JPH0137878Y2 - - Google Patents

Info

Publication number
JPH0137878Y2
JPH0137878Y2 JP1983056472U JP5647283U JPH0137878Y2 JP H0137878 Y2 JPH0137878 Y2 JP H0137878Y2 JP 1983056472 U JP1983056472 U JP 1983056472U JP 5647283 U JP5647283 U JP 5647283U JP H0137878 Y2 JPH0137878 Y2 JP H0137878Y2
Authority
JP
Japan
Prior art keywords
cutting
temperature
signal
comparator
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983056472U
Other languages
Japanese (ja)
Other versions
JPS59163435U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5647283U priority Critical patent/JPS59163435U/en
Publication of JPS59163435U publication Critical patent/JPS59163435U/en
Application granted granted Critical
Publication of JPH0137878Y2 publication Critical patent/JPH0137878Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

【考案の詳細な説明】 この考案は切削温度の制御を可能にして、工具
摩耗等の異常がなく高速度で効率の良い切削加工
ができるようにした工作機械の制御装置に関する
ものである。
[Detailed Description of the Invention] This invention relates to a control device for a machine tool that enables cutting temperature control and enables efficient cutting at high speed without abnormalities such as tool wear.

近時、工作機械はNC(数値制御)化され、例
えば旋盤、フライス盤、プレス機械等がNC化さ
れている丈でなく、放電加工機もNC化されて来
ているように広範囲にNC化されている。そして
例えばNC旋盤においては、NC装置とサーボ機
構とにより、被工作物とバイト間の相対的なX,
Y軸方向の移動量、或いはさらに被工作物の径寸
法や回転速度等を数値化し、この数値情報によつ
てバイト等の移動、つまりX軸方向の送りとY軸
方向の送りとを、同時にあるいは片方ごとにプロ
グラムに従つて適宜に制御し、被工作物の輪郭を
所望に切削することができる。
In recent years, machine tools have become NC (numerically controlled), and for example, lathes, milling machines, press machines, etc. are not only NC, but electric discharge machines are also becoming NC. ing. For example, in an NC lathe, the relative X between the workpiece and the cutting tool is controlled by the NC device and servo mechanism.
The amount of movement in the Y-axis direction, or even the diameter and rotational speed of the workpiece, is quantified, and this numerical information is used to simultaneously control the movement of the cutting tool, that is, the feed in the X-axis direction and the feed in the Y-axis direction. Alternatively, each side can be appropriately controlled according to a program to cut the contour of the workpiece as desired.

しかしながら、このような従来のNC旋盤にあ
つては、バイトはプログラムにしたがつた方向と
速度の移動しかできないので、プログラムによる
設定が過負荷で重切削に過ぎた場合等は勿論のこ
と、加工中に材質に変化が生じたり、びびりが起
きたり、工具摩耗が目立つてきたり、あるいは切
削部の切削温度が高まつたりした状態等に対し
て、従来各種の適応制御の方法及び手段が提案さ
れているが、種々の態様に対して広く対応できる
ものがなく、このため通常は作業者が適切な処置
をとらなければならなかつた。例えば、切削部の
切削温度の異常高温に対しては、切屑の焼鈍色、
あるいは加工液等のガス化による煙霧の状態等を
目視して判断していた。これらは反応速度が遅く
間接的であり、正確な値が得られず、その結果、
適正で、かつ迅速な処置は困難であり、またバイ
トの異常摩耗をきたし、加工性を悪化させてい
る。
However, with conventional NC lathes like this, the cutting tool can only move in the direction and speed according to the program, so of course when the program settings are overloaded and the cutting is too heavy, etc. In the past, various adaptive control methods and means have been proposed in response to conditions such as changes in the material, vibration, noticeable tool wear, or increased cutting temperature at the cutting part. However, there is no one that can widely accommodate various aspects, and therefore, workers usually have to take appropriate measures. For example, when the cutting temperature of the cutting part is abnormally high, the annealing color of the chips,
Alternatively, judgments were made by visually observing the state of fumes caused by gasification of processing fluids, etc. These reactions are slow and indirect and do not give accurate values, resulting in
Proper and quick treatment is difficult, and it also causes abnormal wear of the tool bit, deteriorating workability.

〔考案の目的〕[Purpose of invention]

そこで、このの考案は従来の前記問題点に着目
してなされたもので、切削部の切削温度を時々
刻々検出して判別することにより切削温度が所定
の許容範囲を保つように切削状態を制御せんとす
るものであり、切削部に指向して配置され、現に
切削生成しつつある切屑の温度(切削温度)を測
定し、この測定温度を電気信号に変換する放射温
度計と、この放射温度計が出力する電気信号を増
幅させて外乱による影響を減少させて感度を高め
るプリアンプと、このプリアンプから入力した増
幅信号の中高周波成分を除去し、低周波信号のみ
を通過させる低域フイルタと、この低域フイルタ
からの電気信号を基準値と比較して判別信号を出
力する比較器とこの比較器からの判別信号に対応
した指令信号を出力させる演算回路と、この演算
回路で発生した指令信号を受けて工具主軸の回転
速度、工具と被工作物間の相対的な加工送り速
度、若しくは切込み量を前記切削温度が所定範囲
内にあるように制御する駆動モータの駆動回路を
備えたことを特徴とし、これにより、安定な加工
を可能とし、工具の寿命を延ばし、加工性能を向
上させるようにした工作機械の制御装置を提供す
ることを目的とするものである。
Therefore, this device was devised by focusing on the above-mentioned problems of the conventional method. By detecting and determining the cutting temperature of the cutting part from time to time, the cutting state is controlled so that the cutting temperature is maintained within a predetermined tolerance range. A radiation thermometer that is placed facing the cutting part and measures the temperature of chips that are actually being generated during cutting (cutting temperature) and converts this measured temperature into an electrical signal, and this radiation temperature A preamplifier that amplifies the electrical signal output by the meter to reduce the influence of disturbances and increase sensitivity, and a low-pass filter that removes medium and high frequency components of the amplified signal input from the preamplifier and passes only low frequency signals. A comparator that compares the electric signal from this low-pass filter with a reference value and outputs a discrimination signal, an arithmetic circuit that outputs a command signal corresponding to the discrimination signal from this comparator, and a command signal generated by this arithmetic circuit. and a drive circuit for a drive motor that controls the rotational speed of the tool spindle, the relative machining feed rate between the tool and the workpiece, or the depth of cut so that the cutting temperature is within a predetermined range. The object of the present invention is to provide a control device for a machine tool that enables stable machining, extends tool life, and improves machining performance.

〔考案の実施例〕[Example of idea]

以下、この考案の一実施例を第1図および第2
図を参照しながら詳細に説明する。
An example of this invention is shown below in Figures 1 and 2.
This will be explained in detail with reference to the drawings.

第1図はこの考案の実施例の概略構成を示す説
明図で、旋盤に適用した場合を示す。この考案
は、前述の如く切削温度(現に切削生成しつつあ
る切屑の温度)が加工中に上昇、あるいは下降し
て所定範囲外の温度に変化したとき、前記切削温
度が所定範囲内の値に戻るように加工送り速度等
の切削条件を制御することにより、加工性能を向
上させるようにしたものである。
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of this invention, and shows a case where the invention is applied to a lathe. As mentioned above, when the cutting temperature (the temperature of the chips that are currently being generated during cutting) rises or falls during machining and changes to a temperature outside the predetermined range, the cutting temperature changes to a value within the predetermined range. The machining performance is improved by controlling the cutting conditions such as the machining feed rate so that the machining speed returns.

すなわち、第1図において、符号4は放射温度
計で、探知部が切削中の切削部に指向して配置さ
れ、現に切削生成しつつある切屑の温度(切削温
度)を測定し、計測温度を電気信号に変換するた
めのものである。この温度計4は高温度の物体の
温度上昇とともに放射エネルギが急増する原理を
応用したもので、高温切屑の放射エネルギを切削
加工部への指向を制御追跡して探知する望遠鏡1
のレンズで集め、高温計電球、光電管、光増倍
管、又は熱電対等の感熱体に吸収等作用させ、そ
して例えば感熱体の温度を上昇させ、発生する熱
起電力を電気信号とする。放射温度計4から出力
される電気信号はプリアンプ6に入力され、この
プリアンプ6は前記電気信号を増幅させて外乱に
よる影響を減少させて感度を高め得るようにした
ものである。プリアンプ6によつて増幅された増
幅信号は第2図に示すように常時微小変化する切
削温度に対応しているので、増幅信号には高周波
成分と低周波成分が含まれている。高周波成分は
比較器12にとつて好ましくないので、比較器1
2には高周波成分の入力を阻止し、低周波成分の
み入力させる必要がある。そこで、低域フイルタ
8によつてプリアンプ6から入力した増幅信号中
の高周波成分を除去し、例えば数100Hz乃至数K
Hz程度又はそれ以下の低周波成分つまり低周波信
号のみ通過させているのである。このようにして
低域フイルタ8から出力される低周波信号は直流
成分を多く含み、基準値と比較する際に好まし
い。10はこの低周波信号をさらに増幅させて比
較器12に出力させる直流アンプである。この直
流アンプ10からの増幅された低周波信号ととも
に基準値も比較器12に入力される。比較器12
では低周波信号と基準値を比較して判別信号が出
力される。すなわち、基準値は、上限値と下限値
からなり、これらによつて決まる範囲は、切削温
度の許容範囲に相当するように定められている。
そして上記低周波信号のレベルが上述の上限と下
限間にあるときは判別信号S0が出力され、これ以
外の域では判別信号S11,S12,S13……S1o、又は
S21,S22,S23,……S2oが出力されるようになつ
ている。このような判別信号S0,S1o、又はS2o
演算回路14に入力される。この演算回路14は
プログラムに従つてNC制御の指令信号を前記判
別信号に基づいて増減等対応させるとともに、駆
動モータ18A,18Bの位置及び回転速度を検
出する回転検出器19A及び19Bからのフイー
ドバツク信号によつて補正して駆動回路16に出
力するようにしたものである。駆動回路16では
演算回路14から出力した指令信号を受けて、被
工作物W主軸17の回転速度、工具22と被工作
物W間の相対的な加工送りもしくは切込量を、切
削温度が所定範囲内にあるように調整制御する駆
動信号を駆動モータ18A及び18Bに出力す
る。駆動モータ18Aは工具22のX軸方向の加
工若しくは切込み送りを調整制御するモータであ
り、また18Bは被工作物Wを回転駆動させるモ
ータである。これらモータ18A及び18Bがパ
ルスモータのときは1指令パルスあたりのモータ
の回転角が正確であり、指令パルス数で移動量
を、指令パルス周波数で移動又は回転速度を直接
コントロールすることができるから検出装置19
A及び19Bを必要としない所謂オープンループ
制御方式とすることができるが、モータ18A及
び18Bが直流又は交流サーボモータのときと
か、パルスモータでもより正確な作動を行なわせ
るためには、実施例のごとく検出装置19A及び
19Bが設けられ、この検出装置19A及び19
Bからフイードバツク信号と目標値とを比較して
補正するフイードバツク制御方式が採られる。検
出装置19A及び19Bのいずれも回転角、ある
いは回転速度を検出するもので、エンコーダ等の
符号板がモータ18Aの軸あるいは被工作物Wの
回転主軸17に装着され、ブラシ、あるいは光電
素子を経てフイードバツク信号がとりだされるよ
うになつている。なお、上記回転速度検出のため
に、上記検出装置19A及び19Bと別個に指速
発電機等の回転速度検出器が設けられることも少
なくなく、又フライス盤等の場合には、被工作物
と工具間の相対位置及び加工送り用のクロステー
ブル用2軸X,Yの外に回転工具の切込み送り用
主軸Zを加えた3軸が、或いはさらに該主軸の回
転駆動軸を加えた4軸が制御信号により、適宜組
合せられて調整制御される。
That is, in FIG. 1, reference numeral 4 denotes a radiation thermometer, the detection part of which is placed facing the cutting part during cutting, measures the temperature of chips (cutting temperature) that are currently being generated by cutting, and calculates the measured temperature. It is for converting into electrical signals. This thermometer 4 applies the principle that radiant energy increases rapidly as the temperature of a high-temperature object rises, and the telescope 1 detects the radiant energy of high-temperature chips by controlling and tracking its direction to the cutting part.
The thermoelectromotive force generated is collected by a lens, absorbed, or otherwise acted on a heat sensitive body such as a pyrometer bulb, phototube, photomultiplier tube, or thermocouple, and then, for example, increases the temperature of the heat sensitive body, and the generated thermoelectromotive force is converted into an electrical signal. The electrical signal output from the radiation thermometer 4 is input to a preamplifier 6, and the preamplifier 6 amplifies the electrical signal to reduce the influence of disturbances and increase sensitivity. As shown in FIG. 2, the amplified signal amplified by the preamplifier 6 corresponds to the constantly changing cutting temperature, so the amplified signal contains high frequency components and low frequency components. Since high frequency components are unfavorable for comparator 12, comparator 1
2, it is necessary to block input of high frequency components and input only low frequency components. Therefore, the high frequency components in the amplified signal input from the preamplifier 6 are removed by the low-pass filter 8, and the
Only low-frequency components of about Hz or lower, that is, low-frequency signals, are allowed to pass through. The low frequency signal outputted from the low pass filter 8 in this manner contains a large amount of DC components, which is preferable when comparing with a reference value. 10 is a DC amplifier that further amplifies this low frequency signal and outputs it to the comparator 12. The reference value is also input to the comparator 12 together with the amplified low frequency signal from the DC amplifier 10. Comparator 12
Then, the low frequency signal is compared with the reference value and a discrimination signal is output. That is, the reference value consists of an upper limit value and a lower limit value, and the range determined by these values is determined to correspond to the allowable range of cutting temperature.
When the level of the low frequency signal is between the upper and lower limits mentioned above, the discrimination signal S 0 is output, and in other ranges, the discrimination signal S 11 , S 12 , S 13 . . . S 1o , or
S 21 , S 22 , S 23 , ...S 2o are output. Such a discrimination signal S 0 , S 1o , or S 2o is input to the arithmetic circuit 14 . This arithmetic circuit 14 increases or decreases the NC control command signal based on the discrimination signal according to the program, and also receives feedback signals from rotation detectors 19A and 19B that detect the positions and rotational speeds of the drive motors 18A and 18B. The corrected signal is output to the drive circuit 16 after correction. The drive circuit 16 receives the command signal output from the arithmetic circuit 14 and controls the rotational speed of the workpiece W spindle 17, the relative machining feed or depth of cut between the tool 22 and the workpiece W at a predetermined cutting temperature. A drive signal is output to the drive motors 18A and 18B for adjustment control so that the drive signal is within the range. The drive motor 18A is a motor that adjusts and controls the machining or cutting feed of the tool 22 in the X-axis direction, and the drive motor 18B is a motor that rotationally drives the workpiece W. When these motors 18A and 18B are pulse motors, the rotation angle of the motor per command pulse is accurate, and the movement amount can be directly controlled by the number of command pulses, and the movement or rotation speed can be directly controlled by the command pulse frequency. device 19
A so-called open loop control system that does not require A and 19B can be used, but in order to achieve more accurate operation when the motors 18A and 18B are DC or AC servo motors, or even when pulse motors are used, the embodiment Detection devices 19A and 19B are provided, and these detection devices 19A and 19
From B onward, a feedback control method is adopted in which the feedback signal and the target value are compared and corrected. Both of the detection devices 19A and 19B detect the rotation angle or rotation speed, and a code plate such as an encoder is attached to the shaft of the motor 18A or the rotation main shaft 17 of the workpiece W, and the detection device 19A and 19B detect the rotation angle or rotation speed. Feedback signals are now available. Note that in order to detect the rotational speed, a rotational speed detector such as a finger speed generator is often provided separately from the detection devices 19A and 19B, and in the case of a milling machine, etc., the workpiece and the tool In addition to the two cross table axes X and Y for the relative position between and machining feed, the main axis Z for cutting feed of the rotary tool is added, or the four axes including the rotational drive axis of the main axis are controlled. The signals are combined and adjusted as appropriate.

次に作用について説明する。 Next, the effect will be explained.

第2図は切削温度と切削時間との関係を表示す
るグラフである。切削加工に際しては切削温度が
許容温度の範囲内の値に保持されるような安定状
態Cが望ましい。
FIG. 2 is a graph showing the relationship between cutting temperature and cutting time. During cutting, a stable state C is desirable in which the cutting temperature is maintained within the allowable temperature range.

しかし、加工中に切削温度が上昇し、不安定状
態Aに移行した場合は、例えば、加工送り速度又
は切込量(の比較的大きな値)に対して回転速度
が過大等の場合であつて、切削抵抗が増大し、工
具22は著しく摩耗し、加工性能が悪化する。こ
れとは逆に切削温度が下降し、不安定状態Bに移
行した場合は、例えば、加工送り速度又は切込量
(の比較的小さな値)に対して回転速度が過大等
の場合であつて、切削加工は充分な余力を残し、
加工効率が低いものとなる。このように切削温度
が不安定状態A、あるいはBにあるときは被工作
物W主軸17の回転速度、工具22と被工作物W
間の相対的な加工送り速度もしくは切込量を切削
温度が所定の範囲(ここではt1〜t2℃)内にある
ように調整制御する必要がある。そこで、本考案
の制御装置において、切削温度が上昇又は下降
し、上限値t2℃又は下限値t1℃を越えて不安定状
態A又はBとなつたときは、放射温度計4はこれ
を、それ迄の検出値と異なる値としてただちに検
出し、電気信号が出力され、プリアンプ6に入力
されて増幅され、次いで低域フイルタ8にかけら
れる。この低域フイルタ8によつて直流成分を含
む低周波成分のみとりだされ、比較器12におい
ては、この低周波信号と種々の基準値とが比較さ
れ、判別信号O,S1o、又はS2oが出力される。こ
の判別信号に基づいて演算回路14でプログラム
に基づいて演算が行なわれ、指令信号が駆動モー
タ18A及び18Bの駆動回路16に出力し、切
削温度が下降又は上昇して許容範囲内に戻るよう
に被工作物W主軸17の回転速度、あるいは工具
22と被工作物W間の相対的な加工送り、もしく
は切込量の調整制御が行なわれるように回路16
からモータ18A及び18Bの変更された駆動信
号が出力される。
However, if the cutting temperature rises during machining and shifts to unstable state A, for example, the rotation speed is excessive relative to the machining feed rate or depth of cut (relatively large value). , cutting resistance increases, the tool 22 wears significantly, and machining performance deteriorates. On the contrary, if the cutting temperature falls and shifts to unstable state B, for example, the rotation speed is excessive relative to the machining feed rate or depth of cut (a relatively small value). , leaving enough surplus power for cutting,
Processing efficiency will be low. In this way, when the cutting temperature is in the unstable state A or B, the rotational speed of the workpiece W spindle 17, the tool 22 and the workpiece W
It is necessary to adjust and control the relative machining feed rate or depth of cut between them so that the cutting temperature is within a predetermined range (here, t 1 to t 2 °C). Therefore, in the control device of the present invention, when the cutting temperature rises or falls and exceeds the upper limit value t 2 °C or the lower limit value t 1 °C and becomes unstable state A or B, the radiation thermometer 4 detects this. , it is immediately detected as a value different from the previously detected value, and an electrical signal is output, inputted to the preamplifier 6 and amplified, and then applied to the low-pass filter 8. This low-pass filter 8 extracts only low-frequency components including DC components, and the comparator 12 compares this low-frequency signal with various reference values to generate a discrimination signal O, S 1o , or S 2o . is output. Based on this discrimination signal, the calculation circuit 14 performs calculation based on the program, and a command signal is output to the drive circuit 16 of the drive motors 18A and 18B, so that the cutting temperature decreases or increases and returns to within the allowable range. The circuit 16 controls the rotational speed of the workpiece W spindle 17, the relative machining feed between the tool 22 and the workpiece W, or the depth of cut.
Modified drive signals for motors 18A and 18B are output from.

このように切削部の切削温度を時々刻々検出し
て判別することにより、切削温度が許容範囲を保
つように切削状態が制御され、この結果、切削温
度の制御が可能となり、工具摩耗等の異常が減少
し、高速度で効率の良い切削加工を行うことがで
きる。
In this way, by constantly detecting and determining the cutting temperature of the cutting part, the cutting condition is controlled so that the cutting temperature remains within the allowable range, and as a result, it becomes possible to control the cutting temperature and prevent abnormalities such as tool wear. is reduced, allowing for high-speed and efficient cutting.

〔考案の効果〕[Effect of idea]

以上の説明から明らかなようにこの考案によれ
ば、切削部の切削温度を時々刻々検出して判別す
ることにより、切削温度が許容範囲に保つように
切削状態を制御することができる構成としたの
で、常時安定な切削温度の状態の下で切削加工す
ることができ、異常な切削抵抗の増大や工具摩耗
等の異常がなく加工精度を良好にし、工具の寿命
を延ばし、加工性能を向上させ、しかも、高速度
で効率の良い切削加工ができる効果が得られる。
As is clear from the above explanation, according to this invention, by detecting and determining the cutting temperature of the cutting part from time to time, the cutting state can be controlled to keep the cutting temperature within an allowable range. Therefore, cutting can be performed under stable cutting temperature conditions at all times, and there is no abnormality such as abnormal increase in cutting force or tool wear, improving machining accuracy, extending tool life, and improving machining performance. Moreover, the effect of high-speed and efficient cutting can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例に係る工作機械の
制御装置を示す概略構成図、第2図は切削温度と
切削時間との関係を表示するグラフである。 4……放射温度計、12……比較器、14……
演算回路、16……駆動回路、18A,18B…
…駆動モータ。
FIG. 1 is a schematic configuration diagram showing a control device for a machine tool according to an embodiment of the invention, and FIG. 2 is a graph showing the relationship between cutting temperature and cutting time. 4... Radiation thermometer, 12... Comparator, 14...
Arithmetic circuit, 16... Drive circuit, 18A, 18B...
...Drive motor.

Claims (1)

【実用新案登録請求の範囲】 切削中の切削部に指向して配置され、現に切削
生成しつつある切屑の温度(切削温度)を測定し
計測温度を電気信号に変換する放射温度計と、 この放射温度計が出力する電気信号を増幅させ
て外乱による影響を減少させて感度を高めるプリ
アンプと、このプリアンプから入力した増幅信号
の中高周波成分を除去し、低周波信号のみを通過
させる低域フイルタと、 この低域フイルタからの電気信号を基準値と比
較して判別信号を出力する比較器と、 この比較器からの判別信号に対応した指令信号
を出力させる演算回路と、 この演算回路で発生した指令信号を受けて被加
工物又は工具主軸の回転速度、工具と被工作物間
の相対的な加工送り速度若しくは切込み量を前記
切削温度が所定範囲内にあるように制御する駆動
モータの駆動回路を備えたことを特徴とする工作
機械の制御装置。
[Scope of Claim for Utility Model Registration] A radiation thermometer that is placed facing the cutting part during cutting and measures the temperature of chips that are actually being generated during cutting (cutting temperature) and converts the measured temperature into an electrical signal; A preamplifier that amplifies the electrical signal output by the radiation thermometer to reduce the influence of disturbances and increase sensitivity, and a low-pass filter that removes the medium and high frequency components of the amplified signal input from the preamplifier and passes only low frequency signals. , a comparator that compares the electrical signal from this low-pass filter with a reference value and outputs a discrimination signal, an arithmetic circuit that outputs a command signal corresponding to the discrimination signal from this comparator, and a comparator that outputs a command signal corresponding to the discrimination signal from this comparator. drive a drive motor that receives a command signal to control the rotational speed of the workpiece or tool spindle, the relative machining feed rate or depth of cut between the tool and the workpiece so that the cutting temperature is within a predetermined range; A machine tool control device characterized by being equipped with a circuit.
JP5647283U 1983-04-15 1983-04-15 Machine tool control device Granted JPS59163435U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5647283U JPS59163435U (en) 1983-04-15 1983-04-15 Machine tool control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5647283U JPS59163435U (en) 1983-04-15 1983-04-15 Machine tool control device

Publications (2)

Publication Number Publication Date
JPS59163435U JPS59163435U (en) 1984-11-01
JPH0137878Y2 true JPH0137878Y2 (en) 1989-11-14

Family

ID=30186793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5647283U Granted JPS59163435U (en) 1983-04-15 1983-04-15 Machine tool control device

Country Status (1)

Country Link
JP (1) JPS59163435U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494874A (en) * 1972-05-06 1974-01-17
JPS57107753A (en) * 1980-11-08 1982-07-05 Feldmuehle Ag Method and apparatus for monitoring cutting chip in machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494874A (en) * 1972-05-06 1974-01-17
JPS57107753A (en) * 1980-11-08 1982-07-05 Feldmuehle Ag Method and apparatus for monitoring cutting chip in machine tool

Also Published As

Publication number Publication date
JPS59163435U (en) 1984-11-01

Similar Documents

Publication Publication Date Title
US5070655A (en) Machining process monitor
US3571834A (en) Machine tool adaptive control
EP0268887B1 (en) Numerical control feed device for machine tool
EP0962281A3 (en) Industrial machine having abnormal vibration detecting function
JP2002144191A (en) Machine tool
US4750104A (en) Method of and apparatus for tracking position error control
GB1510299A (en) Method for adaptive control of machining operations
JPH0137878Y2 (en)
JP2748889B2 (en) Tool wear compensation device
Choudhury et al. On-line tool wear sensing and compensation in turning
WO2010095668A1 (en) Machine tool and machining method
JP2014061567A (en) Machine tool
SU1366302A1 (en) Apparatus for monitoring cutting temperature
JP3300604B2 (en) Tool damage detection method and device
JPS60131147A (en) Control of optimum grinding feed amount
JPH03178721A (en) Synchronous tapping device of numerically controlled machine tool
JPS60151556A (en) Detector for wear degree of tool
Shillam The on-line control of cutting conditions using direct feedback
JPH07186004A (en) Tool position correction method in nc machine tool
JPH1133879A (en) Rotating speed control device for spindle of machine tool
JPS58186549A (en) Processing machine device
JPS6150755A (en) Rotary speed control device of machine tool
SU1071397A1 (en) System for adaptive control of cutting process
SU920639A2 (en) Phase program control system
JPS62228322A (en) Automatic lead correcting device for thread grinding machine