JPH0150854B2 - - Google Patents

Info

Publication number
JPH0150854B2
JPH0150854B2 JP58085442A JP8544283A JPH0150854B2 JP H0150854 B2 JPH0150854 B2 JP H0150854B2 JP 58085442 A JP58085442 A JP 58085442A JP 8544283 A JP8544283 A JP 8544283A JP H0150854 B2 JPH0150854 B2 JP H0150854B2
Authority
JP
Japan
Prior art keywords
flow rate
fine particles
sample
plasma
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58085442A
Other languages
Japanese (ja)
Other versions
JPS59210348A (en
Inventor
Akihiro Ono
Masao Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8544283A priority Critical patent/JPS59210348A/en
Publication of JPS59210348A publication Critical patent/JPS59210348A/en
Publication of JPH0150854B2 publication Critical patent/JPH0150854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 本発明は、金属製造業などにおいても最も活用
されており、採取した一定形状の試料片を対象と
する固体発光分光分析にかわつて、試料片を採取
せずに、スパーク放電等によつて試料を微粒子と
して蒸発させ直接分析する発光分光分析方法およ
び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is most commonly used in the metal manufacturing industry, etc., and instead of solid-state emission spectrometry that targets a sample piece of a fixed shape, it can be used to analyze sparks without taking a sample piece. The present invention relates to an emission spectroscopic analysis method and apparatus in which a sample is evaporated as fine particles by electric discharge or the like and directly analyzed.

金属製造業においては、金属や合金の製造工程
あるいは製品の品質管理に、その主成分や含有さ
れる微量成分の分析が必須である。この分析には
一搬に、金属試料片と対電極間に高電圧をかけて
スパークあるいはアーク放電等を行わせ、蒸発し
た各成分に基ずく励起光のスペクトル線強度か
ら、試料中の各成分の含有率を求める固体発光分
光分析法が最も活用されている。
In the metal manufacturing industry, analysis of the main components and trace components contained in metals and alloys is essential for the manufacturing process of metals and alloys or for quality control of products. For this analysis, a high voltage is applied between the metal sample piece and the counter electrode to cause a spark or arc discharge, and each component in the sample is determined from the spectral line intensity of the excitation light based on each vaporized component. Solid-state emission spectrometry, which determines the content of , is most commonly used.

しかし、本分析法は、放電を行わせる装置構造
等から試料形状に一定の制限を受け、通常15mmφ
以上の平面をもつた試料片を準備しなければなら
ない。
However, this analysis method is subject to certain limitations on the sample shape due to the structure of the device that generates the discharge, and the sample size is usually 15 mmφ.
A sample piece with a flat surface equal to or greater than that must be prepared.

しかし、金属の製造工程においては、試料片を
切り出すために相当の労力や時間を要する場合、
製品等で試料の採取を極力避けたい場合、あるい
は製造工程の途中でオンラインで迅速に分析しな
ければならない場合など試料片の採取が困難なこ
とが多い。このような理由から、分析試料を採取
せず金属板、角材、棒材等を簡単、迅速に直接分
析することができる新規分析装置の開発が強く要
請されている。また、スパークなどの電気的放電
にかわつて、レーザーなどを励起源とするセラミ
ツクスや鉱物などの発光分光分析にも同様な要請
がある。
However, in the metal manufacturing process, when cutting out a sample piece requires considerable effort and time,
It is often difficult to collect sample pieces, such as when it is desired to avoid sample collection for products as much as possible, or when a quick online analysis is required during the manufacturing process. For these reasons, there is a strong demand for the development of a new analytical device that can easily and quickly directly analyze metal plates, square timbers, bars, etc. without collecting samples for analysis. There is also a similar demand for emission spectroscopic analysis of ceramics, minerals, etc., which uses a laser or the like as an excitation source instead of an electric discharge such as a spark.

本発明はかかる必要性に鑑み、スパーク、アー
ク、プラズマアーク、レーザー、電子ビーム等を
加熱源として分析試料を微粒子として蒸発させ、
不活性ガスにより長距離を搬送し、プラズマ発光
分光分析をすることを基本原理とし、試料片を採
取せずに直接、簡単、迅速に高精度で分析できる
新規分析方法および装置を提供するものである。
In view of this need, the present invention vaporizes an analysis sample as fine particles using a spark, arc, plasma arc, laser, electron beam, etc. as a heating source,
Based on the basic principle of long-distance transport using inert gas and plasma emission spectroscopic analysis, we provide a new analytical method and device that allows for direct, simple, rapid, and highly accurate analysis without collecting sample pieces. be.

第1図に示した本発明実施例装置に基ずいて本
発明を詳細に説明する。
The present invention will be explained in detail based on the embodiment of the present invention shown in FIG.

第1図は、金属材料を対象とし微粒子生成用の
蒸発加熱源にスパーク放電を用いた場合を示した
ものである。
FIG. 1 shows a case in which spark discharge is used as an evaporation heating source for generating fine particles for a metal material.

本発明装置は大別すると、微粒子生成装置2、
搬送ガス流量切替器6、微粒子搬送管9、搬送ガ
ス分配装置11およびプラズマ発光分光分析装置
を基本に構成される。微粒子生成装置2は、分析
試料1表面と対電極4間に高電圧をかけてスパー
ク放電を行わせ、試料面を局部的に高温に加熱
し、試料の組成を代表する微粒子を煙状に蒸発さ
せる働きをする部分である。通常対電極7は、先
端をとがらせた2〜5mmφ程度のタングステン製
丸棒を用いこれを正極とし、試料表面にスプリン
グ機構によつて接触させた試料電極5を負極とし
て、スパーク放電装置に結線する。
The device of the present invention can be roughly divided into a particle generator 2,
It is basically constructed of a carrier gas flow rate switch 6, a particle transport pipe 9, a carrier gas distribution device 11, and a plasma emission spectrometer. The particle generator 2 applies a high voltage between the surface of the analysis sample 1 and the counter electrode 4 to generate a spark discharge, heats the sample surface locally to a high temperature, and evaporates the particles representative of the composition of the sample in the form of smoke. This is the part that functions to Usually, the counter electrode 7 is a tungsten round rod with a sharp tip and a diameter of about 2 to 5 mm.This is used as the positive electrode, and the sample electrode 5, which is brought into contact with the sample surface by a spring mechanism, is used as the negative electrode, and is connected to the spark discharge device. do.

スパーク放電条件は分析精度すなわち微粒子生
成の精度に影響するが、自己誘導を低くし放電電
流値を高くする条件、例えば自己誘導10μH、静
電容量3μF、抵抗1Ω、電圧1000V、周波数200Hz
などの放電条件が適当であつた。
Spark discharge conditions affect the analysis accuracy, that is, the precision of particle generation, but the conditions that lower self-induction and increase the discharge current value, for example, self-induction 10 μH, capacitance 3 μF, resistance 1 Ω, voltage 1000 V, frequency 200 Hz.
The discharge conditions were appropriate.

微粒子生成装置2の本体は、窒化ホウ素やフツ
素系樹脂等の絶縁耐熱材で製作した円筒21でで
きている。円筒21の底部は開口しており、その
端面にはフツ素系耐熱絶縁性樹脂あるいはゴムか
ら成る円板22を取り付けてあり、円筒21を押
圧することにより、試料1表面に密着して外部の
大気を遮断し、円筒21内部の小空間室3は密閉
状態となる。
The main body of the particle generator 2 is made of a cylinder 21 made of an insulating heat-resistant material such as boron nitride or fluorine resin. The bottom of the cylinder 21 is open, and a disk 22 made of fluorine-based heat-resistant insulating resin or rubber is attached to the end face. By pressing the cylinder 21, it comes into close contact with the surface of the sample 1 and removes the external The atmosphere is shut off, and the small space chamber 3 inside the cylinder 21 is in a sealed state.

対電極4は円筒21の上部より試料表面に対向
して取り付けられ、対電極先端と試料表面との間
隔は、通常5〜10mmの範囲で一定とする。電極間
隔の設定精度は、±2mm以内程度におさめる必要
があり、この範囲を超えると微粒子生成量が変動
して分析精度が低下する。対電極4下部が位置す
る円筒21内部には、直径10〜15mmφ、高さ30mm
程度のスパーク放電が行われる小空間室3が堀ら
れている。
The counter electrode 4 is attached to the top of the cylinder 21 so as to face the sample surface, and the distance between the tip of the counter electrode and the sample surface is usually constant in the range of 5 to 10 mm. The setting accuracy of the electrode spacing must be kept within ±2 mm; if this range is exceeded, the amount of fine particles produced will fluctuate and the analysis accuracy will decrease. The inside of the cylinder 21, where the lower part of the counter electrode 4 is located, has a diameter of 10 to 15 mmφ and a height of 30 mm.
A small space chamber 3 is dug in which a certain amount of spark discharge occurs.

小空間室3はAr等の不活性ガス供給口7およ
び微粒子排出口8を有するが、大気とは確実に遮
断された密閉状である。微粒子排出管23は対電
極4を内包した管で、末端を微粒子搬送管9と接
続しているが、他端は対電極4先端よりわずか上
部に位置し、微粒子排出口8となつている。Ar
ガスは微粒子排出管23の外周間隙に設けられた
供給口7から小空間室3に送り込まれ、生成した
微粒子を微粒子排出口8に排出する。
The small space chamber 3 has an inert gas supply port 7 such as Ar and a particulate discharge port 8, but is in a sealed state that is reliably isolated from the atmosphere. The particulate discharge pipe 23 is a pipe containing the counter electrode 4, and its end is connected to the particulate transport pipe 9, and the other end is located slightly above the tip of the counter electrode 4 and serves as a particulate discharge port 8. Ar
The gas is sent into the small space chamber 3 from the supply port 7 provided in the outer peripheral gap of the particle exhaust pipe 23, and the generated particles are discharged to the particle exhaust port 8.

ガス供給口7、微粒子排出口8の構造や位置関
係は、微粒子を小空間室から拡散を少なくして効
率よく排出する上で適切なものである。Arガス
は流量を断続的に変えるために減圧弁、開閉弁、
流量調節器等から構成されるガス流量切替器6か
ら、ガス供給口7に送り込まれる。ガス流量の切
替は微粒子の搬送のために必要なものであるが、
詳細は後述する。
The structure and positional relationship of the gas supply port 7 and the particulate discharge port 8 are appropriate for efficiently discharging particulates from the small space chamber with less diffusion. Ar gas uses a pressure reducing valve, an on-off valve, and an on-off valve to change the flow rate intermittently.
The gas is fed into the gas supply port 7 from the gas flow rate switch 6, which is comprised of a flow rate regulator or the like. Switching the gas flow rate is necessary for transporting fine particles, but
Details will be described later.

以上述べたように微粒子生成装置2は小型、軽
量で携帯可能であり、分析試料1の存在場所まで
持つて行き、試料表面に押圧して分析を行うこと
ができる。
As described above, the particle generating device 2 is small, lightweight, and portable, and can be carried to the location where the analysis sample 1 is present and analyzed by pressing it against the surface of the sample.

第1図では、試料を微粒子として蒸発生成させ
る加熱源としてスパーク放電を採用したが、アー
ク放電、プラズマアーク、レーザービーム、電子
ビーム等を加熱源として用いることができる。こ
れらは、分析対象試料の種類や試料表面からの深
さ方向の分析位置などの目的により使い分ける。
In FIG. 1, spark discharge is used as a heating source for vaporizing the sample into fine particles, but arc discharge, plasma arc, laser beam, electron beam, etc. can be used as the heating source. These are used depending on the purpose, such as the type of sample to be analyzed and the analysis position in the depth direction from the sample surface.

微粒子排出口8に導入された微粒子は、Arガ
ス流にのせられて微粒子搬送管9を通つて、搬送
ガス分配装置11に搬送される。本発明は微粒子
を単に生成する場合と異なり、蒸発微粒子を一定
流速の搬送ガスと共に、常時安定して分析装置2
0へ送り込まねばならず、効率のよい微粒子の搬
送技術が必要になる。特に搬送管内壁に微粒子を
極力付着残留させないことおよび付着残留した微
粒子の除去方法が重要になる。
The particulates introduced into the particulate discharge port 8 are carried by the Ar gas flow through the particulate transport pipe 9 to the carrier gas distribution device 11 . Unlike the case where fine particles are simply generated, the present invention allows evaporated fine particles to be constantly and stably delivered to the analyzer together with a carrier gas at a constant flow rate.
0, and an efficient particle transport technology is required. In particular, it is important to prevent fine particles from adhering to and remaining on the inner wall of the conveying tube as much as possible and to remove the remaining particles.

製造工程の管理や製品のチエツク分析に本発明
を活用する場合には、プラズマ発光分光分析装置
を空調完備の建屋に収容する必要があることや、
振動、塵埃等の測定環境などから、微粒子は数
10mの長距離を搬送しなければならない。このよ
うに搬送距離が長くなると、搬送管内壁への微粒
子の付着残留が起り易くなり、搬送ガス中の微粒
子濃度が変動したり、コンタミネーシヨンとなつ
て正確な分析値が得られなくなる。
When utilizing the present invention for manufacturing process management and product check analysis, the plasma emission spectrometer must be housed in an air-conditioned building;
Due to the measurement environment such as vibration and dust, the number of fine particles is small.
Must be transported over a long distance of 10m. As the transport distance becomes longer, fine particles tend to remain attached to the inner wall of the transport pipe, causing fluctuations in the fine particle concentration in the transport gas and contamination, making it impossible to obtain accurate analysis values.

鉄鋼材料を対象にスパーク放電を行つて生成し
た微粒子は、0.1μm以下の非常に細かい球状粒子
であるが、低速で管内を搬送すると管内壁に付着
し易くなり、特に低温部分に接触すると付着し易
くなる性質をもつている。また、管内壁に付着し
た微粒子は、付着後短時間以内にガスを吹きつけ
ると容易に剥離できる性質をもつ。従つて、小空
間室3で生成した微粒子は、搬送管9中を高流速
のArガスを供給して搬送する。搬送ガスの流速
を上げるために搬送管径は2〜5mmφ程度の細管
を用い、付着を抑制するために管外壁などに加熱
装置10を取り付けて常時加熱するのが適当であ
る。
The fine particles generated by spark discharge on steel materials are very fine spherical particles of 0.1 μm or less, but they tend to adhere to the inner wall of the pipe when they are transported at low speeds, especially when they come into contact with low-temperature parts. It has the property of becoming easier. Further, fine particles attached to the inner wall of the pipe have a property that they can be easily peeled off by blowing gas on them within a short period of time after attachment. Therefore, the fine particles generated in the small space chamber 3 are transported through the transport pipe 9 by supplying Ar gas at a high flow rate. In order to increase the flow rate of the carrier gas, it is appropriate to use a thin tube with a diameter of about 2 to 5 mm, and to suppress adhesion, it is appropriate to attach a heating device 10 to the outer wall of the tube for constant heating.

このような対策をとつても微粒子の付着残留を
確実に防ぐことは不可能であり、除去操作が必要
になる。種々実験の結果、管内壁に付着した微粒
子は、高流速のArガスを吹き込むよりも、高流
速で吹き込み、次に一時Arガス吹き込みを停止
ないしは非常に低い流速におとす。そして再び高
流速に戻して吹き込む。これらの操作を反復する
ことにより、より確実に短時間で除去できること
が判明した。
Even if such measures are taken, it is impossible to reliably prevent fine particles from remaining attached, and a removal operation is required. As a result of various experiments, fine particles adhering to the inner wall of the tube can be removed by blowing Ar gas at a high flow rate rather than by blowing Ar gas at a high flow rate, then temporarily stopping Ar gas blowing or reducing the flow rate to a very low rate. Then return to high flow rate and blow in again. It has been found that by repeating these operations, it can be removed more reliably and in a shorter time.

すなわち、吹き込まれるArガス流を一定流速
とするよりも流量を断続的に変化させて、Arガ
ス流に脈動のシヨツクを加える方法が有効であ
る。このほかArガス流量は分析開始時に、小空
間室3内に残留する大気を追い出すために高流速
で吹き込む必要がある。これらのArガスの流量
切替は、搬送ガス流量切替器6で制御される。
That is, rather than keeping the Ar gas flow blown at a constant flow rate, it is more effective to change the flow rate intermittently to add a pulsating shock to the Ar gas flow. In addition, the Ar gas flow rate needs to be blown at a high flow rate at the start of the analysis in order to drive out the atmosphere remaining in the small space chamber 3. These flow rate switches of Ar gas are controlled by a carrier gas flow rate switch 6.

本実施例では搬送管は内径3mmφ、長さ40mを
用いたが、微粒子生成装置2を試料面1に押圧し
てから、Arガスを15l/minで15秒間吹き込み、
次に5l/minに切り替えてスパーク放電を開始、
最初の10秒間は予備放電とし、そのあと10秒間の
放電によつて生成した微粒子のプラズマ発光強度
を積分値で測定する。その直後に、Arガス流量
を15l/minに切り替えて3秒間吹き込み、次に
Arガス流量を2秒間停止し、再び15l/minで3
秒間吹き込む。この反復操作を3回行つて、管内
残留微粒子を確実に除去する方法をとつた。その
結果対象とした鉄鋼試料中に含まれるSi,Mn,
P,Sなどの微量成分を短時間で高精度で分析す
ることができた。
In this example, the transport tube used had an inner diameter of 3 mmφ and a length of 40 m. After pressing the particle generator 2 against the sample surface 1, Ar gas was blown in at 15 l/min for 15 seconds.
Next, switch to 5l/min and start spark discharge.
The first 10 seconds are a preliminary discharge, and then the plasma emission intensity of the particles generated by the discharge for 10 seconds is measured as an integral value. Immediately after that, switch the Ar gas flow rate to 15l/min and blow in for 3 seconds, then
Stop the Ar gas flow rate for 2 seconds, then increase it again to 15 l/min for 3 seconds.
Blow in for seconds. This procedure was repeated three times to ensure that the remaining fine particles in the tube were removed. As a result, Si, Mn, and
It was possible to analyze trace components such as P and S in a short time and with high precision.

搬送ガス分配装置11は、搬送管9より搬送ガ
スで送られてきた微粒子を、一旦小空間部で拡散
させて更に均一化をはかる。プラズマトーチ15
へ導入する搬送ガスの最適流量を得るために、一
定部分を系外に排出して搬送ガスの分配を行う。
あるいは搬送されてくる間に、凝集が進んで粗大
化した粒子を系外に排除して、微細粒子のみをプ
ラズマトーチ15へ送り込むための粒径分離など
を行うためのものである。
The carrier gas distribution device 11 once diffuses the fine particles sent by the carrier gas from the carrier pipe 9 in a small space to further make them uniform. plasma torch 15
In order to obtain the optimum flow rate of the carrier gas introduced into the system, the carrier gas is distributed by discharging a certain portion out of the system.
Alternatively, while being transported, particles that have become coarse due to progressing aggregation are removed from the system, and particle size separation is performed to send only fine particles to the plasma torch 15.

分配装置11は、小径の円筒管で搬送管9を側
壁より挿入して管末端開口部を上向きに、この開
口部に微粒子導入管14を上部より一定間隔をも
つて相対するように取付け、円筒管底部には流量
調節器13を備えた排出管12を取りつけてあ
る。これらの3本の管はいずれも10mmφ以下の細
管で、粗大粒子及び余剰の微粒子及び搬送ガスは
底部排出管12より系外に排出され、残りの微粒
子は一定流量の搬送ガスと共に導入管14へ導入
される。
The distribution device 11 is a small-diameter cylindrical tube, and the conveying tube 9 is inserted from the side wall, the tube end opening faces upward, and the particle introduction tube 14 is attached to this opening so as to face each other at a constant distance from the top. A discharge pipe 12 equipped with a flow rate regulator 13 is attached to the bottom of the pipe. These three pipes are all thin tubes with a diameter of 10 mm or less, and coarse particles, excess fine particles, and carrier gas are discharged out of the system from the bottom discharge pipe 12, and the remaining fine particles are sent to the inlet pipe 14 along with a constant flow of carrier gas. be introduced.

微粒子導入管14は、プラズマ発光分光分析装
置20に接続される。導入された微粒子はプラズ
マトーチ15へ運び込まれ、高温のプラズマ部1
6に達して励起発光される。励起光は分光器17
で分光され、光電子増倍管から成る検出器18、
成分含有率算出装置19によつて各々のスペクト
ル線強度が測定され、試料中の各成分含有率を迅
速に求められる。
The particle introduction tube 14 is connected to a plasma emission spectrometer 20 . The introduced fine particles are carried to the plasma torch 15, and the high temperature plasma part 1
6 and is excited to emit light. The excitation light is a spectrometer 17
a detector 18 consisting of a photomultiplier tube;
The component content calculation device 19 measures the intensity of each spectral line, and the content of each component in the sample can be quickly determined.

微粒子を励起発光させる分析装置20として
は、高周波誘導結合型発光分光分析装置が最も適
していたが、そのほか各種アーク放電等のプラズ
マ励起発光分光分析装置あるいは原子吸光分析装
置などを適用できる。
Although a high-frequency inductively coupled emission spectrometer is most suitable as the analyzer 20 for exciting the particles to emit light, other types of plasma-excited emission spectrometers such as arc discharge or atomic absorption spectrometers can be used.

以上説明したように、本発明によれば各種試料
中の含有成分をサンプリング等の操作を行わず
に、迅速かつ精度よく直接分析でき、特に金属等
の製造工程管理や製品のチエツク分析に極めて効
果が大きい。
As explained above, according to the present invention, the components contained in various samples can be directly analyzed quickly and accurately without performing any sampling or other operations, and is particularly effective for manufacturing process control of metals and product check analysis. is large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の説明図である。 1……分析試料、2……微粒子生成装置、3…
…小空間室、4……スパーク対電極、5……試料
電極、6……搬送ガス流量切替器、7……ガス供
給口、9……微粒子排出口、9……微粒子搬送
管、10……加熱装置、11……搬送ガス分配装
置、14……微粒子導入管、15……プラズマト
ーチ、20……プラズマ発光分光分析装置。
FIG. 1 is an explanatory diagram of an embodiment of the present invention. 1...Analysis sample, 2...Particle generator, 3...
...Small space chamber, 4...Spark counter electrode, 5...Sample electrode, 6...Carrier gas flow rate switch, 7...Gas supply port, 9...Particle exhaust port, 9...Particle transport pipe, 10... ... Heating device, 11 ... Carrier gas distribution device, 14 ... Particle introduction tube, 15 ... Plasma torch, 20 ... Plasma emission spectrometer.

Claims (1)

【特許請求の範囲】 1 大気を遮断して形成した小空間室底部に位置
する試料表面をスパーク、プラズマアーク、レー
ザー、電子ビーム等から選択したエネルギーによ
つて局部的に高温に加熱して微粒子を蒸発生成さ
せ、同微粒子を不活性ガスによつて、長尺の細管
中をプラズマ発光分光分析装置へ搬送して、各波
長の発光強度から試料中の各含有成分量を測定
し、この測定終了直後に上記不活性ガスを高流速
で細管中に吹き込み、次にこれを停止し、再度高
流速で吹き込む反復操作で細管内壁に付着残留し
た微粒子を剥離除去し、次試料の分析に移ること
を特徴とする微粒子長距離搬送プラズマ発光分光
分析方法。 2 上部には、先端が試料表面に対向するスパー
ク、プラズマアーク、レーザー、電子ビーム等か
ら選択したエネルギーを用いる加熱装置を設置す
ると共に流量断続切替器に接続する微粒子搬送ガ
ス供給口および微粒子排出口とを有し、底部には
試料表面に密着して密閉状小空間室を形成しうる
微粒子生成装置;一端を上記微粒子排出口に接続
し、他端を搬送ガス分配装置に接続した小径長尺
の微粒子搬送管;同搬送管の末端部と、微粒子導
入管と、流量調節器を備えた余剰ガスの排出管と
を取り付けた搬送ガス分配装置;同分配装置を前
記微粒子導入管で接続したプラズマ発光分光分析
装置とから構成したことを特徴とする微粒子長距
離搬送プラズマ発光分光分析装置。
[Claims] 1. A sample surface located at the bottom of a small space formed by blocking the atmosphere is locally heated to a high temperature with energy selected from sparks, plasma arcs, lasers, electron beams, etc. to generate fine particles. The fine particles are transported through a long thin tube to a plasma emission spectrometer using an inert gas, and the amount of each component in the sample is measured from the emission intensity of each wavelength. Immediately after completion of the process, the inert gas is blown into the tube at a high flow rate, then stopped, and the fine particles remaining on the inner wall of the tube are peeled off and removed by repeating the process of blowing in at a high flow rate, and the next sample is analyzed. A long-distance particle transport plasma emission spectroscopic analysis method characterized by: 2 At the top, a heating device using energy selected from spark, plasma arc, laser, electron beam, etc. is installed with the tip facing the sample surface, and a particulate carrier gas supply port and particulate discharge port are connected to the flow rate switch. and a small-diameter elongated device having one end connected to the above-mentioned particle discharge port and the other end connected to the carrier gas distribution device; a particle transport pipe; a carrier gas distribution device that is attached to the end of the transport pipe, a particle introduction pipe, and a surplus gas discharge pipe equipped with a flow rate regulator; a plasma that connects the distribution device with the particle introduction pipe; What is claimed is: 1. A plasma emission spectrometer for long-distance transport of fine particles, characterized in that it is comprised of an emission spectrometer.
JP8544283A 1983-05-16 1983-05-16 Plasma emmision spectrochemical analysis method for long-distance carriage of fine particle and its apparatus Granted JPS59210348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8544283A JPS59210348A (en) 1983-05-16 1983-05-16 Plasma emmision spectrochemical analysis method for long-distance carriage of fine particle and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8544283A JPS59210348A (en) 1983-05-16 1983-05-16 Plasma emmision spectrochemical analysis method for long-distance carriage of fine particle and its apparatus

Publications (2)

Publication Number Publication Date
JPS59210348A JPS59210348A (en) 1984-11-29
JPH0150854B2 true JPH0150854B2 (en) 1989-10-31

Family

ID=13858979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8544283A Granted JPS59210348A (en) 1983-05-16 1983-05-16 Plasma emmision spectrochemical analysis method for long-distance carriage of fine particle and its apparatus

Country Status (1)

Country Link
JP (1) JPS59210348A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123393A (en) * 1973-03-21 1974-11-26
JPS545488B2 (en) * 1973-06-11 1979-03-17

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545488U (en) * 1977-06-14 1979-01-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123393A (en) * 1973-03-21 1974-11-26
JPS545488B2 (en) * 1973-06-11 1979-03-17

Also Published As

Publication number Publication date
JPS59210348A (en) 1984-11-29

Similar Documents

Publication Publication Date Title
Broekaert State of the art of glow discharge lamp spectrometry. Plenary lecture
Günther et al. Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers
Kántor Electrothermal vaporization and laser ablation sample introduction for flame and plasma spectrometric analysis of solid and solution samples
US3521959A (en) Method for direct spectrographic analysis of molten metals
JPH0150854B2 (en)
JPH0151939B2 (en)
JPS6220497B2 (en)
JPS59157541A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
JPS59157542A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
JPS6214773B2 (en)
Buchkamp et al. Size and distribution of particles deposited electrostatically onto the platform of a graphite furnace obtained using laser ablation sampling
JPS59157539A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPS59157540A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPS60219538A (en) Inert gas blow-in type fine particle recovering and molten metal analytical method and apparatus therefor
JPS6214774B2 (en)
JPH0148978B2 (en)
JPS59210330A (en) Plasma emission spectrochemical analyzer for carrying fine particle for long distance of automatic controlling type of electrode interval in molten metal
JP2007279016A (en) Method for exciting and/or ionizing material, and analyzing method and device using same
JPS6220496B2 (en)
Hermann et al. Radiation-enhanced field-forced deposition of a laser-produced aerosol in a graphite furnace and continuum-source coherent forward scattering multi-element determination
JPS60162944A (en) Method and device for recovering evaporating fine particles and analyzing molten metal
JPH07128237A (en) Method and device for rapidly analyzing steel component
JPS63243872A (en) Method and instrument for direct analysis of molten metal by formation of fine particle by ultrasonic oscillation
JPH07280797A (en) Speedy analysis method and device of molten steel
Hermann et al. Multi-element determination with solid sampling by laser ablation using electrothermal atomisation and continuum source coherent forward scattering spectrometry