-26 Automatic chemical analyzer using prism for measuring light in liquid

Publications (2)

Publication Number Publication Date
JPS60114744A JPS60114744A (en) 1985-06-21
JPH0154658B2 true JPH0154658B2 (en) 1989-11-20

Family

ID=16766255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22140783A Granted JPS60114744A (en) 1983-11-26 1983-11-26 Automatic chemical analyzer using prism for measuring light in liquid

Country Status (1)

Country Link
JP (1) JPS60114744A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801187A (en) * 1986-04-30 1989-01-31 Baxter Travenol Laboratories, Inc. Liquid light tube end cap assembly

Also Published As

Publication number Publication date
JPS60114744A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
EP0127286B1 (en) A photometric light absorption measuring type biochemical analysing apparatus
JP4551421B2 (en) Method and apparatus for measuring reflected light
CN101548162B (en) Compact catadioptric spectrometer
CA1183013A (en) Multi-channel spectrophotometer
US6287871B1 (en) System for determining analyte concentration
CN100480677C (en) Optical detection apparatus and multi-channel sample analyzer employing the same
EP0109536A1 (en) Apparatus for absorptiometric analysis
JPH01253634A (en) Reflection density measuring apparatus
JP2899651B2 (en) Light transmission type spectrometer
JPH0154658B2 (en)
JP2002527744A (en) In particular, optical measuring heads for automatic analyzers of chemical or biochemical reactions
US20030155245A1 (en) Capillary array unit electrophoretic device comprising the same
JPS639610B2 (en)
JPS63132139A (en) Liquid refractive index meter
US4484815A (en) Spectrophotometer
JPH0154657B2 (en)
JPH11311602A (en) Probe for measuring light transmission rate
JP4516802B2 (en) Remote image judgment support system such as electrophoretic examination data
JP3019875B2 (en) Flow cell for transmitted light measurement
JPS63285446A (en) Photometry of automatic chemical analyzer
JP2003510567A (en) Temperature control housing for planar optical components
SU1458779A1 (en) Autocollimation method of determining refraction indexes of wedge-shaped specimens
JPH0624765Y2 (en) Gas concentration measuring device
CN2141565Y (en) Density sensor using optic fibre bundle
JP2010008292A (en) Specific gravity measuring instrument for liquid sample