JPH0147408B2 - - Google Patents

Info

Publication number
JPH0147408B2
JPH0147408B2 JP55158821A JP15882180A JPH0147408B2 JP H0147408 B2 JPH0147408 B2 JP H0147408B2 JP 55158821 A JP55158821 A JP 55158821A JP 15882180 A JP15882180 A JP 15882180A JP H0147408 B2 JPH0147408 B2 JP H0147408B2
Authority
JP
Japan
Prior art keywords
iron oxide
air
iron
amount
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55158821A
Other languages
Japanese (ja)
Other versions
JPS5788035A (en
Inventor
Genji Kosho
Tadatoshi Yagi
Kyoko Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEMIRAITO KOGYO KK
Original Assignee
KEMIRAITO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEMIRAITO KOGYO KK filed Critical KEMIRAITO KOGYO KK
Priority to JP15882180A priority Critical patent/JPS5788035A/en
Publication of JPS5788035A publication Critical patent/JPS5788035A/en
Publication of JPH0147408B2 publication Critical patent/JPH0147408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は、塩化鉄溶液を熱分解して生成する酸
化鉄中に含有される塩化物イオン(以下Cl-と呼
ぶ)を、亜硫酸ガス(以下SO2と呼ぶ)によつて
低減させる方法に関するものである。
Detailed Description of the Invention The present invention converts chloride ions (hereinafter referred to as Cl - ) contained in iron oxide produced by thermally decomposing an iron chloride solution into sulfur dioxide gas (hereinafter referred to as SO 2 ). The present invention relates to a method for reducing the amount of water.

從来、ベンガラとして市場に供給されていた酸
化鉄は、硫酸鉄または硫化鉱を湿式酸化、脱水ま
たは焙焼する方法で製造されてきたが、近年にな
つて鉄鋼業における鋼板の酸洗が硫酸方式から塩
酸方式に転換されるようになつてからは、塩化第
1鉄溶液を原料とする酸化鉄の生産が増加してき
た。
Since then, iron oxide, which has been supplied to the market as red iron oxide, has been produced by wet oxidation, dehydration, or roasting of iron sulfate or sulfide ore. After the conversion from the hydrochloric acid method to the hydrochloric acid method, the production of iron oxide using ferrous chloride solution as a raw material has increased.

ところが、酸化鉄は電子材料用のフエライトコ
ア又は顔料の重要な原料であるが、塩化鉄から生
成させる酸化鉄は、熱分解直後で約0.2wt%の塩
素を塩化物イオンとして含有しており、このCl-
は酸化鉄を利用するに際して好ましいものではな
い。その為、実際にはCl-除去(以下脱Cl-と呼
ぶ)を目的として、酸化鉄に水洗または焙焼等の
処理を施している。しかし、これらの処理では十
分な脱Cl-が行なわれにくく、また経済上および
粉体特性の変化に問題がある上、水洗方法では排
水処理工程に多大の問題を残している。
However, although iron oxide is an important raw material for ferrite cores or pigments for electronic materials, iron oxide produced from iron chloride contains about 0.2 wt% chlorine as chloride ions immediately after thermal decomposition. This Cl -
is not preferable when using iron oxide. Therefore, iron oxide is actually subjected to treatments such as washing with water or roasting for the purpose of removing Cl - (hereinafter referred to as deCl - ). However, in these treatments, it is difficult to remove Cl - sufficiently, and there are problems in terms of economics and changes in powder properties, and the water washing method leaves many problems in the wastewater treatment process.

本発明の目的とするところは、上述のような現
状を十分に考慮して酸化鉄粉末中に含有される
Cl-を除去する方法を提供するものである。本発
明の要旨とするところは、塩化鉄溶液から生成さ
れた酸化鉄を、常温〜700℃に保つて、SO2を含
む空気等の媒体ガスを流通させ酸化鉄中のCl-
除去することを特徴とする酸化鉄粉中の塩化物イ
オンの除去法である。
The purpose of the present invention is to fully consider the current situation as described above, and to obtain iron oxide contained in iron oxide powder.
The present invention provides a method for removing Cl - . The gist of the present invention is to remove Cl - from the iron oxide by keeping iron oxide produced from an iron chloride solution at room temperature to 700°C and passing a medium gas such as air containing SO 2 through it. This is a method for removing chloride ions from iron oxide powder.

以下本発明を更に詳細に説明する。塩化第一鉄
溶液を高温で熱分解した酸化鉄(価)のものに
ついて述べる。塩化第1鉄溶液を流動焙焼炉に
て、温度500〜800℃で熱分解し静電的に捕集した
酸化鉄α−Fe2O3は、平均粒径が0.6〜0.7μであつ
た。X線回折ではα−Fe2O3のパターンのみを示
し、化学分析によつて求めた純度は99.2wt%以上
であつた。おもな不純物は水分が0.3wt%、Cl-
0.16wt%、SO4 2-が0.03wt%、MnOが0.26wt%、
Al2O3が0.02wt%、CaOが0.01wt%、ほかにSiO、
P、Ti、Cuが0.001〜0.006wt%であつた。この
酸化鉄を室温〜700℃に保ち、SO2が0.05〜1.5vol
%の混合空気と流通法にて接触させた。空気中に
SO2を含む場合と含まない場合の酸化鉄粉中に残
留するCl-量の違いを第1図に示す。この時の空
気中水分は0.8wt%、SO2ガス濃度0.4vol%、反応
時間は1時間である。空気のみを通じて加熱した
ときは、温度の増加とともに徐々に減少するが、
SO2を含む媒体ガスを通じて加熱したときは、室
温ですでに減少がいちじるしく、100℃以上では
極立つて減少し、酸化鉄中のCl-は0.04wt%まで
低減する。第2図に脱離Cl-量と付着SO2量の関
係をモル数で示す。
The present invention will be explained in more detail below. We will describe iron oxide (valent) obtained by thermally decomposing ferrous chloride solution at high temperature. Iron oxide α-Fe 2 O 3 , which was obtained by thermally decomposing a ferrous chloride solution at a temperature of 500 to 800°C in a fluidized roasting furnace and electrostatically collecting it, had an average particle size of 0.6 to 0.7μ. . X-ray diffraction showed only an α-Fe 2 O 3 pattern, and the purity determined by chemical analysis was 99.2 wt% or more. The main impurities are 0.3wt% water and Cl - .
0.16wt%, SO 4 2- 0.03wt%, MnO 0.26wt%,
Al 2 O 3 is 0.02wt%, CaO is 0.01wt%, SiO,
P, Ti, and Cu were 0.001 to 0.006 wt%. Keep this iron oxide at room temperature ~ 700℃, SO2 is 0.05~1.5vol
% of mixed air using the flow method. in the air
Figure 1 shows the difference in the amount of Cl - remaining in iron oxide powder when SO 2 is included and when it is not. At this time, the moisture in the air was 0.8 wt%, the SO 2 gas concentration was 0.4 vol%, and the reaction time was 1 hour. When heated through air only, it gradually decreases as the temperature increases, but
When heated through a medium gas containing SO 2 , the decrease is already noticeable at room temperature, and at temperatures above 100°C it decreases significantly, and Cl - in iron oxide is reduced to 0.04 wt%. Figure 2 shows the relationship between the amount of desorbed Cl - and the amount of attached SO 2 in terms of moles.

SO2付着量によつて、Cl-/SO2のモル比が途
中で変わるが、このようにSO2による脱Cl-は化
学量論的な反応である。酸化鉄粉末の表面または
内部に存在しているCl-は、より大きい電子親和
力をもつSO2によつて置換され、脱離すると考え
られる。空気中の水分量を0〜10wt%まで変化
させて同様の実験を行なつたところ、空気中に多
少の水分を含有する方が反応速度が大きくなり、
脱Cl-量も増えることが判明した。すなわち空気
中の水分量は0.2〜10wt%が好ましい。また第1
図において、温度が150℃付近で脱Cl-量に極大値
が見られることも、空気中または試料中に含まれ
る水分が反応に影響を与える結果であることがわ
かつた。反応温度が200℃以上では、反応時間が
長くなればなるほどFe2(SO43が生成し、本来の
目的の酸化鉄が得られなくなる。Fe2(SO43が生
成しない条件では酸化鉄の粉体特性は全く変化し
なかつた。
Although the molar ratio of Cl - /SO 2 changes depending on the amount of SO 2 attached, the removal of Cl - by SO 2 is a stoichiometric reaction in this way. It is thought that Cl - existing on the surface or inside the iron oxide powder is replaced by SO 2 having a larger electron affinity and is eliminated. When similar experiments were conducted by varying the amount of moisture in the air from 0 to 10 wt%, the reaction rate was greater when the air contained some moisture.
It was found that the amount of Cl - removed also increased. That is, the moisture content in the air is preferably 0.2 to 10 wt%. Also the first
In the figure, it was found that the maximum value of the amount of Cl - removed at a temperature around 150°C was a result of the moisture contained in the air or the sample affecting the reaction. If the reaction temperature is 200°C or higher, the longer the reaction time, the more Fe 2 (SO 4 ) 3 will be produced, making it impossible to obtain the intended iron oxide. Under conditions where Fe 2 (SO 4 ) 3 was not produced, the powder properties of iron oxide did not change at all.

空気中に混合するSO2量は、作業性及び経済性
からみて少ないほどよい。本発明者らは、0.05〜
1.5vol%の範囲では脱Cl-効果に差のないことを
確かめた。SO2流通後の排ガスは熱分解後の排ガ
スの処理工程で処理することができる。
The smaller the amount of SO 2 mixed in the air, the better in terms of workability and economy. The inventors have determined that 0.05~
It was confirmed that there was no difference in the Cl - removal effect in the 1.5 vol% range. The exhaust gas after the SO 2 distribution can be treated in the exhaust gas treatment process after thermal decomposition.

また、実工程においては、流動層やロータリー
リアクター等を用いて、酸化鉄粉末を動かしなが
ら、SO2を含む媒体ガスと接触させる方法によつ
て、脱Cl-の処理時間を大巾に短縮することがで
きる。
In addition, in the actual process, the iron oxide powder is moved and brought into contact with a medium gas containing SO 2 using a fluidized bed, rotary reactor, etc., which greatly shortens the deCl - treatment time. be able to.

以上詳述した如く、本発明方法は、水洗または
空気のみの焙焼による從来の脱Cl-方法に比べ、
低温で脱Cl-を行なうことができるため処理によ
る粉体特性の変化が全くなく、処理方法もはるか
に簡便である上、他の派生物質を生じない優れた
方法である。
As detailed above, the method of the present invention has a lower Cl - removal method than conventional methods of removing Cl - by washing with water or roasting with only air.
Since Cl - can be removed at low temperatures, there is no change in powder properties due to treatment, the treatment method is much simpler, and it is an excellent method that does not produce other derivative substances.

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

実施例 製鉄所廃酸を濃縮して塩化鉄()濃度を約40
%とした溶液を、流動焙焼炉を用いて500〜800℃
で熱分解して得た酸化鉄約2.5gを、横型電気炉
にて150±5℃に保持してある不透明石英製反応
管の中央に設置し、0.4vol%のSO2を含有する水
分0.8wt%の空気を180ml/minの流速で通じて1
時間反応させたところ、反応前0.16wt%であつた
Cl-は0.04wt%に減少し、0.02wt%であつたSO2
は0.17wt%に増加した。酸化鉄の平均粒子径
(0.6μ)、比表面積(4.8m2/g)、圧縮密度(2.85
g/cm3)は、処理の前後で変わらなかつた。ま
た、同じ酸化鉄を空気のみを通じて加熱して、
Cl-量を0.04wt%まで低減させるには700℃で1時
間行なわねばならず、焼結による粒子成長が甚々
しい。さらに、水洗で同様の脱Cl-効果を実現す
るには、酸化鉄2.5gに対し水約0.5にて10回以
上の回分洗浄を必要とする。
Example: Concentrate iron works waste acid to reduce iron chloride concentration to approximately 40
% solution at 500-800℃ using a fluidized roasting furnace.
Approximately 2.5 g of iron oxide obtained by thermal decomposition was placed in the center of an opaque quartz reaction tube maintained at 150 ± 5°C in a horizontal electric furnace, and 0.8 g of water containing 0.4 vol% SO 2 was placed in the center of an opaque quartz reaction tube. 1 by passing wt% air at a flow rate of 180ml/min.
When reacted for a time, the concentration was 0.16wt% before reaction.
Cl - decreased to 0.04wt% and SO 2 was 0.02wt%
increased to 0.17wt%. Average particle size (0.6 μ), specific surface area (4.8 m 2 /g), compressed density (2.85
g/cm 3 ) remained unchanged before and after treatment. Also, by heating the same iron oxide through air only,
In order to reduce the Cl - amount to 0.04wt%, it is necessary to conduct the process at 700°C for 1 hour, and the grain growth due to sintering is severe. Furthermore, in order to achieve the same Cl - removal effect by washing with water, it is necessary to wash 10 times or more using approximately 0.5 g of water per 2.5 g of iron oxide.

以上α−Fe2O3の粉末について説明したが、塩
化鉄を焼成して製造するγ−Fe2O3、Fe3O4の場
合にも適要出来るのは勿論である。又媒体ガスと
しては空気のほか適量の酸素及び水分を含む不活
性ガス(N2、CO2、Ar等)及びその混合気体も
使用できる。
Although the powder of α-Fe 2 O 3 has been described above, it is of course applicable to γ-Fe 2 O 3 and Fe 3 O 4 produced by firing iron chloride. In addition to air, inert gases (N 2 , CO 2 , Ar, etc.) containing appropriate amounts of oxygen and moisture, and mixtures thereof can also be used as the medium gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCl-を含有するα−Fe2O3粉末にSO2
加空気、SO2無添加空気を接触させた場合の加熱
温度と残留Cl-量の比較結果を示す。第2図は脱
離Cl-量と付着SO2量の関係を示す。
FIG. 1 shows the comparison results of heating temperature and amount of residual Cl - when SO 2 -added air and SO 2 -free air are brought into contact with α-Fe 2 O 3 powder containing Cl - . Figure 2 shows the relationship between the amount of desorbed Cl - and the amount of attached SO 2 .

Claims (1)

【特許請求の範囲】 1 塩化鉄溶液を熱分解して製造する酸化鉄粉末
を、常温〜700℃の温度範囲で亜硫酸ガスを含む
媒体ガスと接触させることを特徴とする酸化鉄粉
末中の塩化物イオンの除去法。 2 媒体ガス中の水分含量を0.2〜10%の範囲に
保つ特許請求の範囲第1項記載の酸化鉄粉末中の
塩化物イオンの除去法。
[Claims] 1. Chlorination in iron oxide powder, which is characterized by contacting iron oxide powder produced by thermally decomposing an iron chloride solution with a medium gas containing sulfur dioxide gas at a temperature range of room temperature to 700°C. Method for removing physical ions. 2. A method for removing chloride ions from iron oxide powder according to claim 1, wherein the moisture content in the medium gas is maintained in the range of 0.2 to 10%.
JP15882180A 1980-11-13 1980-11-13 Removing method for chloride ion in iron oxide powder Granted JPS5788035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15882180A JPS5788035A (en) 1980-11-13 1980-11-13 Removing method for chloride ion in iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15882180A JPS5788035A (en) 1980-11-13 1980-11-13 Removing method for chloride ion in iron oxide powder

Publications (2)

Publication Number Publication Date
JPS5788035A JPS5788035A (en) 1982-06-01
JPH0147408B2 true JPH0147408B2 (en) 1989-10-13

Family

ID=15680104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15882180A Granted JPS5788035A (en) 1980-11-13 1980-11-13 Removing method for chloride ion in iron oxide powder

Country Status (1)

Country Link
JP (1) JPS5788035A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051619A (en) * 1983-08-29 1985-03-23 Kemiraito Kogyo Kk Process for removing chloride ion in iron oxide powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643421A (en) * 1979-09-14 1981-04-22 Kuraray Co Ltd Production of pilling-resistant polyester fiber

Also Published As

Publication number Publication date
JPS5788035A (en) 1982-06-01

Similar Documents

Publication Publication Date Title
CA1076368A (en) Upgrading the nickel content from low grade nickel lateritic iron ores by a combined process of segregation and magnetic separation or flotation
KR100359227B1 (en) Reduction of residual chloride in iron oxides
JPS586688B2 (en) Method for producing black iron oxide pigment
JPS632815A (en) Iron oxide black pigment
US4120694A (en) Process for purifying a titanium-bearing material and upgrading ilmenite to synthetic rutile with sulfur trioxide
US2183365A (en) Preparation of titanium concentrates
Abou-El-Sherbini Simultaneous extraction of manganese from low grade manganese dioxide ore and beneficiation of sulphur slag
US4812302A (en) Process for preparing high purity Mn3 O4
US5063032A (en) Method of preparing a synthetic rutile from a titaniferous slag containing magnesium values
JP3827325B2 (en) Reduction of residual chlorine in oxides.
JPH0147408B2 (en)
US1833686A (en) Process of beneficiating iron ores
US3684485A (en) Process for treating minerals containing the feo group
JPH101315A (en) Production of high purity iron oxide powder
US3549321A (en) Removal of iron from solution
JPH0553876B2 (en)
SU658164A1 (en) Method of treating solid coal-containing reducing agent
US1898018A (en) Process of preparing ore
US3006728A (en) Preparation of ceramic grade titanium dioxide
JPH0585487B2 (en)
JPH0413295B2 (en)
JPS61186225A (en) Production of acicular goethite
US3138451A (en) Process for the reduction of iron ores containing ferrous oxide
SU969463A1 (en) Method for producing iron powder
JPS6148506A (en) Refining method of fine particle by gaseous phase process