JPH0152747B2 - - Google Patents

Info

Publication number
JPH0152747B2
JPH0152747B2 JP54025923A JP2592379A JPH0152747B2 JP H0152747 B2 JPH0152747 B2 JP H0152747B2 JP 54025923 A JP54025923 A JP 54025923A JP 2592379 A JP2592379 A JP 2592379A JP H0152747 B2 JPH0152747 B2 JP H0152747B2
Authority
JP
Japan
Prior art keywords
developer
toner
development
developer support
electrostatic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54025923A
Other languages
Japanese (ja)
Other versions
JPS55118052A (en
Inventor
Toshiharu Nakamura
Junichiro Kanbe
Tsutomu Toyono
Tooru Takahashi
Yasuyuki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2592379A priority Critical patent/JPS55118052A/en
Priority to US06/124,913 priority patent/US4363861A/en
Priority to DE19803008678 priority patent/DE3008678A1/en
Publication of JPS55118052A publication Critical patent/JPS55118052A/en
Publication of JPH0152747B2 publication Critical patent/JPH0152747B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は現像方法に係り、特にカブリの無いか
つ階調性の優れた現像方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a developing method, and particularly to a developing method that is fog-free and has excellent gradation.

従来、静電潜像を顕像化する乾式現像法とし
て、二成分現像法と一成分現像法が知られている
が、後者は前者に比較して現像剤成分の混合比の
変動に伴う画像濃度の変化がなく、更に現像装置
の簡便さと小型化の面で将来性のある現像方式と
して注目されている。
Conventionally, two-component development method and one-component development method are known as dry development methods for visualizing electrostatic latent images, but compared to the former, the latter develops images due to fluctuations in the mixing ratio of developer components. It is attracting attention as a promising developing method because there is no change in density and the developing device is simple and compact.

前記一成分現像方式として、特公昭41−9475号
公報等に記載の如く、静電像の画像域・非画像域
共に現像剤支持体上の現像剤が接触し得ない間隙
を保ち、画像域の形成する電気力線によつて該現
像剤支持体上から、現像剤を飛翔させるジヤンピ
ング現像法が知られている。
As described in Japanese Patent Publication No. 41-9475, etc., the one-component development method maintains a gap where the developer on the developer support cannot come into contact with both the image area and the non-image area of the electrostatic image. A jumping development method is known in which the developer is caused to fly from above the developer support by electric lines of force formed by the developer.

しかるに、このジヤンピング現像法の実用化が
これまでなされなかつたのは、現像剤支持体と静
電像担持体との間に形成される電界によつて現像
剤の飛翔を行なわせるため、微小間隙を保つこと
が必要であり、更に現像剤の該現像剤支持体から
の均一なる離脱が要求され、また、現像剤が現像
剤支持体表面から離脱飛翔し始める電界の閾値が
存在し、階調再現性が悪く電気力線の弱い線画像
の現像による細りが生じるという諸問題が解決さ
れていなかつたためと考えられる。
However, the reason why this jumping development method has not been put to practical use until now is that the developer is caused to fly by the electric field formed between the developer support and the electrostatic image carrier, so it is necessary to Furthermore, it is necessary to maintain uniform separation of the developer from the developer support, and there is a threshold value of the electric field at which the developer starts to fly away from the developer support surface. This is thought to be because the problems of poor reproducibility, weak lines of electric force, and thinning due to development of line images have not been solved.

本発明は、上述の諸問題を解決し、非画像部に
カブリの少ない、かつ階調再現性、線画像再現性
の優れた現像方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a developing method with less fog in non-image areas and with excellent gradation reproducibility and line image reproducibility.

上記目的を達成する本発明の現像方法は、静電
像担持体と現像剤支持体との現像間〓を現像剤支
持体上に供給された現像剤層の厚みよりも大きく
した非接触の現像方法において、上記現像剤が実
質的に球状であつて摩擦帯電するトナー粒子であ
り、上記現像間〓に該トナー粒子を静電像担持体
に繰り返し付着、離脱させる電界を形成するため
に上記現像剤支持体に周期的に変化する電圧を印
加し、現像剤支持体から離脱した該摩擦帯電球状
トナー粒子によつて静電像を現像する現像方法で
あり、また、静電像担持体と現像剤支持体との現
像間〓を現像剤支持体上に供給された現像剤層の
厚みよりも大きくした非接触の現像方法におい
て、上記現像剤が樹脂芯剤に摩擦帯電する樹脂殻
剤を被覆した構成の球状マイクロカプセルトナー
粒子であつて、上記現像間〓に該トナー粒子を静
電像担持体に繰り返し付着、離脱させる電界を形
成するために上記現像剤支持体に周期的に変化す
る電圧を印加し、現像剤支持体から離脱した該摩
擦帯電トナー粒子によつて静電像を現像する現像
方法である。
The developing method of the present invention that achieves the above object is a non-contact development method in which the developing gap between the electrostatic image carrier and the developer support is larger than the thickness of the developer layer supplied onto the developer support. In the method, the developer is substantially spherical and triboelectrically charged toner particles, and the developing agent is used to form an electric field that repeatedly attaches and detaches the toner particles to and from the electrostatic image carrier during the developing process. This is a developing method in which an electrostatic image is developed by applying a periodically changing voltage to a developer support and the friction-charged spherical toner particles detached from the developer support. In a non-contact development method in which the distance between the development agent and the developer support is greater than the thickness of the developer layer supplied onto the developer support, the developer coats the resin core material with a resin shell material that is triboelectrically charged. The spherical microcapsule toner particles have a structure in which a voltage that changes periodically on the developer support is provided to form an electric field that repeatedly attaches and detaches the toner particles to and from the electrostatic image carrier during the development. This is a developing method in which an electrostatic image is developed using the triboelectrically charged toner particles that are released from the developer support.

以下、本発明に係る現像方法を実施する装置の
実施態様を図面を参照して詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of an apparatus for carrying out a developing method according to the present invention will be described in detail with reference to the drawings.

第1図、第2図は、本発明方法の原理を示すも
のである。両図において、1は、背面電極を有す
る光導電層等の周知の潜像担持体であり、表面に
コロナ放電、原稿光像照射等、周知のプロセスに
よつて静電荷による潜像が形成される。
1 and 2 illustrate the principle of the method of the present invention. In both figures, 1 is a well-known latent image carrier such as a photoconductive layer having a back electrode, and a latent image due to electrostatic charge is formed on the surface by a well-known process such as corona discharge or irradiation with a light image of an original. Ru.

2は、現像剤支持体であり、一成分現像剤3を
保持する手段として、磁気力(図では磁界発生手
段として固定磁石4を示す)を用いる事が可能
で、更に静電気力・重力等を保持力とする事もで
きる。5は、背面に磁界発生手段4を有する非磁
性体であり、ここでは現像剤3は、磁性粉体を内
包する一成分磁性現像剤を用いており、実質的に
球形化されたものである。
2 is a developer support, and it is possible to use magnetic force (a fixed magnet 4 is shown as a magnetic field generating means in the figure) as a means for holding the one-component developer 3, and it is also possible to use electrostatic force, gravity, etc. It can also be used as a holding force. 5 is a non-magnetic material having a magnetic field generating means 4 on the back side, and here, the developer 3 is a one-component magnetic developer containing magnetic powder, and is substantially spherical. .

6は、現像剤支持体に交番電圧を印加する交流
電源である。この交流電圧印加によつて、第2
a,bに示す如く現像剤支持体2と像担持体1と
の間隙で現像剤3は往復飛翔運動をする(特願昭
53−92105〜108号等参照)。
6 is an AC power source that applies an alternating voltage to the developer support. By applying this AC voltage, the second
As shown in a and b, the developer 3 makes a reciprocating flying motion in the gap between the developer support 2 and the image carrier 1.
53-92105-108, etc.).

交流電圧の印加が無いと、現像剤支持体5の表
面から現像剤3が離脱し始める電界閾値を形成す
る以上の表面電位を有する像担持体1は、ほぼ同
一量の現像剤付着が起り、現像画像の階調再現性
は悪くなる。交番電界による現像機構は、例えば
特願昭53−92105号等に記載されているように、
現像剤支持体2から像担持体1へ現像剤3が飛行
する転移ステツプ(第2図a)と、逆に像担持体
1から現像剤支持体2へ現像剤3が戻る逆転移ス
テツプ(第2図b)とからなる。
When no alternating current voltage is applied, the image carrier 1 having a surface potential above the electric field threshold at which the developer 3 starts to detach from the surface of the developer support 5 will have approximately the same amount of developer attached. The gradation reproducibility of the developed image deteriorates. A developing mechanism using an alternating electric field is, for example, as described in Japanese Patent Application No. 53-92105.
There is a transfer step (FIG. 2a) in which the developer 3 flies from the developer support 2 to the image carrier 1, and a reverse transfer step (reverse transfer step) in which the developer 3 returns from the image carrier 1 to the developer support 2. It consists of Figure 2 b).

これは、そもそもジヤンピング現象が現像剤群
として生じる為、上記の転移・逆転移ステツプを
繰り返す事によつて、第3図に示す如く階調再現
性をあげるものである。図で横軸は、静電像担持
体上の表面電位、縦軸は、現像剤転移量を示し、
実線aは転移ステツプ、破線bは逆転移ステツプ
をあらわす。したがつて転移・逆転移ステツプ終
了後像担持体上の現像剤転移量は一点鎖線cで示
す如く、γの傾斜がゆるやかな直線的な変化をす
る良好な階調性を有する。
This is because the jumping phenomenon occurs in the developer group, so by repeating the above-mentioned transfer and counter-transfer steps, the gradation reproducibility is improved as shown in FIG. 3. In the figure, the horizontal axis shows the surface potential on the electrostatic image carrier, and the vertical axis shows the amount of developer transferred.
A solid line a represents a transition step, and a broken line b represents a reverse transition step. Therefore, the amount of developer transferred onto the image bearing member after the completion of the transfer/reverse transfer step has good gradation properties in which the slope of γ changes gently and linearly, as shown by the dashed line c.

ここで斯かる効果が明確に現れた実験結果を第
4図A,Bに示した。これは静電像電位Vに対す
る画像反射濃度Dを測定したもので、実験結果を
プロツトしたものが図示されている。以下、この
曲線をV−D曲線と呼ぶ。実験は次の構成のもと
になされたものである(第5図参照)。円筒形の
静電像形成面に、正の静電荷潜像が形成されてい
る。トナーとしては後述する磁性トナー(マグネ
タイト含有量30%)を用い、磁気スリーブ上に層
厚約60μ程度に塗布し、該トナーと該スリーブ表
面との摩擦によつて該トナーに負電荷を付与す
る。この静電像形成面と磁気スリーブとの間の現
像最小間隙を100μに保持した場合の結果を第4
図aに、同300μに保持した場合の結果を第4図
bに示した。スリーブにより内包される磁石によ
る現像部での磁束密度は約700ガウスである。上
記円筒形静電像形成面と上記スリーブは略同速で
回転し、その速度は約110mm/secである。従つ
て、静電像形成面は、現像部において最小間隙を
通過後、次第にトナー支持体より離れていく。こ
のスリーブに印加される交互電界は振幅400V(ピ
ーク・ツ・ピーク800V)の正弦波に直流電圧+
200Vを重畳している。第4図a,bには、この
印加電圧の交番周波数が100Hz、400Hz、800Hz、
1KHz、2KHzの場合のV−D曲線、及び外部電界
を印加せず、上記静電像形成面の背面電極と上記
スリーブとを導通した場合のV−D曲線を示して
ある。
Experimental results in which such an effect clearly appeared are shown in FIGS. 4A and 4B. This is a measurement of the image reflection density D with respect to the electrostatic image potential V, and a plot of the experimental results is shown. Hereinafter, this curve will be referred to as a V-D curve. The experiment was conducted under the following configuration (see Figure 5). A positive electrostatic latent image is formed on the cylindrical electrostatic imaging surface. A magnetic toner (30% magnetite content), which will be described later, is used as the toner, and is applied to a layer thickness of about 60 μm on the magnetic sleeve, and the friction between the toner and the sleeve surface imparts a negative charge to the toner. . The results obtained when the minimum development gap between the electrostatic image forming surface and the magnetic sleeve is maintained at 100μ are shown in the fourth section.
Figure a shows the results when the same value was maintained at 300μ, and Figure 4b shows the results. The magnetic flux density in the developing section due to the magnet contained in the sleeve is approximately 700 Gauss. The cylindrical electrostatic imaging surface and the sleeve rotate at approximately the same speed, approximately 110 mm/sec. Therefore, the electrostatic image forming surface gradually moves away from the toner support after passing through the minimum gap in the development station. The alternating electric field applied to this sleeve is a sine wave with an amplitude of 400V (800V peak-to-peak) and a DC voltage +
200V is superimposed. Figures 4a and b show that the alternating frequencies of this applied voltage are 100Hz, 400Hz, 800Hz,
The V-D curves in the case of 1 KHz and 2 KHz, and the V-D curve in the case where no external electric field is applied and the back electrode of the electrostatic image forming surface and the sleeve are electrically connected are shown.

これらの結果から、外部電界を印加しない場合
には、V−D曲線の傾き所謂γ値は非常に大きい
が、低周波の交互電界を印加することによつて、
γ値は小さくなり、極めて階調性が高くなること
がわかる。外部電界の周波数を上げると、次第に
γ値は大きくなり、階調性を高からしめる効果は
薄れていき、間隙が100μの場合周波数が1KHzを
越えると効果が極めて弱くなり、又間隙が300μ
の場合、周波数が800Hz程度になると効果が減少
し、1KHzを越えると効果が極めて弱くなる。こ
の原因は次のように考えられる。交互電界が印加
された現像過程においてトナーが、スリーブ表面
と潜像形成面の間で付着、離脱をくり返すとき、
確実にその往復運動を行うには有限の時間が必要
である。とくに弱い電場を受けて転移するトナー
は転移を確実に行うのに長い時間を要する。一方
中間調の濃度を再現するには弱い電界であつても
ある閾値以上の電場を受けたトナーが交互電界の
半周期内に確実に転移する必要がある。それには
交互電界の周波数が低い方が有利であり、従つて
実験結果に表わされるように非常に周波数の低い
交互電界でとくに良い階調性が得られることにな
る。この議論の正当性は第4図A,Bの両実験結
果の比較から得られる。第4図Bに示した結果は
静電像形成面とスリーブ表面との間隙を300μと
大きくした以外は、第4図Aに示した実験と同一
条件のもとでなされたものである。間隙を広げる
とトナーのうける電界強度は小さくなり、よつて
トナーの転移速度は小さくなる。さらに飛翔距離
も長くなるため、結局転移時間は長くなる。実際
に第4図Bにより明らかな如く、800Hz程度でγ
値は相当大きくなり1KHzを越えると殆んど交互
電圧を印加しない場合のγ値と同等になつてしま
う。従つて階調性向上に関して間隙の狭い場合と
同等の効果を生ぜしめるためには、より周波数を
低下させるか、交互電圧の強度を上げることが好
ましい。
These results show that when no external electric field is applied, the slope of the V-D curve, the so-called γ value, is very large, but by applying a low-frequency alternating electric field,
It can be seen that the γ value becomes smaller and the gradation becomes extremely high. As the frequency of the external electric field is increased, the γ value gradually increases, and the effect of tightening the gradation from high to high fades.When the gap is 100μ, the effect becomes extremely weak when the frequency exceeds 1KHz, and when the gap is 300μ, the effect becomes extremely weak.
In the case of , the effect decreases when the frequency becomes around 800Hz, and becomes extremely weak when the frequency exceeds 1KHz. The reason for this is thought to be as follows. When toner repeatedly adheres and detaches between the sleeve surface and the latent image forming surface during the developing process where an alternating electric field is applied,
A finite amount of time is required to reliably perform the reciprocating motion. In particular, toner that transfers when subjected to a weak electric field requires a long time to ensure the transfer. On the other hand, in order to reproduce halftone density, it is necessary that toner subjected to an electric field of a certain threshold value or more is transferred reliably within a half period of the alternating electric field even if the electric field is weak. For this purpose, it is advantageous to have a low frequency of the alternating electric field, and therefore, as shown in the experimental results, particularly good gradation can be obtained with an alternating electric field of a very low frequency. The validity of this argument can be obtained from a comparison of the experimental results shown in Figures 4A and 4B. The results shown in FIG. 4B were conducted under the same conditions as the experiment shown in FIG. 4A, except that the gap between the electrostatic image forming surface and the sleeve surface was increased to 300 μm. When the gap is widened, the electric field strength to which the toner is exposed decreases, and therefore the toner transfer speed decreases. Furthermore, since the flight distance becomes longer, the transfer time becomes longer. In fact, as shown in Figure 4B, γ at about 800Hz
The value becomes considerably large, and when it exceeds 1 KHz, it becomes equivalent to the γ value when almost no alternating voltage is applied. Therefore, in order to produce the same effect as when the gap is narrow in terms of gradation improvement, it is preferable to further lower the frequency or increase the intensity of the alternating voltage.

一方、周波数が余りに低すぎると、潜像形成面
が現像部を通過する間にトナーの往復運動が充分
に繰り返されず、画像には交互電圧により現像ム
ラが生じ易くなる、上記実験の結果、周波数40Hz
までは、おおむね良好な画像が得られそれを下ま
わると、顕画像にムラが生じた。斯かる顕画像に
ムラを生じないための周波数の下限は、現像の条
件、中でも現像速度(又はプロセス・スピードと
も言う、Vp(mm/sec)に特に依存することが判
明した。本実験において静電像形成面の移動速度
は110mm/secであつたから、周波数下限は、40/1
10×Vp0.3×Vpとなる。尚印加する交互電圧
の波形は、正弦波、短形波鋸歯状波又はこれらの
非対称波等のいずれについても効果のあることは
確認された。
On the other hand, if the frequency is too low, the reciprocating motion of the toner will not be repeated sufficiently while the latent image forming surface passes through the developing section, and the image will tend to develop unevenly due to the alternating voltage. 40Hz
Until then, generally good images were obtained, but below that, unevenness appeared in the visible images. It has been found that the lower limit of the frequency for preventing unevenness in the microscopic image depends on the development conditions, especially the development speed (also called process speed, Vp (mm/sec)). Since the moving speed of the electromagnetic image forming surface was 110 mm/sec, the lower frequency limit was 40/1
10×Vp0.3×Vp. It has been confirmed that any waveform of the applied alternating voltage, such as a sine wave, a rectangular sawtooth wave, or an asymmetric wave thereof, is effective.

このように、交互バイアスを印加することは階
調性向上に著しい効果をもたらすものである。
In this way, applying alternate biases has a remarkable effect on improving gradation.

また、静電潜像の線画像は、上記の転移ステツ
プで現像剤が付着した際、周辺電界(エツジ効
果)により補獲され逆転移ステツプでトナー担持
体へ逆転移しにくく、線画像のシヤープさを維持
することができる。
In addition, when the developer adheres to the electrostatic latent image in the transfer step, it is captured by the peripheral electric field (edge effect) and is difficult to reversely transfer to the toner carrier in the reverse transfer step, resulting in a sharp line image. can be maintained.

しかるに上記の交番電圧値を設定するにあた
り、設定間隙に於けるジヤンピング閾値が問題と
なるが、この閾値は現像剤の帯電量、フアンデル
ワールス力等によつて、正確なる値を有さず、閾
値幅をもつ。したがつて、逆転移ステツプの際に
非画像部に付着した現像剤がフアンデルワールス
力等によつて十分に転移せずいわゆるカブリとな
る恐れがある。
However, when setting the above-mentioned alternating voltage value, the jumping threshold at the set gap becomes a problem, but this threshold does not have an accurate value depending on the amount of charge of the developer, Van der Waals force, etc. Has a threshold width. Therefore, during the reverse transfer step, the developer attached to the non-image area may not be sufficiently transferred due to Van der Waals force or the like, resulting in so-called fog.

本発明はこの点に着眼し、これを解決するもの
で、現像剤として球状の粒子体を用いるものであ
る。これは、球状現像剤は、流動性が良く、現像
剤支持体上での摩擦帯電が良好に行なわれ、均一
な電荷を持ち得、更に粒子−現像剤支持体、粒子
−像担持体との接触点が少ない為に、フアンデル
ワールス力のような不均一な力が働きにくく、転
移ステツプに於ける現像剤支持体からの離脱、逆
転移ステツプに於ける像担持体からの離脱が均
一、容易に行なわれ、非画像部の現像剤付着の極
めて少ない階調再現性の良好なる現像が得られ
る。
The present invention focuses on this point and solves the problem by using spherical particles as a developer. This is because the spherical developer has good fluidity, can be triboelectrified well on the developer support, has a uniform charge, and has a good bond between the particles and the developer support and between the particles and the image carrier. Because there are few contact points, non-uniform forces such as van der Waals forces are difficult to act on, and the developer is released uniformly from the support body during the transfer step and from the image carrier during the reverse transfer step. This process is easily carried out, and development with good gradation reproducibility with extremely little developer adhesion in non-image areas can be obtained.

本発明に云う球状粒子体の現像剤を形成する方
法の例としては、以下の如きものがある。その一
つは、スプレードライ法と呼ばれ、樹脂材料・顔
料・荷電制御材料(磁性現像剤の場合は、前記材
料に加えて磁性微粉体がある)を溶融混練し、溶
剤中に溶かし、その液体をノズルから熱風中に霧
状にして噴出させ、その表面から溶剤を蒸発さ
せ、一方その蒸発過程で溶剤の表面張力を利用し
て現像剤粒子を球形にするものである。
Examples of methods for forming the spherical particle developer according to the present invention include the following. One method is called the spray drying method, in which resin materials, pigments, and charge control materials (in the case of magnetic developers, there is magnetic fine powder in addition to the above materials) are melted and kneaded, dissolved in a solvent, and then The liquid is sprayed into hot air from a nozzle in the form of a mist, and the solvent is evaporated from the surface of the liquid. During the evaporation process, the surface tension of the solvent is used to make the developer particles spherical.

又、他の一法としてフローコーター法と呼ば
れ、現像剤粒子を粉体のまま、熱風の中に吹き出
し現像剤の表面の樹脂分を溶融させ、その溶融樹
脂の表面張力によつて球状化させるものがある。
Another method is called the flow coater method, in which developer particles are blown into hot air as a powder to melt the resin on the surface of the developer, and the surface tension of the molten resin causes it to become spherical. There is something that makes me

更に、簡易なる方法として、熱湯中で現像剤粒
子を撹拌し、現像剤粒子を軟化状態に保ち、その
後ろ過乾燥させて球形化することもできる。
Furthermore, as a simple method, the developer particles can be stirred in hot water to keep the developer particles in a softened state, and then filtered and dried to form a sphere.

上述の球状化処理は、マイクロカプセルトナー
すなわち定着性の良い芯材に殻材樹脂を被覆した
現像剤(例えば特公昭49−1588号、同51−35867
号公報等参照)にも適用し得る。
The above-mentioned spheroidization process is performed using microcapsule toner, that is, a developer in which a core material with good fixing properties is coated with a shell resin (for example, Japanese Patent Publication No. 49-1588, No. 51-35867).
It can also be applied to

以下本発明に係る実施例を説明する。 Examples according to the present invention will be described below.

実施例 1 背面電極、CdS光導電層、絶縁層の三層構成の
感光体に画像の暗部に対応する暗電位約+500V、
画像の明部に対応する明電位約0Vの静電潜像を
形成した。
Example 1 A photoreceptor with a three-layer structure consisting of a back electrode, a CdS photoconductive layer, and an insulating layer has a dark potential of about +500 V, which corresponds to the dark part of the image.
An electrostatic latent image with a bright potential of about 0 V corresponding to the bright part of the image was formed.

上記の静電荷パターンを表面に有する径80mmの
感光ドラムを周速110mm/secで回転させ、現像器
として第5図に示すものを用いた。
A photosensitive drum having a diameter of 80 mm and having the above electrostatic charge pattern on its surface was rotated at a circumferential speed of 110 mm/sec, and the developing device shown in FIG. 5 was used.

図示した現像器において、7は矢印の向きに回
動する径30mmの非磁性円筒(以下スリーブと称す
る)であり、対抗する感光ドラム表面と300μm
の間隙を保ち、該感光ドラムと等周速で回転させ
た。
In the illustrated developing device, 7 is a non-magnetic cylinder (hereinafter referred to as a sleeve) with a diameter of 30 mm that rotates in the direction of the arrow, and has a distance of 300 μm from the opposing photosensitive drum surface.
The photosensitive drum was rotated at the same circumferential speed while maintaining a gap.

8は、スリーブ7内に固定して設けられた磁界
発生手段であり、8aは、感光ドラムに対向する
現像領域に設けられ現像磁極でスリーブ表面上
750gaussの磁束密度を有し、8bはトナー厚み
規制部材9部分に存する800gaussの磁極であり、
スリーブ上この磁極位置でトナーが穂立ちした状
態でトナー層の厚みを規制部材9により規制して
いる。トナー厚み規制部材9はスリーブ7表面と
150μmの間隙を有しており、トナー層を感光ド
ラム1とスリーブ7の間隙以下に保つている。ト
ナー厚み規制部材9を磁性体とし、磁界を集中さ
せてトナー層の厚みを規制する事も可能である
(例えば特願昭52−109240号参照)。8c,8d
は、現像剤の搬送磁極である。
Reference numeral 8 denotes a magnetic field generating means fixedly provided within the sleeve 7, and 8a is provided in a developing area facing the photosensitive drum, and a developing magnetic pole is provided on the sleeve surface.
It has a magnetic flux density of 750 gauss, and 8b is a magnetic pole of 800 gauss existing in the 9 part of the toner thickness regulating member.
The thickness of the toner layer is regulated by a regulating member 9 with the toner standing in spikes at this magnetic pole position on the sleeve. The toner thickness regulating member 9 is connected to the surface of the sleeve 7.
The gap is 150 μm, and the toner layer is kept below the gap between the photosensitive drum 1 and the sleeve 7. It is also possible to regulate the thickness of the toner layer by making the toner thickness regulating member 9 a magnetic material and concentrating the magnetic field (see, for example, Japanese Patent Application No. 109240/1982). 8c, 8d
is a developer transport magnetic pole.

スリーブ7に交番する電界を与える交流バイア
スとして、直流分+200Vをpeak−to−
peak800V、200Hzの交流に重畳させたものを電
源6から印加した。上述の現像装置を用いて、現
像剤として圧力定着性の高い樹脂ポリエチレンと
マグネタイトをそれぞれ3:1重量比に混合、キ
シレン中に分散させ、スプレードライ法にて130
℃熱気中に噴出させて平均粒径10μmの球形化処
理を行なつた、一成分磁性トナーを使つて現像を
行なつたところ、カブリのない階調再現性の優れ
た画像が得られた。
As an AC bias that provides an alternating electric field to the sleeve 7, a DC component of +200V is applied peak-to-
A superimposed alternating current of peak 800 V and 200 Hz was applied from power supply 6. Using the above-mentioned developing device, resin polyethylene with high pressure fixing properties and magnetite were mixed as a developer at a weight ratio of 3:1, dispersed in xylene, and spray-dried to 130%
When development was carried out using a one-component magnetic toner that had been spheroidized to an average particle size of 10 μm by being blown out into hot air at 10°C, an image with no fog and excellent gradation reproducibility was obtained.

実施例 2 実施例1に述べた感光体及び現像装置に於い
て、以下に述べるようなマイクロカプセルトナー
を用いて静電像の顕像化を行なつたところ良好な
る結果が得られた。
Example 2 In the photoreceptor and developing device described in Example 1, good results were obtained when an electrostatic image was visualized using a microcapsule toner as described below.

芯材として、ポリエチレン3重量部、マグネタ
イト1重量部をロールミルにて150゜で混練した
後、微粉砕し粒径7μ以下のトナーを分級機にて
除去した。
As a core material, 3 parts by weight of polyethylene and 1 part by weight of magnetite were kneaded in a roll mill at 150°, then finely pulverized, and toner with a particle size of 7 μm or less was removed using a classifier.

メチルエチルケトン溶剤中にスチレンブタジエ
ンを溶かし、その中に前記樹脂芯材トナーを混入
した。ここでポリエチレンはメチルエチルケトン
には溶けない。この芯材混合液体をスプレードラ
イ法にて100℃熱気中に噴出させてメチルエチル
ケトンを蒸発させ、ポリエチレン芯材にスチレン
ブタジエンの球状化被覆材処理を行ないマイクロ
カプセルトナーを形成し、これを上述の装置に用
いた。
Styrene butadiene was dissolved in a methyl ethyl ketone solvent, and the resin core material toner was mixed therein. Polyethylene is not soluble in methyl ethyl ketone. This core material mixed liquid is sprayed into hot air at 100°C using a spray drying method to evaporate methyl ethyl ketone, and the polyethylene core material is treated with a spheroidizing coating of styrene butadiene to form microcapsule toner, which is then transferred to the above-mentioned apparatus. It was used for.

本例は、樹脂芯材に対して樹脂の摩擦帯電体を
被覆した構成のマイクロカプセルトナーであるの
で、前述したように、トナーを往復運動させる電
界下で、優れた効果を奏することができる。
This example is a microcapsule toner in which a resin core material is coated with a resin triboelectric charger, so that excellent effects can be achieved under an electric field that causes the toner to reciprocate, as described above.

即ち、芯材が液体とした場合に比較して芯材が
固体であることにより、摩擦帯電が一層安定し、
より硬度の帯電特性が得られ、さらに往復運動時
や現像剤支持体の搬送時に球状トナーが受ける負
荷に対して使用耐久性が高まり長期の現像行程に
おいての現像特性が安定する。
In other words, since the core material is solid compared to when the core material is liquid, triboelectric charging becomes more stable.
Harder charging characteristics can be obtained, and furthermore, durability in use against loads applied to the spherical toner during reciprocating movement and transport of the developer support is increased, and development characteristics are stabilized during long-term development processes.

本発明では周期的に変化する電界によつてトナ
ーを静電像担持体に繰り返し付着、離脱させるこ
とにより現像画像を得るのであるが、その際球状
トナーを使用するもので、球状トナーは流動性が
良く、均一、良好に摩擦帯電するので現像剤支持
体から離脱して静電像担持体に転移しやすく、ま
たフアンデルワールス力が小さいことによつても
現像剤支持体から離脱して静電像担持体に転移し
やすい。従つて現像剤支持体に支持された現像剤
層の厚みが現像剤支持体と静電像担持体間の間〓
よりも小である所謂非接触現像であるが、本発明
によれば現像効率をより向上させることができ
る。そして球状トナーは不定形トナーに比べてフ
アンデルワールス力が小さいので、一旦静電像担
持体に付着して、そしてその静電力よりもむしろ
フアンデルワールス力によつてそこに留まろうと
するトナーも、周期的に変化する電界によつて容
易に静電像担持体から離脱させることができる。
従つて本発明によれば、カブリ防止効果がより一
層向上する。更に、球状トナーは摩擦帯電が良
好、均一となるので、潜像により忠実な現像画像
を残存させることができる。
In the present invention, a developed image is obtained by repeatedly attaching and detaching toner from an electrostatic image carrier using a periodically changing electric field. Since the developer is triboelectrically charged uniformly and well, it is easy to separate the developer from the support and transfer to the electrostatic image carrier.Also, because the Van der Waals force is small, the developer can separate from the support and transfer to the electrostatic image carrier. Easily transferred to the image carrier. Therefore, the thickness of the developer layer supported by the developer support is the same as that between the developer support and the electrostatic image carrier.
However, according to the present invention, the development efficiency can be further improved. Furthermore, since spherical toner has a smaller Van der Waals force than irregularly shaped toner, once it adheres to the electrostatic image carrier, the toner tends to stay there due to Van der Waals force rather than its electrostatic force. can also be easily separated from the electrostatic image carrier by a periodically changing electric field.
Therefore, according to the present invention, the antifogging effect is further improved. Furthermore, since the spherical toner has good and uniform triboelectric charging, a more faithful developed image can remain as a latent image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図a,bは本発明に係る現像方法
の原理を説明する説明図、第3図は潜像電位対現
像剤転移量との関係を示す特性図、第4図a,b
は潜像電位v対画像濃度Dの関係を夫々示す特性
図、第5図は本発明に係る現像方法を実施する一
態様を示す断面図である。 1……潜像担持体、5……現像剤支持体、6…
…交番電界印加電源。
FIGS. 1 and 2 a and b are explanatory diagrams explaining the principle of the developing method according to the present invention, FIG. 3 is a characteristic diagram showing the relationship between latent image potential and developer transfer amount, and FIGS. b
5 is a characteristic diagram showing the relationship between latent image potential v and image density D, and FIG. 5 is a sectional view showing one embodiment of the developing method according to the present invention. 1...Latent image carrier, 5...Developer support, 6...
...Alternating electric field application power supply.

Claims (1)

【特許請求の範囲】 1 静電像担持体と現像剤支持体との現像間〓を
現像剤支持体上に供給された現像剤層の厚みより
も大きくした非接触の現像方法において、 上記現像剤が実質的に球状であつて摩擦帯電す
るトナー粒子であり、上記現像間〓に該トナー粒
子を静電像担持体に繰り返し付着、離脱させる電
界を形成するために上記現像剤支持体に周期的に
変化する電圧を印加し、現像剤支持体から離脱し
た該摩擦帯電球状トナー粒子によつて静電像を現
像する現像方法。 2 上記トナーは、磁性トナーであつて、上記現
像剤層が現像剤支持体の裏面側に設けられた磁極
に対向する磁性規制部材によつて形成されている
特許請求の範囲第1項記載の現像方法。 3 静電像担持体と現像剤支持体との現像間〓を
現像剤支持体上に供給された現像剤層の厚みより
も大きくした非接触の現像方法において、 上記現像剤が樹脂芯剤に摩擦帯電する樹脂殻材
を被覆した構成の球状マイクロカプセルトナー粒
子であつて、上記現像間〓に該トナー粒子を静電
像担持体に繰り返し付着、離脱させる電界を形成
するために上記現像剤支持体に周期的に変化する
電圧を印加し、現像剤支持体から離脱した該摩擦
帯電トナー粒子によつて静電像を現像する現像方
法。 4 上記トナーは、磁性トナーであつて、上記現
像剤層が現像剤支持体の裏面側に設けられた磁極
に対向する磁性規制部材によつて形成されている
特許請求の範囲第3項記載の現像方法。
[Scope of Claims] 1. A non-contact developing method in which the development distance between the electrostatic image carrier and the developer support is greater than the thickness of the developer layer supplied onto the developer support, The agent is toner particles that are substantially spherical and triboelectrically charged, and is applied periodically to the developer support to form an electric field that repeatedly attaches and detaches the toner particles to and from the electrostatic image carrier during the development. A developing method in which an electrostatic image is developed by the frictionally charged spherical toner particles detached from a developer support by applying a voltage that changes over time. 2. The toner according to claim 1, wherein the toner is a magnetic toner, and the developer layer is formed by a magnetic regulating member facing a magnetic pole provided on the back side of the developer support. Development method. 3. In a non-contact developing method in which the development gap between the electrostatic image carrier and the developer support is made larger than the thickness of the developer layer supplied onto the developer support, the developer is applied to the resin core material. The spherical microcapsule toner particles are coated with a resin shell material that is triboelectrically charged, and the developer support is used to form an electric field that repeatedly attaches and detaches the toner particles to and from the electrostatic image carrier during the development. A developing method in which an electrostatic image is developed by applying a periodically varying voltage to the body and using the triboelectrically charged toner particles detached from the developer support. 4. The toner according to claim 3, wherein the toner is a magnetic toner, and the developer layer is formed by a magnetic regulating member facing a magnetic pole provided on the back side of the developer support. Development method.
JP2592379A 1979-03-06 1979-03-06 Developing method Granted JPS55118052A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2592379A JPS55118052A (en) 1979-03-06 1979-03-06 Developing method
US06/124,913 US4363861A (en) 1979-03-06 1980-02-26 Toner transfer development using alternating electric field
DE19803008678 DE3008678A1 (en) 1979-03-06 1980-03-06 DEVELOPMENT PROCEDURE AND DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2592379A JPS55118052A (en) 1979-03-06 1979-03-06 Developing method

Publications (2)

Publication Number Publication Date
JPS55118052A JPS55118052A (en) 1980-09-10
JPH0152747B2 true JPH0152747B2 (en) 1989-11-09

Family

ID=12179291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2592379A Granted JPS55118052A (en) 1979-03-06 1979-03-06 Developing method

Country Status (1)

Country Link
JP (1) JPS55118052A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120114B2 (en) * 1986-01-21 1995-12-20 キヤノン株式会社 Electrophotography
JPH07120113B2 (en) * 1986-01-21 1995-12-20 キヤノン株式会社 Electrophotography
JPH07120115B2 (en) * 1986-01-21 1995-12-20 キヤノン株式会社 Electrophotography
JPH04118678A (en) * 1990-09-10 1992-04-20 Seiko Epson Corp Developing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893418A (en) * 1974-05-30 1975-07-08 Xerox Corp Xerographic developing apparatus
JPS5126046A (en) * 1974-08-28 1976-03-03 Konishiroku Photo Ind
JPS5191724A (en) * 1975-02-10 1976-08-11
GB1458766A (en) * 1973-02-15 1976-12-15 Xerox Corp Xerographic developing apparatus
JPS534549A (en) * 1976-07-02 1978-01-17 Konishiroku Photo Ind Co Ltd Magnetic toner
JPS535633A (en) * 1976-07-06 1978-01-19 Konishiroku Photo Ind Co Ltd Insulating magnetic toner for electrostatic development

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1458766A (en) * 1973-02-15 1976-12-15 Xerox Corp Xerographic developing apparatus
US3893418A (en) * 1974-05-30 1975-07-08 Xerox Corp Xerographic developing apparatus
JPS5126046A (en) * 1974-08-28 1976-03-03 Konishiroku Photo Ind
JPS5191724A (en) * 1975-02-10 1976-08-11
JPS534549A (en) * 1976-07-02 1978-01-17 Konishiroku Photo Ind Co Ltd Magnetic toner
JPS535633A (en) * 1976-07-06 1978-01-19 Konishiroku Photo Ind Co Ltd Insulating magnetic toner for electrostatic development

Also Published As

Publication number Publication date
JPS55118052A (en) 1980-09-10

Similar Documents

Publication Publication Date Title
JPS598831B2 (en) Toner layer forming device
JPS6338708B2 (en)
US4363861A (en) Toner transfer development using alternating electric field
JPS60140361A (en) Developing method
JPS6316739B2 (en)
JPH06100848B2 (en) Development method
JPH0152747B2 (en)
JPH047505B2 (en)
JPH0414793B2 (en)
JPS6239433B2 (en)
JPS6316738B2 (en)
JPH058424B2 (en)
JPS59222847A (en) Developing method
JPS60131547A (en) Developing method
JPH0230012B2 (en)
JPS6355709B2 (en)
JPH0256670B2 (en)
JPH047506B2 (en)
JPS60131550A (en) Developing method
JPH0435074B2 (en)
JPS6341068B2 (en)
JP2614817B2 (en) Development method
JPH0464064B2 (en)
JPS60205471A (en) Recorder using photoconductive toner
JPH0785185B2 (en) Development method