JPH0143597B2 - - Google Patents

Info

Publication number
JPH0143597B2
JPH0143597B2 JP16504981A JP16504981A JPH0143597B2 JP H0143597 B2 JPH0143597 B2 JP H0143597B2 JP 16504981 A JP16504981 A JP 16504981A JP 16504981 A JP16504981 A JP 16504981A JP H0143597 B2 JPH0143597 B2 JP H0143597B2
Authority
JP
Japan
Prior art keywords
temperature
water
aeration tank
seawater
gas liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16504981A
Other languages
Japanese (ja)
Other versions
JPS5864194A (en
Inventor
Hiroyuki Sato
Kenichi Kajama
Yasuo Senba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP56165049A priority Critical patent/JPS5864194A/en
Publication of JPS5864194A publication Critical patent/JPS5864194A/en
Publication of JPH0143597B2 publication Critical patent/JPH0143597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 本発明は活性汚泥曝気槽の操業方法に関し、詳
細には、被処理廃水(原水)の濃度調整用として
混合される稀釈用水の供給法を工夫し、処理水の
濃度と温度を併行的に制御する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for operating an activated sludge aeration tank, and more specifically, the present invention relates to a method for operating an activated sludge aeration tank. The present invention relates to a method for controlling temperature and temperature in parallel.

周知の通り活性汚泥処理法とは廃水中に含まれ
る有害成分をバクテリアで分解し無害化する方法
であり、主に下水の浄化技術として発展してきた
が、最近では一般の化学工業分野でも利用され好
結果を得ている。
As is well known, the activated sludge treatment method is a method that uses bacteria to decompose harmful components contained in wastewater and render them harmless.It has been developed primarily as a sewage purification technology, but recently it has also been used in the general chemical industry. We are getting good results.

例えばコークス製造工場でコークス炉ガス冷却
用として使用された噴霧散水廃液(一般にガス液
と呼ばれる)中にはシアン分やフエノール分が多
量含まれているが、このガス液の浄化にも活性汚
泥法が利用されている。
For example, spray water waste liquid (generally called gas liquid) used for cooling coke oven gas in coke manufacturing plants contains large amounts of cyanide and phenol. is being used.

第1図はこのガス液活性汚泥処理法を例示する
工程説明図であり、ガス液ピツト1に収集された
ガス液Aをポンプ2で一旦ガス液タンク3へ送つ
て貯蔵した後、ポンプ4によつて曝気槽5へ送り
込む。6は流量制御弁であり、流量調節計6′か
らの信号によつて開度を調節し、設定された流量
が得られる様に構成しているので、曝気槽5には
常に所定量のガス液が供給される。また曝気槽5
には、ガス液を所定濃度に稀釈すると共にその温
度を調節する為に、海水等の稀釈水が流量制御弁
7及び流量調節計7′により所定量ずつ供給され
る。
FIG. 1 is a process explanatory diagram illustrating this gas liquid activated sludge treatment method. Gas liquid A collected in a gas liquid pit 1 is once sent to a gas liquid tank 3 using a pump 2 for storage, and then transferred to a pump 4. It is then sent to the aeration tank 5. Reference numeral 6 denotes a flow rate control valve, and its opening degree is adjusted according to the signal from the flow rate controller 6', so that a set flow rate can be obtained, so that a predetermined amount of gas is always kept in the aeration tank 5. liquid is supplied. Also, aeration tank 5
In order to dilute the gas liquid to a predetermined concentration and to adjust its temperature, a predetermined amount of dilution water such as seawater is supplied by a flow control valve 7 and a flow rate regulator 7'.

曝気槽5内にはバクテリアの集合体である活性
汚泥が涵養されており、撹拌装置9で曝気下に混
合することによつてガス液中の有害成分を生物学
的に分解し、無害化した後外部へ排出する。図中
5′は曝気槽5内の温度を検知する為の温度計で
あり、矢印Sは後述する温度制御用の蒸気吹込み
を示す。
Activated sludge, which is a collection of bacteria, is recharged in the aeration tank 5, and by mixing it under aeration with a stirring device 9, harmful components in the gas liquid are biologically decomposed and rendered harmless. Excretes to the rear. In the figure, 5' is a thermometer for detecting the temperature inside the aeration tank 5, and arrow S indicates steam injection for temperature control, which will be described later.

ところでこの様な活性汚泥処理における有害物
の除去能力は、微生物たるバクテリアの生活環境
殊に処理水の温度及び濃度に著しく影響されるこ
とが確認されており、高い処理効果を得る為には
温度及び濃度を厳密に管理しなければならない。
なお、ガス液(原水)中の被処理物質の濃度は、
通常許容できる範囲内でばらついているのみであ
り、ほぼ一定とみなすことができるので、濃度管
理は処理水中の原水であるガス液の濃度を管理す
ればよい。以下濃度とは処理水中の原水濃度をさ
す。しかしながら上記の様な従来法では、曝気槽
5の温度を温度計5′で監視しつつ稀釈水の流量
を設定する流量制御法が行なわれているだけであ
るから、海水の様な季節による温度変化が大きい
稀釈水を使用した場合は温度制御を正確に行なう
ことができない。また温度を中心に制御すると濃
度管理が不十分になり、何れにしても最適の生物
学的反応条件を得ることは困難である。そこでこ
の様な問題に対処する為曝気槽5に蒸気Sを吹込
んで温度制御を行なう方法もあるが、その為の配
管や蒸気発生設備に要する経済的な負担は相当大
きい。しかもこの方法は冬場の様に処理水の温度
が低くなる傾向のある時期にしか適用できず、夏
場の様に稀釈水も曝気用空気も高温になる時期で
は後述する様に曝気好適温度を陵駕してしまうこ
とが多いので、蒸気を吹込むことは却つて逆効果
である。従つてこの様な補助手段に頼ることなく
処理水中のガス液濃度及び温度を正確に制御し得
る技術の開発が待たれている。
By the way, it has been confirmed that the ability to remove harmful substances in activated sludge treatment is significantly affected by the living environment of the bacteria, especially the temperature and concentration of the treated water. and concentration must be strictly controlled.
The concentration of the substance to be treated in the gas liquid (raw water) is
Since the variation is only within an allowable range and can be considered to be almost constant, the concentration can be controlled by controlling the concentration of the gas liquid, which is the raw water in the treated water. The following concentration refers to the raw water concentration in the treated water. However, in the conventional method as described above, only a flow rate control method is performed in which the flow rate of dilution water is set while monitoring the temperature of the aeration tank 5 with a thermometer 5'. If dilution water with large fluctuations is used, temperature control cannot be performed accurately. Moreover, if temperature is the main focus, concentration control becomes insufficient, and in any case, it is difficult to obtain optimal biological reaction conditions. To deal with this problem, there is a method of controlling the temperature by blowing steam S into the aeration tank 5, but this requires a considerable economic burden on piping and steam generation equipment. Moreover, this method can only be applied in seasons when the temperature of the treated water tends to be low, such as in the winter, and when the temperature of the dilution water and aeration air are high, such as in the summer, the optimum temperature for aeration must be determined as described below. Blow-in steam is actually counterproductive, as it often causes the material to evaporate. Therefore, there is a need for the development of a technique that can accurately control the gas liquid concentration and temperature in treated water without relying on such auxiliary means.

本発明者等は上記の様な事情に着目し、ガス液
濃度及び温度を比較的簡単な構成で同時に制御し
得る様な方法を開発すべく研究を進めてきた。そ
して通常の処理工場内には、加熱されていない一
般工業用水の他、各種設備で冷却用として使用さ
れ熱交換によつて加温された工業用水が大量に存
在するという事実に着目し、これらの両者を稀釈
水として併用すれば容易に温度制御もできるので
はないかという着想を得た。
The present inventors have focused on the above-mentioned circumstances and have conducted research to develop a method that can simultaneously control gas liquid concentration and temperature with a relatively simple configuration. We focused on the fact that in normal treatment plants, in addition to general industrial water that is not heated, there is a large amount of industrial water that is used for cooling in various equipment and heated through heat exchange. I got the idea that if both were used together as dilution water, the temperature could be easily controlled.

本発明はかかる着想を実現すべく鋭意研究の結
果完成されたものであつて、その構成は、原水を
稀釈用水で稀釈して曝気槽に供給し活性汚泥処理
を行なうに当り、稀釈用水として予熱された高温
水と非予熱水を併用し、両者の使用割合を制御す
ることにより、処理水中の原水濃度と温度を制御
するところに要旨が存在する。
The present invention was completed as a result of intensive research in order to realize this idea, and its configuration is such that when raw water is diluted with dilution water and supplied to an aeration tank for activated sludge treatment, the dilution water is preheated. The gist lies in controlling the concentration and temperature of the raw water in the treated water by using both high-temperature water and non-preheated water and controlling the ratio of the two used.

以下実施例を示す図面に基づいて本発明の構成
及び作用効果を説明するが、図は代表例であつて
本発明を限定する性質のものではない。
The configuration and effects of the present invention will be described below based on drawings showing embodiments, but the drawings are representative examples and do not limit the present invention.

第2図は本発明の実施例を示す概略工程図で、
ガス液等は前述の場合と同様の手順でガス液ピツ
ト1、ポンプ2経由でガス液タンク3に送つて貯
溜される。図中14は熱交換型冷却器であつて、
ガス液を予め所定の温度まで冷却する為に設けた
ものであり、熱交換用冷却用水の流路には流量制
御弁15が設けられ、冷却器14の後方のガス液
温度を検知し且つ流量制御弁15の開度を指示す
る為の指示調節計15′の作用によつて、ガス液
が所定の温度まで低下する様に冷却用水の流量を
調節する。この熱交換はガス液を事前に降温し、
後に行なわれるガス液稀釈工程の温度制御幅を狭
める為の補助手段であり、特に夏場の様に稀釈用
水の温度が高いときは有効であるが、稀釈用水が
低温である冬場には省略することもできる。
FIG. 2 is a schematic process diagram showing an embodiment of the present invention.
The gas liquid etc. is sent to the gas liquid tank 3 via the gas liquid pit 1 and the pump 2 and stored therein in the same manner as described above. In the figure, 14 is a heat exchange type cooler,
It is provided to cool the gas liquid to a predetermined temperature in advance, and a flow rate control valve 15 is provided in the flow path of the cooling water for heat exchange to detect the gas liquid temperature behind the cooler 14 and control the flow rate. The flow rate of the cooling water is adjusted by the action of the indicator controller 15' for indicating the opening degree of the control valve 15 so that the temperature of the gas liquid is lowered to a predetermined temperature. This heat exchange lowers the temperature of the gas liquid in advance,
This is an auxiliary means to narrow the temperature control range of the gas-liquid dilution step that will be performed later, and is particularly effective when the temperature of the dilution water is high, such as in the summer, but should be omitted in the winter when the dilution water is at a low temperature. You can also do it.

ガス液タンク3に貯溜されたガス液はポンプ4
によつて曝気槽5へ供給されるが、送給管路には
流量制御調節計6′に連結して作動する制御弁6
が設けられており、曝気槽5へのガス液送給量は
予め設定した量に保たれる。
The gas liquid stored in the gas liquid tank 3 is pumped to the pump 4.
The supply pipe is supplied to the aeration tank 5 by a control valve 6 connected to a flow rate control controller 6' and operated.
is provided, and the amount of gas liquid fed to the aeration tank 5 is maintained at a preset amount.

本発明ではこのガス液を稀釈する稀釈用水とし
て、例えば海から直接取水した冷海水(10〜32℃
程度)と工場内で冷却に用い昇温した温海水(30
〜45℃以上)を併用する。尚稀釈用水としては海
水の他湖水、河川水、工業用水等立地条件に応じ
て最も経済的な水を選択すればよい。上記各海水
は季節及び操業条件等によつて上記の様な温度範
囲で変動するが、如何なる場合でも冷海水が温海
水よりも高温になることはないものとする。従つ
てこの冷海水と温海水の使用割合を調整すること
によつて全海水の流量(即ちガス液の稀釈率)を
一定に維持しつつ温度を自由に調節することがで
きる。即ち冷海水C及び温海水Hの各供給管路に
は流量制御弁10,11が夫々設けられており、
これらは後述する如く制御装置13からの指示に
よつて開度が調整される。また各供給管路は制御
弁10及び11の下流側で合流する様になつてお
り、所定の温度及び流量に調整された状態で曝気
槽5へ供給されるが、この管路をガス液供給管路
に合流させガス液と混合してから曝気槽5へ供給
することも可能である。
In the present invention, as dilution water for diluting this gas liquid, for example, cold seawater (10 to 32°C) taken directly from the sea is used.
temperature) and heated seawater used for cooling in the factory (30°C).
~45℃ or higher). As the water for dilution, the most economical water may be selected depending on the location conditions, such as seawater, lake water, river water, industrial water, etc. The temperature of each of the seawaters mentioned above fluctuates within the above-mentioned temperature ranges depending on the season, operating conditions, etc., but under no circumstances should cold seawater become hotter than warm seawater. Therefore, by adjusting the usage ratio of cold seawater and warm seawater, the temperature can be freely adjusted while keeping the total seawater flow rate (ie, the dilution rate of the gas liquid) constant. That is, each supply pipe for cold seawater C and warm seawater H is provided with flow rate control valves 10 and 11, respectively.
The opening degrees of these are adjusted in accordance with instructions from the control device 13, as will be described later. The supply pipes are arranged to join downstream of the control valves 10 and 11, and are supplied to the aeration tank 5 after being adjusted to a predetermined temperature and flow rate. It is also possible to supply the gas to the aeration tank 5 after merging it into the pipe and mixing it with the gas liquid.

制御装置13は、混合海水が所定の温度となる
様に冷海水Cと温海水Hの混合割合を演算し、且
つその混合割合で所定の混合海水量が得られる様
に各制御弁10及び11の開度を指示する機能を
有しており、温度指示調節計5″に予め設定した
目標温度よりも曝気槽5内の温度が高いときは、
冷海水用流量制御弁10の開度を大きくすると共
に温海水用流量制御弁11の開度を小さくして混
合海水の温度を低下させ、一方曝気槽5内の温度
が上記設定温度よりも低いときは、冷海水用流量
制御弁10の開度を小さくすると共に温海水用流
量制御弁11の開度を大きくして混合海水の温度
を高める。この場合混合海水用流量制御弁12に
は所定の混合海水流量が設定されており、この流
量を満足する様に制御弁10及び11の前記開度
調整が行なわれるので、結局曝気槽5へ供給され
る混合海水は温度及び流量共に目標通りの値に設
定される。
The control device 13 calculates a mixing ratio of cold seawater C and warm seawater H so that the mixed seawater has a predetermined temperature, and operates each control valve 10 and 11 so that a predetermined amount of mixed seawater is obtained at the mixing ratio. When the temperature inside the aeration tank 5 is higher than the target temperature set in advance on the temperature indicator controller 5'',
The temperature of the mixed seawater is lowered by increasing the opening of the cold seawater flow control valve 10 and decreasing the opening of the warm seawater flow control valve 11, while the temperature in the aeration tank 5 is lower than the set temperature. At this time, the opening degree of the cold seawater flow rate control valve 10 is decreased and the opening degree of the warm seawater flow rate control valve 11 is increased to increase the temperature of the mixed seawater. In this case, a predetermined mixed seawater flow rate is set in the mixed seawater flow rate control valve 12, and the openings of the control valves 10 and 11 are adjusted to satisfy this flow rate, so that the seawater is eventually supplied to the aeration tank 5. Both the temperature and flow rate of the mixed seawater are set to target values.

その結果曝気槽5内における処理水温度及びガ
ス液温度を常に最適範囲に保持することができ、
高い処理効率が保障される。
As a result, the temperature of the treated water and the gas liquid temperature in the aeration tank 5 can always be maintained within the optimum range,
High processing efficiency is guaranteed.

第3図は本発明の他の実施例を示す一部工程説
明図であり、特に曝気槽5の容量が極めて大きい
場合に適している。即ち大容量の曝気槽5を使用
した場合は、ガス液と混合海水を直接供給すると
両者の分散に時間がかかり、曝気槽5内に温度分
布及び濃度分布を生じることがある。しかしなが
ら第3図の如く曝気槽5の前に混合槽8を配置
し、該混合槽8内に所定量のガス液及び混合海水
を導入しこの段階で処理水の温度及び濃度を制御
した後、これを曝気槽5へ供給すれば、上記の様
な温度及び濃度の不均一も解消することができ
る。この場合の混合槽8における温度及びガス液
濃度の制御法は第2図の例と全く同様に行なえば
よい。
FIG. 3 is a partial process explanatory diagram showing another embodiment of the present invention, which is particularly suitable when the capacity of the aeration tank 5 is extremely large. That is, when a large-capacity aeration tank 5 is used, if the gas liquid and mixed seawater are directly supplied, it will take time for the two to disperse, which may cause temperature and concentration distributions within the aeration tank 5. However, as shown in Fig. 3, a mixing tank 8 is placed in front of the aeration tank 5, a predetermined amount of gas liquid and mixed seawater are introduced into the mixing tank 8, and the temperature and concentration of the treated water are controlled at this stage. By supplying this to the aeration tank 5, the above-mentioned non-uniformity in temperature and concentration can be eliminated. In this case, the temperature and gas liquid concentration in the mixing tank 8 may be controlled in exactly the same manner as in the example shown in FIG.

本発明は概略以上の様に構成されており、稀釈
用水として冷水と温水を併用することによつて処
理水の温度と濃度を正確に制御し、活性汚泥によ
る生物学的反応にとつて最適の条件を確保し得る
ことになり、処理効率を高レベルで安定化し得る
ことになつた。しかも曝気槽に設けていた補助的
温度調節手段たる加温蒸気の吹込設備等が全く不
要となり、工場内の各種設備で冷却用に使用され
た後排出されている熱交換水を温水として有効利
用する方法であるから経済的な負担も殆んどな
く、極めて実用的な方法である。
The present invention is roughly configured as described above, and by using cold water and hot water together as dilution water, the temperature and concentration of treated water can be precisely controlled, and the optimum temperature for biological reactions caused by activated sludge can be achieved. As a result, the processing efficiency can be stabilized at a high level. In addition, there is no need for heating steam blowing equipment, which is an auxiliary temperature control means installed in the aeration tank, and the heat exchange water that is discharged after being used for cooling in various equipment in the factory can be effectively used as hot water. Since this method involves almost no economic burden, it is an extremely practical method.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 ガス液55m3/hrを混合海水120m3/hrで稀釈し
て175m3/hrの処理水とし、曝気槽内の温度を30
℃に保つて活性汚泥処理を行なう場合につき、第
3図の方法に準じて処理時の温度及び濃度を制御
した。第4図イ,ロはこの場合の温度バランスを
示す系統図である。
Example 1 55 m 3 /hr of gas liquid was diluted with 120 m 3 /hr of mixed seawater to obtain 175 m 3 /hr of treated water, and the temperature in the aeration tank was set to 30 m 3 /hr.
When performing activated sludge treatment while maintaining the temperature at ℃, the temperature and concentration during treatment were controlled according to the method shown in FIG. Figures 4A and 4B are system diagrams showing the temperature balance in this case.

まず外気温度の高い夏場においては温海水、冷
海水共温度が比較的高く(温海水:約45℃、冷海
水:約32℃)、ガス液(ガス液ピツト1の出口部
温度は約70℃)を上記温海水と冷海水の混合海水
で稀釈しても曝気槽5における目標温度を30℃に
することができないので、冷却器14によつてガ
ス液温度を30℃に低下させる。次に混合槽8に設
けた温度指示調節計5″の設定温度を31.5℃とし、
該混合槽8に55m3/hrでガス液を供給すると共
に、制御装置13により冷・温水流量制御弁1
0,11の開度を調整しつつ120m3/hrで混合海
水を供給した。この場合混合海水の温度は32℃で
あり、混合槽8内の被処理水温度はほぼ31.5℃の
安定した値を示した。この処理水を曝気槽5へ導
入し、約29℃の曝気用空気を供給しながら活性汚
泥処理を行なつたところ、処理水の温度は常時安
定して30℃を示した。このときの温度バランスは
第4図イに示す通りである。
First, in the summer when the outside air temperature is high, the temperature of both warm seawater and cold seawater is relatively high (warm seawater: about 45℃, cold seawater: about 32℃), and the gas liquid (the temperature at the outlet of gas liquid pit 1 is about 70℃). ) is diluted with the above-mentioned mixed seawater of warm seawater and cold seawater, the target temperature in the aeration tank 5 cannot be set to 30°C, so the gas liquid temperature is lowered to 30°C by the cooler 14. Next, set the temperature of the temperature indicating controller 5″ installed in the mixing tank 8 to 31.5°C.
Gas liquid is supplied to the mixing tank 8 at a rate of 55 m 3 /hr, and the control device 13 controls the cold/hot water flow rate control valve 1.
Mixed seawater was supplied at a rate of 120 m 3 /hr while adjusting the opening degrees of 0 and 11. In this case, the temperature of the mixed seawater was 32°C, and the temperature of the water to be treated in the mixing tank 8 showed a stable value of approximately 31.5°C. When this treated water was introduced into the aeration tank 5 and activated sludge treatment was carried out while supplying aeration air at about 29°C, the temperature of the treated water was always stable at 30°C. The temperature balance at this time is as shown in FIG. 4A.

次に外気温度の低い冬場においては、温海水は
約30℃、冷海水は約10℃と何れも低温であるの
で、約70℃のガス液を冷却器14で冷却すること
なくそのまま混合槽8に供給しつつ温度制御を行
なつた。この場合、曝気用空気の温度が低く(約
5℃)曝気槽5内の被処理水温度は相当降下する
ので、混合槽8における温度指示調節計5″の設
定温度を42℃と相当高めに設定することによつ
て、曝気槽5内の被処理水温度を30℃一定に保持
することができた。このときの温度バランスは第
4図ロに示した通りである。
Next, in winter when the outside air temperature is low, warm seawater is about 30°C and cold seawater is about 10°C, both of which are low temperatures, so the gas liquid at about 70°C is left in the mixing tank 8 without being cooled by the cooler 14. The temperature was controlled while supplying In this case, the temperature of the aeration air is low (approximately 5°C) and the temperature of the water to be treated in the aeration tank 5 drops considerably, so the set temperature of the temperature indicator controller 5'' in the mixing tank 8 is set to a considerably high 42°C. By setting this, the temperature of the water to be treated in the aeration tank 5 could be kept constant at 30°C.The temperature balance at this time is as shown in Figure 4B.

尚上記では夏場及び冬場での制御例を示した
が、春季や秋季の様に外気温度がその中間値とな
るときはそれに応じて冷却器14の運転の要否及
び温度指示調節計5″の設定温度を適宜定めるこ
とによつて、曝気槽5内の処理水温度を30℃に保
持することができる。またガス液の温度が変動し
たときでも、上記の方法に準じて曝気槽内の温度
を容易に目標通りに設定することができる。尚本
発明法は高温原水を対象とするあらゆる活性汚泥
法に利用できる。
Although the above example shows control in summer and winter, when the outside temperature is in the middle of the range, such as in spring or autumn, the necessity of operating the cooler 14 and the temperature indicator controller 5'' are adjusted accordingly. By appropriately setting the set temperature, the temperature of the treated water in the aeration tank 5 can be maintained at 30°C.Also, even when the temperature of the gas liquid fluctuates, the temperature in the aeration tank can be maintained according to the above method. can be easily set as desired.The method of the present invention can be used in any activated sludge method that targets high-temperature raw water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の活性汚泥処理における処理水の
制御例を示す工程説明図、第2図は本発明の実施
例を示す工程説明図、第3図は本発明の他の実施
例を示す一部工程説明図、第4図イ,ロは実施例
における温度バランスを示す系統図である。 1…ガス液ピツト、3…ガス液タンク、5…曝
気槽、6,7,10,11…流量制御弁、5″…
温度指示調節計、8…混合槽、9…混合装置。
Fig. 1 is a process explanatory diagram showing an example of controlling treated water in conventional activated sludge treatment, Fig. 2 is a process explanatory diagram showing an embodiment of the present invention, and Fig. 3 is a process diagram showing another embodiment of the present invention. Part process explanatory diagrams, FIGS. 4A and 4B are system diagrams showing temperature balance in the example. 1... Gas liquid pit, 3... Gas liquid tank, 5... Aeration tank, 6, 7, 10, 11... Flow rate control valve, 5''...
Temperature indicating controller, 8...mixing tank, 9...mixing device.

Claims (1)

【特許請求の範囲】 1 原水を稀釈用水で稀釈して処理水となし曝気
槽に供給し活性汚泥処理を行なうに当り、稀釈用
水として予熱された高温水と非予熱水を併用し、
両者の使用割合を制御することにより、処理水中
の原水濃度及び温度を制御することを特徴とする
活性汚泥曝気槽の操業方法。 2 特許請求の範囲第1項において、稀釈用水と
して海水を使用する活性汚泥曝気槽の操業方法。
[Scope of Claims] 1. When raw water is diluted with dilution water to become treated water and supplied to an aeration tank for activated sludge treatment, preheated high-temperature water and non-preheated water are used together as dilution water,
A method for operating an activated sludge aeration tank characterized by controlling the concentration and temperature of raw water in treated water by controlling the ratio of use of both. 2. A method for operating an activated sludge aeration tank according to claim 1, in which seawater is used as dilution water.
JP56165049A 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge Granted JPS5864194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165049A JPS5864194A (en) 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165049A JPS5864194A (en) 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge

Publications (2)

Publication Number Publication Date
JPS5864194A JPS5864194A (en) 1983-04-16
JPH0143597B2 true JPH0143597B2 (en) 1989-09-21

Family

ID=15804858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165049A Granted JPS5864194A (en) 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge

Country Status (1)

Country Link
JP (1) JPS5864194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124759A1 (en) 2019-12-19 2021-06-24 大日本印刷株式会社 Laminate, medium, and method
WO2022102751A1 (en) 2020-11-13 2022-05-19 大日本印刷株式会社 Laminate, print product, and method using laminate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756593B2 (en) * 2006-03-07 2011-08-24 共英製鋼株式会社 Waste beverage processing method and waste beverage processing equipment
JP4645568B2 (en) * 2006-09-28 2011-03-09 住友化学株式会社 Microbial acclimatization apparatus, wastewater treatment apparatus, microorganism acclimatization method and wastewater treatment method
JP2009045512A (en) * 2007-08-14 2009-03-05 Mitsubishi Paper Mills Ltd Method for recovering waste heat of activated sludge treatment tank inflow hot wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124759A1 (en) 2019-12-19 2021-06-24 大日本印刷株式会社 Laminate, medium, and method
WO2022102751A1 (en) 2020-11-13 2022-05-19 大日本印刷株式会社 Laminate, print product, and method using laminate

Also Published As

Publication number Publication date
JPS5864194A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
US6913700B2 (en) Method of and arrangement for continuous hydrolysis of organic material
CN105073656B (en) Energy conserving system and method for handling sludge
US5230810A (en) Corrosion control for wet oxidation systems
JPH0143597B2 (en)
JP2007260604A (en) Method for producing organic acid, organic acid production device and waste water treatment equipment
JP4792982B2 (en) Waste heat recovery system
RU2704193C1 (en) Oxidation by moist air at low temperatures
JP3709824B2 (en) Control method of nitrogen removal process
CN209242869U (en) A kind of winter percolate preheating system
JP4645568B2 (en) Microbial acclimatization apparatus, wastewater treatment apparatus, microorganism acclimatization method and wastewater treatment method
JP4238458B2 (en) Organic drainage treatment method and apparatus
JP3911591B2 (en) Wastewater treatment method
JP4250778B2 (en) High temperature high pressure fluid cooling method and apparatus
US11926536B2 (en) Method for starting up hot ultrapure water production system, and hot ultrapure water production system
JPH0210664A (en) Fuel cell water treatment system
JPH05234322A (en) Method and apparatus for waste water processing using sulfuric bacteria
KR20160076505A (en) sequencing batch reactor
KR200483331Y1 (en) Reactor for Sequencing Batch
JPH021000B2 (en)
JPH06134255A (en) Wet treatment of flue gas
JPH0443718B2 (en)
RU2275546C1 (en) Method of thermal deaeration of water
JPS5637034A (en) Waste gas treatment of nitric and fluoric acid tank
JPS5833039B2 (en) Anaerobic digestion method and device for organic waste liquid
JPH01249188A (en) Temperature control method for waste acid neutralization treatment plant