JPH0147786B2 - - Google Patents

Info

Publication number
JPH0147786B2
JPH0147786B2 JP56212442A JP21244281A JPH0147786B2 JP H0147786 B2 JPH0147786 B2 JP H0147786B2 JP 56212442 A JP56212442 A JP 56212442A JP 21244281 A JP21244281 A JP 21244281A JP H0147786 B2 JPH0147786 B2 JP H0147786B2
Authority
JP
Japan
Prior art keywords
toner particles
charge amount
toner
measuring
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56212442A
Other languages
Japanese (ja)
Other versions
JPS58116542A (en
Inventor
Tetsuya Imamura
Takashi Tetsuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP56212442A priority Critical patent/JPS58116542A/en
Publication of JPS58116542A publication Critical patent/JPS58116542A/en
Publication of JPH0147786B2 publication Critical patent/JPH0147786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 本発明は電子写真用トナーの粒子特性、とくに
トナー粒子の粒子径および帯電量を測定する方法
およびその装置に関する。 〔従来技術の説明〕 一般に電子写真複写機に用いられるトナー粒子
の粒子径、極性、および帯電量は、感光体ドラム
上の潜像へのトナー粒子の現像の良否や現像効率
に影響し、さらに現像されたトナー粒子の紙上へ
の転写の良否や転写効率に影響する。したがつて
これらのトナー粒子特性は、最終的に複写画像の
鮮明度、微粒トナー粒子の付着によるカブリ(本
来白く写るべきところにトナー粒子が付着し黒く
なる現象)の有無などとなつて表われ、複写機の
複写性能に極めて重要な特性である。 従来、この種の特性を測定する方法として、粒
子径測定方法には、各種メツシユの篩を用いての
分級測定法、空気分級測定法、顕微鏡による粒径
測定法、および液体中へ分散させた粒子が細孔を
通過するときにその細孔の両側の電極に生じる抵
抗変化に基づく電気パルスから粒径を測定する方
法等(日本化学会編、「新実験化学講座18界面と
コロイド」、丸善出版、1975、P368−P407)があ
る。 また帯電量測定方法には、トナー粒子と鉄粉キ
ヤリアを混合した現像剤をケージの下端に設けた
メツシユ上に置いて、このケージの上端に設けた
ノズルから圧縮ガス(圧縮空気または窒素ガス)
を吹込み、トナーとキヤリアとを撹拌しながら摩
擦帯電させ、トナー粒子をケージから吹飛ばして
残存したキヤリアの逆電荷量を電気容量から求め
るブローオフ法(小口、久保、吉田:電子写真、
第16巻、No.2、10、1978)が広く知られている。
このブローオフ法はメツシユにトナーあるいはキ
ヤリアが衝突して発生する摩擦帯電を伴うため、
測定条件によつて測定値が変化し、トナー帯電量
の絶対値測定が困難で通常の使用には煩雑である
欠点がある。 そのため近年、このブローオフ法を改良して、
メツシユを用いず、磁石に対するキヤリアとトナ
ーの吸引力の差により両者を分離する方法(中
島、田中、堀江:電子写真、第18巻、No.3、22、
1980)、が開発されている。 しかしながら、これらの測定方法はいずれも各
特性を個別に測定し、しかも分布状態は求められ
ず平均値が得られるに過ぎない方法であつた。 〔発明の目的〕 本発明は、従来の測定方法で得られないトナー
粒子の粒子径および帯電量等の各分布状態および
各平均値を同時に簡便にかつ再現性良く測定する
ことができるトナー粒子の粒子径および帯電量の
測定方法ならびにその装置を提供することを目的
とする。 〔発明の要旨〕 本発明の第一の特徴は、重力方向に垂直な方向
に整流された空気層流を与え、重力方向に垂直で
あつてこの空気層流に垂直な方向に一定の直流電
界が印加された空間に、被測定トナー粒子を自然
落下させ、このトナー粒子が上記空間に分布する
状態を観測するトナー粒子の粒子径および帯電量
の測定方法にある。 また本発明の第二の特徴は、重力方向に平行に
配設され一定の直流電圧が印加された2枚の平行
な電極板と、この2枚の電極板の間にこの電極板
に平行であつて重力方向に垂直な方向に空気層流
を生じさせる手段と、上記2枚の電極板の間に被
測定トナー粒子を自然落下させる手段と、この自
然落下させる手段の下方に配設され上記トナー粒
子を受けとめる測定板とを備えたトナー粒子の粒
子径および帯電量の測定装置にある。 〔発明の原理〕 本発明の原理は、トナー粒子半径によるストー
クスの法則に基づく落下速度の差と、電場中での
トナー粒子の帯電量の大小に基づく電気力との差
を利用して空気中で3次元クロマトグラフイを行
うものである。 すなわち第1図に示すように重力方向(Z方
向)に平行に配設された2枚の平行な電極板1お
よび2の間に一定の直流電圧を印加し、この2枚
の電極板1および2の間に電極板1,2に平行で
あつて重力方向に垂直な方向(X方向)に空気層
流を生じさせ、この2枚の電極板1および2の間
の上方に(Z軸上に)トナー落下管3を設け、あ
らかじめキヤリアと混合した後にキヤリアから分
離して帯電したトナー粒子5をこのトナー落下管
3より重力方向に垂直に置かれた測定板6上に自
然落下させる。この測定板6上に落下したトナー
粒子5の粒子径および帯電量等は、以下に述べる
理論を用いて測定板6上のXおよびY座標から求
めることができる。 いまX方向に空気の層流速度vがあるとき、t
時間後のトナー粒子の位置xは、次式により表わ
される。 x=vt ……(1) またY方向のトナー粒子の運動方程式は、スト
ークスの法則による空気の粘性抵抗と、トナー粒
子の帯電量qおよび電場Eに基づく電気力qEと
から次式により表わされる。 md2y/dt2+6πηady/dt=qE ……(2) ここで、mはトナー粒子質量、ηは空気粘度、
aはトナー粒子半径である。(2)式を用いて次式を
得る。 y=−mqE/(6πηa)2(1−e-6〓〓a/mt)+qE/6π
ηa ……(3) またZ方向に落下するトナー粒子の運動方程式
は次式で与えられる。 z=mg/6πηat ……(4) この(2)〜(4)式で用いたストークスの法則は、次
式のレイノルズ数が1以下のとき成立するため、
本発明の測定装置では次式を満たすように実験条
件を選定するものとする。 Re=ρadz/dt/η≦1 ……(5) ここで、ρはトナー粒子密度である。 さらにトナー粒子の形状を球と仮定すれば、ト
ナー粒子質量mは次式により表わされる。 m=4/3πa3ρ ……(6) 上記(1)、(3)、(4)、(6)式を用いて解けば、トナー
粒子の落下時間t、トナー粒子帯電量q、トナー
粒子半径a、トナー粒子質量mの未知数を求める
ことができる。 〔実施例による説明〕 次に本発明の測定方法を実施するための装置の
一例を図面に基づいて詳しく説明する。 第2図は本発明一実施例装置の中央縦断面図で
ある。第2図において各符号は第1図の各符号に
それぞれ対応する。電極板1,2および測定板6
は、断面が正方形の3辺をなす風胴7のほぼ中央
部に配置される。 第3図は電極板1,2および測定板6の詳細を
示す外観斜視図である。電極板1,2および測定
板6は、プラスチツク製の基台9に取付けられ
る。また風胴7内には、この電極板1,2の前部
および後部に第4図および第5図に示すような2
種類の空気整流板10,11が多数配置される。
この空気整流板10,11は一定の奥行を持つ板
状材料を断面が格子状になるように構成したもの
で、第6図に示すように風胴7内では、一方の空
気整流板10の格子空間のほぼ真中に他方の空気
整流板11の交差点が来るように交互に組合わせ
てある。 また第2図および第6図に示すように、電極板
1,2の中間にあつて測定板6の上方の風胴7の
蓋13には、トナー粒子5を落下させるトナー落
下管3が垂直に貫設される。このトナー落下管3
はガラス製でその上端は太く下端は細く形成され
ている。さらに風胴7の一端には、一定速度で回
転する吸引フアン14が取付けられ、風胴7内の
空気を吸引する。 このように構成された装置で、トナー落下管3
から帯電したトナー粒子5を電気力と空気層流の
生じた空間内に自然落下させると、測定板6上の
測定チヤートには、第7図に示すようなトナー粒
子の分布が生じる。第7図の測定チヤートは白色
でその表面は粘着性があり、落下したトナー粒子
の分布状態を容易に観察することができ、しかも
この測定チヤートは測定板6に着脱自在に取付け
られている。 第7図からX軸とY軸の交点、すなわち原点上
(Z軸上)から落下されたトナー粒子は、X方向
への粒子径分布を持つていることが示され、また
Y方向に印加された電場とトナー粒子個々の帯電
量により受ける電気力が異なるため、X軸を中心
線とすればX軸より上方の位置に多くの粒子が落
下した帯電量分布が示される。 第8図は第7図に示した測定チヤートの上に前
記理論式から求めたトナー粒子の粒子半径(破線
で示す)と帯電量(実線で示す)の等高線図を重
ね合わせたものである。これによりトナー粒子
個々の粒子半径と帯電量とを一目瞭然に簡便に測
定することができる。なお測定チヤートにあらか
じめ上記トナー粒子の粒子半径および帯電量の等
高線図を印刷しておいてもよい。 さらにトナー粒子個々の粒子半径および帯電量
の大きさをより凝縮した定量的特性として把握す
るために、X方向とY方向のトナー粒子の分布状
態を定量データとして測定する。第9図は第7図
に示した測定チヤートから画像解析装置(Quan
−timent 720、Image Analyzing Computer
Ltd、イギリス)によるX、Y方向のトナー粒子
分布の測定状況を示す図であつてX、Y方向に垂
直な微小幅スリツト中のトナー濃度を定量化する
ことができる。なおこの画像解析装置の代わりに
他の解析手段によりトナー粒子分布を定量化して
もよい。 上記の定量化により得られたX、Y方向の各分
布は、前記理論式を用いてそれぞれ粒子半径分布
および帯電量分布として計算することができ、第
10図に示すヒストグラムとして表わすこともで
きる。第10図を解析すれば各分布から粒子半径
および帯電量の各平均値と各標準偏差を求めるこ
とができる。 なおトナー粒子特性が既知の分布状態モデルを
多種類用意して、被測定トナー粒子の測定チヤー
トにおける分布状態をこれらの分布状態モデルと
比較観察して簡易に被測定トナー粒子の特性を求
めることもできる。 また測定チヤートはその表面が粘着性である例
を示したが、トナー成分が低融点の熱可塑性樹脂
であることから測定チヤートに加熱できる加熱装
置を設ければ、とくに粘着性にしなくてもトナー
粒子の分布状態を記録することができる。 〔実施例データの説明〕 次に本実施例装置を用いて測定した具体例につ
いて説明する。ここに示す例はあくまでも一例で
あつて、これにより本発明の範囲を限定するもの
ではない。 実施例 市販のトナー粒子を2種類について測定した。
1種類は二成分のトナー粒子(以下「市販トナー
A」という。)、他のものは一成分のトナー粒子
(以下「市販トナーB」という。)である。 これらのトナー粒子を温度25℃、湿度50%
RH、空気層流速度5cm/sec、電場380V/cm、
トナー落下管の落下孔の測定板からの高さ10cmの
測定条件の下でそれぞれ自然落下させた。 第11図は市販トナーA、第12図は市販トナ
ーBのトナー粒子の測定チヤート上に落下した分
布状態を示す。前記画像解析装置とマイクロコン
ピユータを用いて、この測定チヤートの粒子半径
分布と帯電量分布の各データの定量化を行い、第
1表の結果を得た。
[Technical Field of the Invention] The present invention relates to a method and apparatus for measuring the particle characteristics of electrophotographic toner, particularly the particle diameter and charge amount of toner particles. [Description of the Prior Art] Generally, the particle size, polarity, and charge amount of toner particles used in electrophotographic copying machines affect the quality of development of the toner particles onto the latent image on the photoreceptor drum and the development efficiency. It affects the transfer quality and transfer efficiency of developed toner particles onto paper. Therefore, these toner particle characteristics ultimately affect the clarity of the copied image and the presence or absence of fog caused by adhesion of fine toner particles (a phenomenon in which toner particles adhere to an area that should be white, resulting in a black image). , is an extremely important characteristic for the copying performance of a copying machine. Conventionally, particle size measurement methods for measuring this type of property include particle size measurement methods using various mesh sieves, air classification measurement methods, particle size measurement methods using a microscope, and particle size measurement methods using particles dispersed in a liquid. A method of measuring particle size from an electric pulse based on the resistance change that occurs in the electrodes on both sides of the pore when the particle passes through the pore (edited by the Chemical Society of Japan, "New Experimental Chemistry Course 18 Interfaces and Colloids", Maruzen) Publishing, 1975, P368-P407). In addition, to measure the amount of charge, a developer mixture of toner particles and iron powder carrier is placed on a mesh provided at the bottom end of the cage, and compressed gas (compressed air or nitrogen gas) is supplied from a nozzle provided at the top end of the cage.
A blow-off method in which the toner and carrier are charged by friction while stirring, the toner particles are blown away from the cage, and the amount of reverse charge on the remaining carrier is determined from the electric capacitance (Oguchi, Kubo, Yoshida: Electrophotography;
Volume 16, No. 2, 10, 1978) is widely known.
This blow-off method involves frictional charging caused by the collision of toner or carrier with the mesh.
The disadvantage is that the measured value changes depending on the measurement conditions, and it is difficult to measure the absolute value of the toner charge amount, making it complicated for normal use. Therefore, in recent years, this blow-off method has been improved,
A method of separating the carrier and toner by the difference in their attraction to a magnet without using a mesh (Nakajima, Tanaka, Horie: Electrophotography, Vol. 18, No. 3, 22,
1980), has been developed. However, in all of these measurement methods, each characteristic is measured individually, and the state of distribution cannot be determined, but only an average value can be obtained. [Object of the Invention] The present invention provides a method for toner particles that can simultaneously and easily measure the distribution states and average values of toner particles such as the particle size and charge amount, which cannot be obtained by conventional measurement methods, with good reproducibility. The object of the present invention is to provide a method and apparatus for measuring particle diameter and charge amount. [Summary of the Invention] The first feature of the present invention is to provide a laminar air flow that is rectified in a direction perpendicular to the direction of gravity, and to apply a constant DC electric field in a direction that is perpendicular to the direction of gravity and perpendicular to the laminar air flow. The present invention provides a method for measuring the particle diameter and charge amount of toner particles, in which toner particles to be measured fall naturally into a space to which is applied, and the state in which the toner particles are distributed in the space is observed. The second feature of the present invention is that two parallel electrode plates are arranged parallel to the direction of gravity and a constant DC voltage is applied, and a means for generating a laminar air flow in a direction perpendicular to the direction of gravity; means for causing the toner particles to be measured to naturally fall between the two electrode plates; and a means for receiving the toner particles disposed below the means for causing the toner particles to fall naturally. The present invention provides a measuring device for measuring the particle diameter and charge amount of toner particles, including a measuring plate. [Principle of the Invention] The principle of the present invention is to utilize the difference in falling speed based on Stokes' law due to the radius of toner particles and the difference in electric force based on the amount of charge of toner particles in an electric field to Three-dimensional chromatography is performed using this method. That is, as shown in FIG. 1, a constant DC voltage is applied between two parallel electrode plates 1 and 2 arranged parallel to the direction of gravity (Z direction), and these two electrode plates 1 and A laminar air flow is created between the two electrode plates 1 and 2 in a direction (X direction) parallel to the direction of gravity and perpendicular to the direction of gravity. (b) A toner drop tube 3 is provided, and after being mixed with the carrier in advance, the charged toner particles 5 separated from the carrier are allowed to naturally fall from the toner drop tube 3 onto a measurement plate 6 placed perpendicular to the direction of gravity. The particle diameter, charge amount, etc. of the toner particles 5 that have fallen onto the measurement plate 6 can be determined from the X and Y coordinates on the measurement plate 6 using the theory described below. Now when there is a laminar flow velocity v of air in the X direction, t
The position x of the toner particle after the time is expressed by the following equation. x=vt...(1) Also, the equation of motion of the toner particles in the Y direction is expressed by the following equation from the viscous resistance of air according to Stokes' law, the electric charge q of the toner particles, and the electric force qE based on the electric field E. . md 2 y/dt 2 +6πηady/dt=qE...(2) Here, m is the toner particle mass, η is the air viscosity,
a is the toner particle radius. Using equation (2), we obtain the following equation. y=-mqE/(6πηa) 2 (1-e -6 〓〓 a/mt )+qE/6π
ηa...(3) Also, the equation of motion of toner particles falling in the Z direction is given by the following equation. z=mg/6πηat...(4) Stokes' law used in equations (2) to (4) holds true when the Reynolds number in the following equation is 1 or less, so
In the measuring device of the present invention, experimental conditions are selected so as to satisfy the following equation. R e =ρadz/dt/η≦1 (5) where ρ is the toner particle density. Further, assuming that the shape of the toner particles is spherical, the toner particle mass m is expressed by the following equation. m=4/3πa 3 ρ ...(6) If you solve it using the above equations (1), (3), (4), and (6), you can find that the toner particle falling time t, the toner particle charge amount q, and the toner particle Unknown variables such as radius a and toner particle mass m can be determined. [Description by Example] Next, an example of an apparatus for carrying out the measuring method of the present invention will be described in detail based on the drawings. FIG. 2 is a central vertical sectional view of an apparatus according to an embodiment of the present invention. In FIG. 2, each symbol corresponds to each symbol in FIG. 1, respectively. Electrode plates 1, 2 and measurement plate 6
is arranged approximately at the center of the wind barrel 7 whose cross section forms three sides of a square. FIG. 3 is an external perspective view showing details of the electrode plates 1, 2 and the measurement plate 6. The electrode plates 1, 2 and the measuring plate 6 are mounted on a plastic base 9. In addition, inside the wind barrel 7, two electrodes as shown in FIGS.
A large number of different types of air baffle plates 10 and 11 are arranged.
These air rectifier plates 10 and 11 are made of plate-like material with a certain depth and are configured so that the cross section is grid-like.As shown in FIG. They are alternately combined so that the intersection of the other air baffle plate 11 is located approximately in the center of the grid space. Further, as shown in FIGS. 2 and 6, a toner drop tube 3 for dropping toner particles 5 is installed vertically on the lid 13 of the wind cylinder 7 between the electrode plates 1 and 2 and above the measuring plate 6. It will be penetrated into. This toner drop tube 3
It is made of glass and has a thick top end and a thin bottom end. Furthermore, a suction fan 14 that rotates at a constant speed is attached to one end of the wind barrel 7 to suck the air inside the wind barrel 7. In the device configured in this way, the toner drop tube 3
When charged toner particles 5 are allowed to naturally fall into a space where an electric force and a laminar air flow are generated, a distribution of toner particles as shown in FIG. 7 is generated on the measurement chart on the measurement plate 6. The measurement chart shown in FIG. 7 is white and has a sticky surface, allowing easy observation of the distribution of fallen toner particles, and is detachably attached to the measurement plate 6. From FIG. 7, it is shown that toner particles dropped from the intersection of the X and Y axes, that is, from above the origin (on the Z axis), have a particle size distribution in the Since the electric force received differs depending on the electric field applied to the toner particles and the amount of charge on each toner particle, if the X-axis is taken as the center line, a charge amount distribution is shown in which many particles fall at positions above the X-axis. FIG. 8 is a contour map of the particle radius (indicated by a broken line) and the amount of charge (indicated by a solid line) of toner particles determined from the above-mentioned theoretical formula, superimposed on the measurement chart shown in FIG. 7. Thereby, the particle radius and charge amount of each toner particle can be easily and easily measured. Note that a contour map of the particle radius and charge amount of the toner particles may be printed on the measurement chart in advance. Furthermore, in order to grasp the particle radius and charge amount of each toner particle as more condensed quantitative characteristics, the state of distribution of toner particles in the X direction and the Y direction is measured as quantitative data. Figure 9 shows the measurement chart shown in Figure 7.
−timent 720, Image Analyzing Computer
Ltd., UK), which shows the measurement status of toner particle distribution in the X and Y directions, and it is possible to quantify the toner concentration in a minute width slit perpendicular to the X and Y directions. Note that the toner particle distribution may be quantified by other analysis means instead of this image analysis device. The distributions in the X and Y directions obtained by the above quantification can be calculated as a particle radius distribution and a charge amount distribution, respectively, using the above theoretical formula, and can also be expressed as a histogram shown in FIG. By analyzing FIG. 10, the average values and standard deviations of particle radius and charge amount can be determined from each distribution. Note that it is also possible to easily obtain the characteristics of toner particles to be measured by preparing a variety of distribution state models with known toner particle characteristics and comparing and observing the distribution state of the toner particles to be measured in the measurement chart with these distribution state models. can. In addition, although we have shown an example in which the surface of the measurement chart is sticky, since the toner component is a thermoplastic resin with a low melting point, if a heating device that can heat the measurement chart is installed, the toner can be used without making it sticky. The state of particle distribution can be recorded. [Explanation of Example Data] Next, a specific example measured using the apparatus of this example will be described. The example shown here is just an example, and does not limit the scope of the present invention. Example Two types of commercially available toner particles were measured.
One type is two-component toner particles (hereinafter referred to as "commercial toner A"), and the other type is one-component toner particles (hereinafter referred to as "commercial toner B"). These toner particles were stored at a temperature of 25°C and a humidity of 50%.
RH, laminar air velocity 5cm/sec, electric field 380V/cm,
Each toner was allowed to fall naturally under measurement conditions at a height of 10 cm from the measurement plate in the drop hole of the toner drop tube. FIG. 11 shows the distribution of toner particles of commercially available toner A, and FIG. 12 shows the distribution of toner particles of commercially available toner B falling onto the measurement chart. Using the image analysis device and microcomputer, the data of particle radius distribution and charge amount distribution of this measurement chart were quantified, and the results shown in Table 1 were obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、電気力と
空気層流とがそれぞれ重力方向に垂直にかつ互い
に直交する方向に作用する空間に、帯電した被測
定トナー粒子を自然落下させ、上記空間に置かれ
た平面でこのトナー粒子の落下した分布状態を観
察することにより、 (イ) 再現性の良い粒子径、帯電量等のデータが得
られ、 (ロ) これらのデータを同時に、かつ各データの平
均値のみならず分布状態を把握することがで
き、 (ハ) 理論式から求めた上記各データの等高線図を
あらかじめ測定チヤートに印刷したり、あるい
はトナー粒子特性が既知の分布状態モデルを多
種類用意することにより、上記理論式を用いる
ことなく、簡便かつ迅速にトナー粒子特性を求
めることができ、工業上の利用に好適となる 優れた効果がある。
As described above, according to the present invention, charged toner particles to be measured are caused to naturally fall into a space where an electric force and a laminar air flow act perpendicularly to the direction of gravity and in directions perpendicular to each other. By observing the distribution state of falling toner particles on a flat surface placed on a It is possible to grasp not only the average value of the data but also the distribution state. By preparing a large number of types, toner particle characteristics can be determined simply and quickly without using the above-mentioned theoretical formula, which has an excellent effect of making it suitable for industrial use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を説明する斜視図。第2
図は本発明一実施例装置の中央縦断面図。第3図
はその電極板および測定板の外観斜視図。第4図
および第5図はその空気整流板の外観斜視図。第
6図は第2図のAA′断面図。第7図は測定板上に
置かれトナー粒子が落下した分布状態を示す測定
チヤート。第8図は第7図に示した測定チヤート
の上に理論式から求めたトナー粒子半径と帯電量
の等高線図を重ね合わせた図。第9図は第7図に
示した測定チヤートから画像解析装置によるX、
Y方向のトナー粒子分布の測定状況を示す図。第
10図は同じく測定チヤートから計算した粒子半
径分布と帯電量分布のヒストグラム。第11図お
よび第12図は本実施例装置による市販トナー粒
子の分布状態を示す測定チヤート。 1,2……電極板、3……トナー落下管、5…
…トナー粒子、6……測定板、7……風胴、9…
…基台、10,11……空気整流板、13……
蓋、14……吸引フアン。
FIG. 1 is a perspective view illustrating the principle of the present invention. Second
The figure is a central vertical sectional view of an apparatus according to an embodiment of the present invention. FIG. 3 is an external perspective view of the electrode plate and measurement plate. FIGS. 4 and 5 are perspective views of the air baffle plate. Figure 6 is a cross-sectional view of AA' in Figure 2. FIG. 7 is a measurement chart showing the distribution state of toner particles placed on a measurement plate and falling. FIG. 8 is a diagram in which a contour map of toner particle radius and charge amount determined from a theoretical formula is superimposed on the measurement chart shown in FIG. 7. Figure 9 shows the measurement chart shown in Figure 7.
FIG. 3 is a diagram showing the measurement status of toner particle distribution in the Y direction. Figure 10 is a histogram of particle radius distribution and charge amount distribution calculated from the same measurement chart. FIGS. 11 and 12 are measurement charts showing the distribution state of commercially available toner particles using the apparatus of this embodiment. 1, 2... Electrode plate, 3... Toner drop tube, 5...
...Toner particles, 6...Measurement plate, 7...Wind cylinder, 9...
... Base, 10, 11 ... Air rectifier plate, 13 ...
Lid, 14...Suction fan.

Claims (1)

【特許請求の範囲】 1 重力方向に垂直な方向に整流された空気層流
を与え、重力方向に垂直であつてこの空気層流に
垂直な方向に一定の直流電界が印加された空間
に、被測定トナー粒子を自然落下させ、このトナ
ー粒子が上記空間に分布する状態を観測するトナ
ー粒子の粒子径および帯電量の測定方法。 2 被測定トナー粒子が空間に分布する状態を重
力方向に垂直な平面で捉える特許請求の範囲第1
項記載のトナー粒子の粒子径および帯電量の測定
方法。 3 空気層流の方向をX方向、電気力の作用する
方向をY方向、重力方向をZ方向とし、Z軸上か
ら被測定トナー粒子を自然落下させこのトナー粒
子が空間に分布する状態をX−Y平面で捉えると
き、 x=vt md2y/dt2+6πηady/dt=qE z=mg/6πηat m=4/3πa3ρ (ただしv:空気層流速度、t:落下時間、m:
トナー粒子質量、η:空気粘度、a:トナー粒子
半径、q:トナー粒子帯電量、E:電場、ρ:ト
ナー粒子密度)の式からトナー粒子半径aおよび
トナー粒子帯電量qを求める特許請求の範囲第2
項記載のトナー粒子の粒子径および帯電量の測定
方法。 4 被測定トナー粒子が空間に分布する状態をあ
らかじめトナー粒子の粒子径および帯電量が既知
の分布状態モデルと比較観察して上記被測定トナ
ー粒子の粒子径および帯電量を求める特許請求の
範囲第1項または第2項の記載のトナー粒子の粒
子径および帯電量の測定方法。 5 重力方向に平行に配設され一定の直流電圧が
印加された2枚の平行な電極板と、この2枚の電
極板の間にこの電極板に平行であつて重力方向に
垂直な方向に空気層流を生じさせる手段と、上記
2枚の電極板の間に被測定トナー粒子を自然落下
させる手段と、この自然落下させる手段の下方に
配設され上記トナー粒子を受けとめる測定板とを
備えたトナー粒子の粒子径および帯電量の測定装
置。 6 測定板が重力方向に垂直である特許請求の範
囲第5項記載のトナー粒子の粒子径および帯電量
の測定装置。 7 測定板の表面に淡色で粘着性のある測定チヤ
ートが着脱自在に取付けられるように構成された
特許請求の範囲第5項または第6項記載のトナー
粒子の粒子径および帯電量の測定装置。 8 測定チヤートにあらかじめトナー粒子の粒子
径および帯電量が既知の等高線図が印刷された特
許請求の範囲第7項記載のトナー粒子の粒子径お
よび帯電量の測定装置。
[Claims] 1. A space in which a laminar air flow rectified in a direction perpendicular to the direction of gravity is applied, and a constant DC electric field is applied in a direction perpendicular to the direction of gravity and perpendicular to the laminar air flow, A method for measuring the particle diameter and charge amount of toner particles by allowing the toner particles to be measured to fall naturally and observing the state in which the toner particles are distributed in the above-mentioned space. 2 Claim 1 that captures the state in which toner particles to be measured are distributed in space on a plane perpendicular to the direction of gravity
Method for measuring the particle diameter and charge amount of toner particles as described in Section 3. 3 The direction of the air laminar flow is the X direction, the direction in which the electric force acts is the Y direction, and the direction of gravity is the Z direction, and the toner particles to be measured fall naturally from the Z axis, and the state in which the toner particles are distributed in space is defined as the X direction. - When captured on the Y plane, x=vt md 2 y/dt 2 +6πηady/dt=qE z=mg/6πηat m=4/3πa 3 ρ (where v: air laminar velocity, t: falling time, m:
Toner particle radius a and toner particle charge amount q are determined from the formula: toner particle mass, η: air viscosity, a: toner particle radius, q: toner particle charge amount, E: electric field, ρ: toner particle density). Range 2nd
Method for measuring the particle diameter and charge amount of toner particles as described in Section 3. 4. Obtaining the particle size and charge amount of the toner particles to be measured by comparing and observing the state in which the toner particles to be measured are distributed in space with a distribution state model in which the particle size and charge amount of the toner particles are known in advance. The method for measuring the particle diameter and charge amount of toner particles according to item 1 or 2. 5 Two parallel electrode plates arranged parallel to the direction of gravity and to which a constant DC voltage is applied, and an air layer between these two electrode plates in a direction parallel to the electrode plates and perpendicular to the direction of gravity. of toner particles, comprising means for generating a flow, means for causing the toner particles to be measured to fall naturally between the two electrode plates, and a measuring plate disposed below the means for causing the toner particles to fall naturally and receiving the toner particles. Device for measuring particle size and charge amount. 6. The device for measuring the particle diameter and charge amount of toner particles according to claim 5, wherein the measuring plate is perpendicular to the direction of gravity. 7. The device for measuring the particle diameter and charge amount of toner particles according to claim 5 or 6, which is configured such that a light-colored and adhesive measuring chart is detachably attached to the surface of the measuring plate. 8. The device for measuring the particle diameter and charge amount of toner particles according to claim 7, wherein a contour map in which the particle diameter and charge amount of the toner particles are known is printed in advance on the measurement chart.
JP56212442A 1981-12-29 1981-12-29 Method and device for measuring toner particle characteristic Granted JPS58116542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56212442A JPS58116542A (en) 1981-12-29 1981-12-29 Method and device for measuring toner particle characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212442A JPS58116542A (en) 1981-12-29 1981-12-29 Method and device for measuring toner particle characteristic

Publications (2)

Publication Number Publication Date
JPS58116542A JPS58116542A (en) 1983-07-11
JPH0147786B2 true JPH0147786B2 (en) 1989-10-16

Family

ID=16622673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212442A Granted JPS58116542A (en) 1981-12-29 1981-12-29 Method and device for measuring toner particle characteristic

Country Status (1)

Country Link
JP (1) JPS58116542A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281975A (en) * 1985-06-07 1986-12-12 Fujitsu Ltd Measuring instrument for distribution of toner electric charge quantity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953544B2 (en) * 1976-10-30 1984-12-25 株式会社リコー Toner density control device
JPS6035663B2 (en) * 1977-09-29 1985-08-15 株式会社リコー Developer toner concentration detection method and device
JPS53108440A (en) * 1977-03-04 1978-09-21 Ricoh Co Ltd Toner remainder detector
JPS54153640A (en) * 1978-05-24 1979-12-04 Ricoh Co Ltd Toner concentration detector in copying machine

Also Published As

Publication number Publication date
JPS58116542A (en) 1983-07-11

Similar Documents

Publication Publication Date Title
Wilson et al. The influence of shape on the atmospheric settling velocity of volcanic ash particles
Fayed et al. Handbook of powder science & technology
Brown Tutorial review: Simultaneous measurement of particle size and particle charge
GB2159970A (en) Electrophotographic toner
JP2003337087A (en) Suspended particle collection device
GB2083619A (en) Charge spectrograph
Baron et al. Direct-reading techniques using optical particle detection
JPH0147786B2 (en)
JPH06130717A (en) Electrostatic image developer
JP4927193B2 (en) Toner adhesion strength measuring apparatus and toner adhesion strength measuring method
JP2938327B2 (en) Measuring device for toner charge
Bahajry et al. Characterization of size-resolved charge distributions for triboelectrically charged microparticles via electrical mobility analysis coupled to optical particle spectrometry
JPH0862885A (en) Method and device for measuring electrification characteristics of electrophotographic toner
JPH0424432Y2 (en)
Snowsill Particle sizing
JPH0979966A (en) Polymerized toner and method for measuring fluidity of toner
JPH055506Y2 (en)
JPH01253776A (en) Developing device
JPS6358175A (en) Method for measuring toner charge quantity distribution
Preud'Homme et al. Effect of cohesive forces on granular flows in rotating drum: linking experiments and simulations
JPH03177848A (en) Non-magnetic black toner and developer using the same
JPS63138277A (en) Measuring instrument for electrification quantity distribution of toner grain
Crynack Particle Charging in Electrostatic Precipitation
JP2736981B2 (en) Two-component developer for electrostatic latent image development
JPH07107543B2 (en) Toner particle charge amount measuring device