JPH0139979B2 - - Google Patents

Info

Publication number
JPH0139979B2
JPH0139979B2 JP56014072A JP1407281A JPH0139979B2 JP H0139979 B2 JPH0139979 B2 JP H0139979B2 JP 56014072 A JP56014072 A JP 56014072A JP 1407281 A JP1407281 A JP 1407281A JP H0139979 B2 JPH0139979 B2 JP H0139979B2
Authority
JP
Japan
Prior art keywords
glass
effect
plate
ion exchange
glasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56014072A
Other languages
Japanese (ja)
Other versions
JPS57129839A (en
Inventor
Takeshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1407281A priority Critical patent/JPS57129839A/en
Publication of JPS57129839A publication Critical patent/JPS57129839A/en
Publication of JPH0139979B2 publication Critical patent/JPH0139979B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、携帯時計、置時計などの時計用カバ
ーガラスとして要求される十分な強度及び硬さ、
またコストダウン手法として有利な板状の原料を
供給する腕時計用カバーガラスに関するものであ
る。 従来、腕時計用カバーガラスとしては、一般に
光学用ガラスとして用いられている硼珪酸塩系の
ガラス、例えばBK―7と呼ばれるガラスが用い
られていた。しかしながら、BK―7などの様な
光学用ガラスは本来の用途が光学用であることか
ら屈折率、分散などといつた光学的特性に目的を
絞つており、また硼酸(B2O3)を10%以上含有
していることから、強度的には優れていても、原
料成形上は粘度が高いため厚み3mm位で、径は目
的に応じたサイズのメンコ状のカバーガラス用原
料として供給されていた。したがつて、通常のカ
バーガラスとして加工するには、現在の腕時計の
薄型化の進む中で完成カバーガラス厚が0.8〜1
mmと薄くなつているため、上記のような原料サイ
ズから研削で仕上げるのに多大な工数を要してい
た。また、前述のように光学用ガラスであること
から腕時計用カバーガラスとしては必ずしも必要
でない光学特性を維持するために原料、加工法で
注意が払われていることから原料コストも高いも
のであつた。一方、最近、このような硼珪酸塩系
のガラスの原料形状によるコストデメリツトを除
去すべく、ソーダ石灰ガラス系の通称、青板、白
板といつた板ガラスが使用されるようになつてき
た。ところが、板材によれば完成カバーガラス厚
に近い原料又は同じサイズのものを完成形状にほ
ぼ近い外形形状、例えば長方形、正方形、円形に
ガラス切りなどで切断後、外径研削仕上げ、及び
必要により表面の研摩加工を施し、次に化学強化
処理を施して完成にできることから、従来の硼珪
酸塩系ガラスに比べコストダウン効果としては大
きなものがあつた。ところが、青板については、
その名の通り、成分中の微量鉄分(Fe2O3)によ
つて外観が青緑色に見えるところから、高級品や
一般のドレスウオツチのガラスとしては使用でき
なかつた。また、一方白板においては形状が板状
であり、かつ無色透明であることから外観上の問
題がなく、かつコストダウン効果も期待できる
が、腕時計用カバーガラスとして要求される強度
面においては前述の硼珪酸塩系ガラス及び同種の
ソーダ石灰ガラスに比べ劣るため、実用に際して
は板厚を厚くする必要があり、最近の薄型化傾向
に逆向するものであり適用範囲が狭いという欠点
があつた。 本考案は上記のような欠点に鑑み、時計用カバ
ーガラスとして要求される充分な強度を有し、無
色透明にしてコストダウン手法として有利な板状
の原料を供給するものである。 即ち、本発明によるところのガラスの組成は、
いづれも重量比にて、 SiO2 61.9〜62.9 Na2O 12.6〜14.8 K2O 1.4〜 7.1 CaO 5.3〜 8.5 ZnO 1.3〜 4.8 MgO 3.0〜 4.5 B2O3 1.2〜 3.4 A2O3 1.4〜 4.6 TiO2、As2O3、Sb2O3、SO3、ZrO2、P2O5を単
独で0.8%以下、複合で1.89%以下、Fe2O30.01%
以下、及び不可避的不純物より成る。次に上記組
成のガラスをカリウム溶融塩と接触させることに
よりガラス表面に圧縮応力層を形成せしめるもの
である。 本発明において圧縮応力層は強化処理時間と共
に増大するものであるが、同時に処理温度におけ
る応力緩和も進行し、強度上の目安となる表面圧
縮応力値は低くなつてしまう。応力層は浅すぎて
も少しの加傷によつて強化層を傷が通り素地ガラ
スに達すると割れやすくなることから、応力層深
さとしては25〜80μ、特に30〜50μが最適である。 またカリウム溶融塩としては、炭酸塩、重炭酸
塩、硫酸塩、重硫酸塩、硝酸塩、塩化物あるいは
これらの混合物が使用できるが、管理の容易な事
から硝酸カリウム溶融塩が最も適している。但し
これに、銅、ネオジウム、アルミニウム、ストロ
ンチウム等の金属イオンを含ませてもよい。 次に本発明によるところのガラス組成の各成分
の限定理由を述べる。 SiO2はガラスを形成する基礎的な物質であり、
編み目構造形成物として必要である。 腕時計用カバーガラスとして充分な、強度を与
えるために、行なわれるカリウム溶融塩との接触
による、イオン交換強化では、イオン交換が行な
われた時に発生した歪が、緩和せずに、圧縮応力
として、保持されるためにはガラスの編み目構造
が強固であることが必要である。SiO2が61.9%よ
り少なくなると、編み目構造は弱くなり、イオン
交換強化により生じた圧縮応力が緩和され、充分
な強度が得られなくなる。SiO2が62.9%より多く
なるとイオン交換強化の担いてであるアルカリ量
が、相対的に少なくなり、イオン交換量が少なく
なる。又、本発明のねらいとする板状原料を得る
ための一般的なガラス溶融温度及び粘度が得られ
ず、板状への加工が困難となる。 Na2Oは、イオン交換効果に重要な影響を及ぼ
すとともに原料加工での成形性、すなわち融点及
び粘度を著しく低下させ板状加工を可能にするも
のである。Na2Oが多い程イオン交換強化の効率
は高まるが、14.8を越えるとガラス構造中の非架
橋酸素イオンが増加し、ガラス硬度の低下、化学
耐久性の低下を招き、またガラス構造の弱化によ
り大きな強度を有するガラスが得られなくなる。
前述のようにNa2Oは軟化点を著しく下げると共
に成形性を向上するため、板材への加工が容易と
なる。板材への加工性とイオン交換効果を充分発
揮するにはNa2O量が12.6%以上必要である。 K2Oはガラス原料製造時の失透現象を防止する
ために添加するものであり、またK2Oはイオン交
換強化による応力層を深くする効果もある。1.4
%の添加からその効果は表われ添加量の増大と共
に効果も増すが、K2O原料が高価であることか
ら、7.1%までの添加で充分である。 CaOはガラスの機械的性質の向上に効果が極め
て大きい。又、Na2Oの添加により若干低下する
化学的耐久性を補う効果がある。これらの効果は
5.3%より表われる。しかし、CaOは一方でアル
カリイオンの移動を止める効果もあるため、イオ
ン交換強化の効果を高めるためには、8.5%が限
度である。 MgOは前述のCaOとの相乗効果により、CaO
とMgOをほぼ同一モル数(重量比でCaO:MgO
≒2:1)の時に粘度が最低であり、板状加工に
有用な元素である。添加範囲としては、上記の
CaOの添加量との関係から3.0〜4.5%にすれば実
用上問題はない。 ZnOは強度を向上させる化合物であり、1.3〜
4.8%の範囲の添加で充分である。 B2O3は粘性を下げる効果を持ち、1.2%からそ
の効果が表われ添加量の増大とともに粘性が低下
するが、10%以上添加すると逆に粘度を増し、硼
珪酸塩系ガラスにみられるように板状への加工が
困難となるため、3.4%以下に限定する。 A2O3は失透現象を防止する効果とともに、
ガラスの機械的性質を著しく向上させ、かつイオ
ン交換強化処理時での応力緩和防止に有用な元素
である。1.4%からその効果が表われ、添加量の
増大とともに効果を増すが、一方で融点を上昇さ
せるため4.6%以下に限定する。 次にTiO2、As2O3、Sb2O3、SO3、ZrO2
P2O5、はいづれも編み目構造形成元素であり、
添加量を増すことにより、ガラスの機械的性質向
上が図れるが、本発明における同じく編み目構造
形成元素であるB2O3、A2O3の添加効果から単
独添加の場合で0.8%以下、複合添加の場合で
1.89%以下で充分である。 Fe2O3については、青板ガラスの着色原因であ
ることからもわかるように、本発明のねらいとす
る無色透明ガラスを得るためには、0.01%以下に
おさえる必要がある。 次に実施例に基づき本発明をさらに詳説する。 実施例 1 第1表においてAは従来の硼珪酸塩系ガラス、
Bは従来のソーダ石灰ガラス、Cは本発明による
ガラスを示す。第1表に示す成分の各ガラスを切
断・研削・研摩加工により直径3cm、厚さ1mm腕
時計用カバーガラス形状に仕上げ、400℃の硝酸
カリウム100%溶融塩中に5時間浸漬し、イオン
交換の効果を確認するため、ガラス表面の圧縮応
力値及び応力層深さについて測定するため、東芝
硝子製の硝子表面応力測定器FMS―1000にて非
破壊で測定した。又、実用設計上の目安となる破
壊強度について、圧縮試験機を用い、外周単純支
持、中心荷重の方式により、1分間に2mmの荷重
速度で荷重を加え、ガラス破壊時の荷重を測定し
た。 第1表に示すように、本発明によるガラスCは
原料形状が板状であり、かつ表面応力値、応力層
深さ、破壊強度のいづれにおいても従来のガラス
A・Bよりも格段優れている。また無色、透明で
あり、光線透過率も分光光度計にて測定した結果
92%と良好であつた。 実施例 2 次に第2表において、Dは従来の硼珪酸塩系ガ
ラスで、実施例1のAよりも強度特性に優れるこ
とから強化防水側などの特殊高強度ガラスとして
使用されていたものである。第2表E、Fは本発
明によるところのガラスであり、これら3種のガ
ラスを実施例1同様に製造し、比較試験した。そ
の結果、第2表に示す如く本発明によるガラス
E、FはいずれもDより格段優れた性能を示して
いる。又、ガラスE、Fは無色、透明で、93%の
光線透過率を示した。 以上述べたように、本発明によれば、所定の成
分を所定の量混ぜ合わせることにより、ガラス素
材としてすぐれた機械的強度を有し、しかも安価
であり、併せて強化処理特性にも優れた無色透明
な時計用カバーガラスの板状原料を供給すること
ができるものであり、強化処理を施したものは、
時計用カバーガラスとして充分な強度を有してい
るものである。
The present invention provides sufficient strength and hardness required for cover glasses for watches such as mobile watches and table clocks.
The present invention also relates to a cover glass for wristwatches that supplies plate-shaped raw materials that are advantageous as a cost reduction method. Conventionally, as a cover glass for a wristwatch, a borosilicate glass that is generally used as an optical glass, such as a glass called BK-7, has been used. However, since the original purpose of optical glasses such as BK-7 is optical, they focus on optical properties such as refractive index and dispersion, and they also contain boric acid (B 2 O 3 ). Since it contains more than 10%, it has excellent strength, but it has a high viscosity when forming the raw material, so it is supplied as a raw material for menko-shaped cover glass with a thickness of about 3 mm and a diameter depending on the purpose. was. Therefore, in order to process it as a regular cover glass, the thickness of the finished cover glass must be 0.8~1.
Because it is as thin as mm, it takes a lot of man-hours to finish it by grinding from the raw material size mentioned above. In addition, as mentioned above, since it is an optical glass, care is taken in raw materials and processing methods to maintain optical properties that are not necessarily necessary for a cover glass for wristwatches, resulting in high raw material costs. . On the other hand, recently, in order to eliminate the cost disadvantages due to the shape of the raw material of borosilicate glass, soda lime glass type glass, commonly known as blue plate or white plate, has come into use. However, when it comes to sheet materials, after cutting raw material close to the thickness of the finished cover glass or having the same size into an external shape that is close to the finished shape, such as a rectangle, square, or circle, the outer diameter is ground and the surface is polished if necessary. Because it can be completed by polishing and then chemically strengthening, it has a significant cost reduction effect compared to conventional borosilicate glass. However, regarding the blue plate,
As the name suggests, the trace amount of iron (Fe 2 O 3 ) in the glass gives it a bluish-green appearance, so it could not be used as glass for luxury goods or ordinary dress watches. On the other hand, white plates have a plate-like shape and are colorless and transparent, so there are no problems with their appearance and they can also be expected to reduce costs. Because it is inferior to borosilicate glasses and similar soda-lime glasses, it is necessary to increase the plate thickness for practical use, which goes against the recent trend toward thinner glass, and has the disadvantage of a narrow range of application. In view of the above-mentioned drawbacks, the present invention provides a plate-shaped raw material that has sufficient strength required for a watch cover glass, is colorless and transparent, and is advantageous as a cost reduction method. That is, the composition of the glass according to the present invention is:
All in terms of weight ratio: SiO 2 61.9-62.9 Na 2 O 12.6-14.8 K 2 O 1.4-7.1 CaO 5.3-8.5 ZnO 1.3-4.8 MgO 3.0-4.5 B 2 O 3 1.2-3.4 A 2 O 3 1.4-4.6 TiO 2 , As 2 O 3 , Sb 2 O 3 , SO 3 , ZrO 2 , P 2 O 5 individually 0.8% or less, combined 1.89% or less, Fe 2 O 3 0.01%
Consists of the following and unavoidable impurities. Next, a compressive stress layer is formed on the glass surface by bringing the glass having the above composition into contact with a potassium molten salt. In the present invention, the compressive stress layer increases with the strengthening treatment time, but at the same time, stress relaxation at the treatment temperature also progresses, and the surface compressive stress value, which is a measure of strength, becomes low. Even if the stress layer is too shallow, a slight scratch will cause the reinforcing layer to pass through and reach the base glass, making it more likely to break. Therefore, the optimal stress layer depth is 25 to 80 μm, particularly 30 to 50 μm. As the potassium molten salt, carbonates, bicarbonates, sulfates, bisulfates, nitrates, chlorides, or mixtures thereof can be used, but potassium nitrate molten salt is most suitable because it is easy to manage. However, metal ions such as copper, neodymium, aluminum, and strontium may be included in this. Next, the reason for limiting each component of the glass composition according to the present invention will be described. SiO 2 is the basic substance that forms glass,
Necessary as a mesh structure formation material. In order to provide sufficient strength for a watch cover glass, ion exchange strengthening is performed through contact with molten potassium salt, but the strain generated during ion exchange does not relax, but instead becomes compressive stress. In order to be retained, the glass mesh structure must be strong. When SiO 2 is less than 61.9%, the mesh structure becomes weak, compressive stress caused by ion exchange strengthening is relaxed, and sufficient strength cannot be obtained. When SiO 2 exceeds 62.9%, the amount of alkali, which is responsible for strengthening ion exchange, becomes relatively small, and the amount of ion exchange decreases. Moreover, the general glass melting temperature and viscosity for obtaining the plate-shaped raw material, which is the aim of the present invention, cannot be obtained, making processing into a plate shape difficult. Na 2 O has an important effect on the ion exchange effect and significantly lowers the formability in raw material processing, that is, the melting point and viscosity, making it possible to process the material into a plate shape. The higher the Na 2 O content, the higher the efficiency of ion exchange strengthening, but if it exceeds 14.8, the number of non-crosslinked oxygen ions in the glass structure will increase, leading to a decrease in glass hardness and chemical durability, as well as weakening of the glass structure. Glass with high strength cannot be obtained.
As mentioned above, Na 2 O significantly lowers the softening point and improves formability, making it easier to process into plate materials. The Na 2 O content is required to be 12.6% or more in order to fully exhibit workability into plate materials and ion exchange effects. K 2 O is added to prevent devitrification during the production of glass raw materials, and K 2 O also has the effect of deepening the stress layer due to ion exchange strengthening. 1.4
The effect becomes apparent from the addition of 7.1%, and the effect increases as the amount added increases, but since the K 2 O raw material is expensive, addition of up to 7.1% is sufficient. CaO is extremely effective in improving the mechanical properties of glass. Furthermore, the addition of Na 2 O has the effect of compensating for the chemical durability that is slightly lowered. These effects are
Appears at 5.3%. However, CaO also has the effect of stopping the movement of alkali ions, so in order to enhance the effect of strengthening ion exchange, the upper limit is 8.5%. Due to the synergistic effect with CaO mentioned above, MgO
and MgO in almost the same number of moles (weight ratio CaO:MgO
≒2:1), the viscosity is the lowest, making it a useful element for plate processing. As for the addition range, the above
From the relationship with the amount of CaO added, there will be no practical problem if it is set to 3.0 to 4.5%. ZnO is a compound that improves strength, from 1.3 to
Addition in the range of 4.8% is sufficient. B 2 O 3 has the effect of lowering viscosity, and its effect appears from 1.2%, and the viscosity decreases as the amount added increases, but when it is added over 10%, the viscosity increases, which is seen in borosilicate glasses. This makes processing into a plate shape difficult, so it is limited to 3.4% or less. A 2 O 3 has the effect of preventing devitrification phenomenon, and
It is an element that significantly improves the mechanical properties of glass and is useful for preventing stress relaxation during ion exchange strengthening treatment. The effect appears from 1.4% and increases as the amount added increases, but on the other hand, it increases the melting point, so it is limited to 4.6% or less. Next, TiO 2 , As 2 O 3 , Sb 2 O 3 , SO 3 , ZrO 2 ,
P 2 O 5 are all mesh structure forming elements,
By increasing the amount added, the mechanical properties of the glass can be improved, but due to the effect of adding B 2 O 3 and A 2 O 3 , which are also mesh structure forming elements in the present invention, when added alone, it is 0.8% or less, and when combined In case of addition
1.89% or less is sufficient. Regarding Fe 2 O 3 , as can be seen from the fact that it is a cause of coloring of blue plate glass, it is necessary to suppress it to 0.01% or less in order to obtain the colorless and transparent glass that is the aim of the present invention. Next, the present invention will be explained in further detail based on Examples. Example 1 In Table 1, A is conventional borosilicate glass,
B indicates a conventional soda-lime glass, and C indicates a glass according to the invention. Cutting, grinding, and polishing each glass with the components shown in Table 1 to form a watch cover glass with a diameter of 3 cm and a thickness of 1 mm.The glass was immersed in 100% potassium nitrate molten salt at 400°C for 5 hours to obtain the effect of ion exchange. In order to confirm this, the compressive stress value and stress layer depth on the glass surface were measured non-destructively using a glass surface stress meter FMS-1000 manufactured by Toshiba Glass. In addition, regarding the breaking strength, which is a guideline for practical design, using a compression testing machine, a load was applied at a loading rate of 2 mm per minute using a simple support on the periphery and a center load method, and the load at the time of glass breakage was measured. As shown in Table 1, glass C according to the present invention has a plate-like raw material shape, and is significantly superior to conventional glasses A and B in terms of surface stress value, stress layer depth, and fracture strength. . It is also colorless and transparent, and the light transmittance was measured using a spectrophotometer.
It was good at 92%. Example 2 Next, in Table 2, D is a conventional borosilicate glass, which has superior strength characteristics than A in Example 1, and is therefore used as special high-strength glass for reinforced waterproofing. be. Table 2 E and F show glasses according to the present invention, and these three types of glasses were produced in the same manner as in Example 1 and comparatively tested. As a result, as shown in Table 2, glasses E and F according to the present invention both exhibited significantly superior performance to glass D. Glasses E and F were colorless and transparent, and exhibited a light transmittance of 93%. As described above, according to the present invention, by mixing predetermined components in predetermined amounts, it has excellent mechanical strength as a glass material, is inexpensive, and has excellent toughening properties. We can supply plate-shaped raw materials for colorless and transparent watch cover glasses, and those that have undergone strengthening treatment are
It has sufficient strength as a watch cover glass.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 いずれも重量比にてSiO261.9〜62.9%、
Na2O12.6〜14.8%、K2O1.4〜7.1%、CaO5.3〜
8.5%、ZnO1.3〜4.8%、MgO3.0〜4.5%、
B2O31.2〜3.4%、A2O31.4〜4.6%、TiO2
As2O3、Sb2O3、SO3、ZrO2、P2O5を単独で0.8%
以下、複合添加で1.89%以下、Fe2O30.01%以下
及び不可避的不純物よりなるガラス組成を有し、
カリウム溶融塩と接触させることによりガラス表
面に圧縮応力層を形成させたことを特徴とする時
計用カバーガラス。
1 SiO 2 61.9-62.9% by weight,
Na2O12.6 ~14.8%, K2O1.4 ~7.1%, CaO5.3~
8.5%, ZnO1.3~4.8%, MgO3.0~4.5%,
B2O3 1.2-3.4 %, A2O3 1.4-4.6 %, TiO2 ,
As 2 O 3 , Sb 2 O 3 , SO 3 , ZrO 2 , P 2 O 5 alone at 0.8%
The following has a glass composition consisting of 1.89% or less of composite addition, 0.01% or less of Fe 2 O 3 and unavoidable impurities,
A cover glass for a watch, characterized in that a compressive stress layer is formed on the glass surface by contacting it with a potassium molten salt.
JP1407281A 1981-02-02 1981-02-02 Cover glass for watch Granted JPS57129839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1407281A JPS57129839A (en) 1981-02-02 1981-02-02 Cover glass for watch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1407281A JPS57129839A (en) 1981-02-02 1981-02-02 Cover glass for watch

Publications (2)

Publication Number Publication Date
JPS57129839A JPS57129839A (en) 1982-08-12
JPH0139979B2 true JPH0139979B2 (en) 1989-08-24

Family

ID=11850894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1407281A Granted JPS57129839A (en) 1981-02-02 1981-02-02 Cover glass for watch

Country Status (1)

Country Link
JP (1) JPS57129839A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239036A (en) * 1988-03-16 1989-09-25 F G K:Kk High-strength glass
JPH0688807B2 (en) * 1989-07-21 1994-11-09 日本板硝子株式会社 Glassy sintered body and manufacturing method thereof
DE10064808B4 (en) * 2000-12-22 2005-09-01 Schott Ag Zinc oxide-containing borosilicate glass and its uses
JP5467490B2 (en) 2007-08-03 2014-04-09 日本電気硝子株式会社 Method for producing tempered glass substrate and tempered glass substrate
KR20100125279A (en) * 2008-02-05 2010-11-30 코닝 인코포레이티드 Damage resistant glass article for use as a cover plate in electronic devices
EP2252558A4 (en) * 2008-02-08 2014-08-27 Corning Inc Damage resistant, chemically-toughened protective cover glass
JP2016056025A (en) * 2013-01-29 2016-04-21 オーエムジー株式会社 Optical glass filter
CN105813997A (en) 2013-12-13 2016-07-27 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
TW201527249A (en) * 2013-12-13 2015-07-16 Asahi Glass Co Ltd Glass for chemical strengthening, chemically-strengthened glass, and method for producing chemically-strengthened glass
JP6245275B2 (en) * 2013-12-13 2017-12-13 旭硝子株式会社 Chemically strengthened glass and chemically strengthened glass

Also Published As

Publication number Publication date
JPS57129839A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
KR101927013B1 (en) Chemically strengthened glass and method for manufacturing chemically strengthened glass
JP7184073B2 (en) glass for chemical strengthening
US10899658B2 (en) Crystallized glass and crystallized glass substrate
KR102292273B1 (en) Chemically strengthened glass and glass for chemical strengthening
CN110546115B (en) Chemically strengthened glass and glass for chemical strengthening
US4042405A (en) High strength ophthalmic lens
JP5929898B2 (en) Chemically tempered glass for display devices
JP5120792B1 (en) Tempered glass substrate and manufacturing method thereof
US8604693B2 (en) Plasma display device containing cover glass and substrates having similar thermal expansion coefficients
JPH0444616B2 (en)
EP2075237A1 (en) Reinforced glass substrate
JP2002174810A (en) Glass substrate for display, manufacturing method for the same and display using the same
KR102644011B1 (en) chemically strengthened glass
JPH0139979B2 (en)
JP7118530B2 (en) tempered crystallized glass
JPH0135781B2 (en)
US3997250A (en) High strength ophthalmic lens
JPS6059179B2 (en) Cover glass for watches
WO2020246274A1 (en) Glass, chemically tempered glass, and method for producing same
TW201829346A (en) Glass plate for chemical tempering and method for producing chemically tempered glass plate
JP7332987B2 (en) Chemically strengthened glass and method for producing chemically strengthened glass
KR20200023306A (en) Crystallized glass substrate
CA2297528A1 (en) Strengthened, 1.7 index, glass lens
JPS6025375B2 (en) Cover glass for mobile watches
JP2024011923A (en) Inorganic composition article