JPH0137437B2 - - Google Patents

Info

Publication number
JPH0137437B2
JPH0137437B2 JP4517780A JP4517780A JPH0137437B2 JP H0137437 B2 JPH0137437 B2 JP H0137437B2 JP 4517780 A JP4517780 A JP 4517780A JP 4517780 A JP4517780 A JP 4517780A JP H0137437 B2 JPH0137437 B2 JP H0137437B2
Authority
JP
Japan
Prior art keywords
reaction
gas
oil
temperature
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4517780A
Other languages
Japanese (ja)
Other versions
JPS56141387A (en
Inventor
Kaoru Fujimoto
Hiroo Tominaga
Taiseki Kunugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4517780A priority Critical patent/JPS56141387A/en
Publication of JPS56141387A publication Critical patent/JPS56141387A/en
Publication of JPH0137437B2 publication Critical patent/JPH0137437B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質油の熱分解方法に関し、詳しくは
重質油を特定の触媒の存在下で、特定の温度およ
び圧力下にて一酸化炭素および水蒸気を用いて熱
分解することによつてガスおよびピツチ類、コー
クス類の生成を抑制しつつ灯油、軽油等の中間留
分を高収率で得る方法に関する。 重質油の分解による軽質化は、近年の輪入原油
の重質化の傾向に伴い重要な問題となりつつあ
る。従来から重質油の軽質化には種々の方法が開
発されているが、最も一般的な方法はニツケル−
モリブデン−シリカ・アルミナ系の固体酸系触媒
を用い、400〜450℃で高圧水素と反応させる水添
分解法である。しかしこの方法は(1)原料油中のア
スフアルテンが分解せず、ピツチあるいはコーク
スに変質しやすいため、原料油の種類によつては
脱瀝工程を必要とし、そのためアスフアルトが副
生すること、(2)ガスやガソリン等の軽質留分の生
成量が多いのに対して、灯油、軽油等の中間留分
の生成量が少ないこと、(3)熱分解と並行して骨格
の異性化が進行すること、(4)触媒表面におけるコ
ークス等の析出が著しいため、触媒の劣化速度が
大きいなど様々な問題点あるいは欠点を有してい
る。 本発明者らは、上記従来技術の欠点を克服し
て、灯油、軽油等の中間留分の収率の大きい重質
油の分解方法を開発すべく鋭意研究を重ねた。そ
の結果、特定の触媒の存在下で、特定の温度およ
び圧力下で合成ガス等の一酸化炭素を含むガスを
用い、さらに水蒸気を用いて、重質油の熱分解を
行なうと、水性ガスシフト反応(CO+H2O→
CO2+2H)により生成する水素は活性であつて
コークス等の生成を抑制すると共に過度の分解を
制御するため、目的とする中間留分の収率が増大
することを見出した。本発明はかかる知見に基い
て完成したものである。 すなわち本発明は、重質油をアルカリ金属化合
物の存在下で一酸化炭素および水蒸気を用いて、
反応温度400〜470℃、反応圧力50〜130Kg/cm2
Gの条件下において、熱分解することを特徴とす
る重質油の熱分解方法を提供するものである。 本発明の方法によつて熱分解すべき重質油につ
いては、特に制限はなく常圧残油、減圧残油など
各種のものをあげることができる。 次に本発明の方法において用いる水素化剤は水
素ガスそのものではなく、一酸化炭素と水蒸気に
てシフト反応(CO+H2O→CO2+2H)を起させ
て得られる水素である。なお、ここで用いる一酸
化炭素の供給源としては各種のガスが考えられ、
またこのガス中には水素ガスが含まれていてもよ
い。この一酸化炭素源としてのガスには、通常は
合成ガス、すなわち水素製造の際のいわゆる炭化
水素の水蒸気改質反応の生成ガスを用いるのが一
般的であり、また好都合である。本発明の方法で
はこのような合成ガスをCO転化や精製等の処理
を行うことなくそのまま水素化剤として使用しう
るため経済的にも非常に有利である。 本発明の方法において熱分解の反応系に存在さ
せる一酸化炭素と水蒸気の割合は、特に制限はな
くシフト反応が充分に進行して活性な水素が多量
に発生するように調節すればよい。化学量論的に
は等モルとすべきであるが、通常は水蒸気をやや
過剰に存在させることが好ましい。また、原料で
ある重質油に対する一酸化炭素および水蒸気の供
給割合は各種条件に応じて適宜選定すればよく一
義的に定めることはできないが、例えば水蒸気に
ついては重質油に対して0.05〜0.5(重量比)が好
ましい。水蒸気の供給量が増大すると目的とする
中間留分の収率は増加するが、反応率そのものは
低下するため、両者のバランスを考慮して上記範
囲内で目的に応じて定めることが好ましいことと
なる。 なお本発明の方法において一酸化炭素源として
合成ガスを用いると、反応系中に水素ガス(分子
状水素)が一酸化炭素とほぼ等モルの割合で供給
されることとなるが、本発明においてはこの分子
状水素はシフト反応で生ずる水素に比べて活性が
小さいため熱分解反応にはほとんど関与しないも
のと考えられる。従つてこの水素ガスの存在は本
発明の熱分解反応には実質的に影響を与えないも
のであると思われる。 さらに、本発明の方法はアルカリ金属化合物の
存在下で行なわれる。本発明の方法は重質油の熱
分解反応を、一酸化炭素と水蒸気とをシフト反応
させて得られる活性な水素を水素源として用いて
行なうものであるが、アルカリ金属化合物はこの
シフト反応を円滑に促進する役割を果すものであ
る。このシフト反応の触媒として用いられるアル
カリ金属化合物としては、リチウム、ナトリウ
ム、カリウムなどの各種化合物、例えば炭酸塩、
水酸化物などがあげられる。具体的には、炭酸カ
リウム、炭酸リチウム、炭酸ナトリウム、水酸化
カリウムなどが挙げられる。また、これらの化合
物はシリカゲル、アルミナ、活性炭等の固体の上
に固定して使用することも勿論可能である。 さらに、本発明の方法では、熱分解反応の温度
は400〜470℃、好ましくは430〜460℃、圧力は50
〜130Kg/cm2−G、好ましくは90〜130Kg/cm2−G
とすべきである。本発明において反応温度が400
℃未満の低温であると中間留分の収率は高いが、
反応率が極めて低いものとなり、また470℃を超
える高温であると反応率は高いが、中間留分の収
率が低下し、軽質分およびコークの収率が増大す
るため好ましくない。また、反応圧力が50Kg/cm2
−G未満あるいは130Kg/cm2−Gを超えると中間
留分の収率が低く好ましくない。 本発明の方法は様々な態様にて実施することが
できるが、その一態様を第1図に基いて説明すれ
ば次の如くである。 まず原料油である重質油にシフト反応触媒であ
るアルカリ金属化合物の粉末を分散せしめた後、
予熱器1で予熱して反応器2に導入する。またこ
の反応器2にはガス化炉3からの合成ガス(一酸
化炭素および水素ガスを主成分とするガス)およ
び水洗工程4その他からの水が導入される。そし
てこの反応器2内にてシフト反応(CO+H2O→
CO2+2H)が起こり、続いて生成した水素によ
り重質油の熱分解反応が進行する。なおここで用
いることのできる反応器としては、空塔、管、充
填塔(up flow型およびdown flow型)等各種の
形状のものをあげることができる。この反応器2
内で生成した生成油は分溜塔5に導かれ、ここで
ナフサ留分あるいは灯油、軽油等の中間留分が分
離され、未反応のものは残渣油として分溜塔5の
塔底から抜き出される。なおこの残渣油中には使
用済みのシフト反応触媒が含有されている。この
残渣油の大部分はシフト反応触媒を含有したまま
反応器2へリサイクルされるが、一部は燃料ある
いは合成ガスの原料として使用される。シフト用
触媒の存在がガス化反応に好ましくない場合には
シフト反応触媒は水あるいは希酸によつて洗浄す
ることにより残渣から分離しうる。またシフト触
媒が固体上に担持されている場合には濾過、その
他の周知の固−液分離法によつて触媒を分離して
もよい。水洗によつて分離した場合、その洗液は
触媒および水を供給する目的で再度反応器2に供
給することができる。 上述のような態様にて本発明の方法を実施すれ
ば、未反応の重質油は残渣油として反応器へリサ
イクルされるため、結果的には高い反応率が維持
され、またシフト反応触媒についてはクローズド
システムが構成されるため、循環再使用ができ極
めて経済的である。 叙上の如く本発明の方法によれば、水素化剤と
して高価な高圧水素を用いることなく、安価な合
成ガスと水蒸気とのシフト反応によつて生成する
活性の大きい水素を用いるため、極めて経済的で
あると同時に、ピツチ類、コークス類の生成を抑
制し、中間留分を高収率で得ることができる。ま
た、本発明の方法は基本的には熱分解反応であつ
て、通常の固体酸触媒を用いる場合と異なつて骨
格異性化は起こらない。従つて直鎖パラフインを
分解すると生成物は低分子量の直鎖パラフインお
よびα−オレフインとなり、またこの生成物の分
子量は反応温度と反応時間等を制御することによ
つて大幅に変化させることも可能である。 それ故、本発明の方法は、工業的にも極めて有
効に利用することができるものである。 次に、本発明の方法を実施例に基いてより具体
的かつ詳細に説明する。 実施例1および比較例 (原料油として高級パラフイン使用) 反応容器として150ml容の誘導撹拌式オートク
レーブ(ステンレス製)を用い、これに原料油と
して重質油のモデル化合物である第2図に示す組
成の高級パラフイン(小泉化学薬品製、融点58〜
60℃、平均分子量395)約25.0g(6.3×10-2モル)
を注入し、さらにシフト反応触媒としてK2CO3
の粉末約1.25gを分散させ、これに水を上記高級
パラフインに対して0〜0.15(重量比)の割合で
加えた。続いてこの系に合成ガス(COとH2の等
モル混合ガス)、窒素ガスあるいは水素ガスから
選ばれたガスを導入して初圧を50Kg/cm2−Gと
し、さらに操作圧を90〜130Kg/cm2−Gの範囲で
選定した。反応温度は400〜460℃の範囲で定め、
反応時間は反応系が所定の温度に達した時点より
15〜45分間とした。なお昇温には約30分を要し
た。また、撹拌は昇温開始後100℃に達した時点
より、反応中および反応終了後の放令により100
℃以下になるまで300r.p.m.で行なつた。なお放
冷には約60分を要した。 上記順序で反応を行ない、得られた生成物は下
記の方法で分析した。 (A) ガス:オートクレーブを室温まで放冷した
後、終圧を測定し、オートクレーブ中のガスを
採集してその組成について分析した。 CO、CO2、N2、CH4の定量 2mの活性炭カラムを用いる熱伝導度ガス
クロマトグラフを用いて実施した。 H2の定量:3mモレキユラーシーブ13×
カラムを用い、窒素キヤリヤーで熱伝導度ガ
スクロマトグラフを使用して測定した。 ガス状炭化水素の定量 水素炎ガスクロマトグラフイーで、2m活
性アルミナカラムを使用し、60〜140℃まで
昇温して測定した。定量には標準ガスを用い
た。 (B) 液:液は秤量後、水素炎ガスクロマトグラフ
イーで、2mデキシル300GCカラムを用いて室
温から380℃まで5℃/分の割合で昇温して分
析した。 (C) 臭素価:JISK−2543に従つて、液状炭化水
素の臭素価を測定し、炭化水素の平均分子量よ
りオレフイン含有率を計算した。 (D) 反応率および各フラクシヨンの選択率 反応率は次式により算出した。 反応率 =炭素数1〜19の生成物の量/原料油供給量×100(
%) 各フラクシヨンの選択率は、例えば炭素数1
〜4の生成物については、 炭素数1〜4の生成物の選択率= 炭素数1〜4の生成物の量/炭素数1〜19の生成物の
量×100(%) にて算出した。 上述の条件で行なつた反応の結果を以下に示
す。 (1) 充填ガスの影響 各種充填ガスによる反応の結果を第1表に示
す。
The present invention relates to a method for thermally decomposing heavy oil, and more specifically, the present invention relates to a method for thermally decomposing heavy oil, and more specifically, it generates gas by thermally decomposing heavy oil using carbon monoxide and steam in the presence of a specific catalyst and under a specific temperature and pressure. The present invention also relates to a method for obtaining middle distillates such as kerosene and gas oil in high yield while suppressing the production of pitches and cokes. Lightening of heavy oil by cracking is becoming an important issue with the recent tendency for crude oil to become heavier. Various methods have been developed to lighten heavy oil, but the most common method is nickel-oil.
This is a hydrogenolysis method that uses a molybdenum-silica-alumina solid acid catalyst and reacts with high-pressure hydrogen at 400-450°C. However, this method requires (1) a deasphalt process depending on the type of feedstock oil because asphaltene in the feedstock does not decompose and easily deteriorates into pitch or coke, resulting in asphalt being produced as a by-product; 2) While the amount of light distillates such as gas and gasoline is large, the amount of middle distillates such as kerosene and diesel oil is small; (3) Skeletal isomerization progresses in parallel with thermal decomposition. (4) Since the precipitation of coke and the like on the catalyst surface is significant, it has various problems and drawbacks such as a high deterioration rate of the catalyst. The present inventors have conducted extensive research in order to overcome the drawbacks of the above-mentioned conventional techniques and to develop a method for decomposing heavy oils such as kerosene and gas oil with a high yield of middle distillates. As a result, when heavy oil is pyrolyzed using a carbon monoxide-containing gas such as synthesis gas under a specific temperature and pressure in the presence of a specific catalyst and water vapor, a water gas shift reaction occurs. (CO+ H2O
It has been found that the hydrogen produced by CO 2 +2H) is active and suppresses the production of coke and the like, as well as controlling excessive decomposition, thereby increasing the yield of the desired middle distillate. The present invention was completed based on this knowledge. That is, in the present invention, heavy oil is treated with carbon monoxide and steam in the presence of an alkali metal compound,
Reaction temperature 400-470℃, reaction pressure 50-130Kg/cm 2
This invention provides a method for thermally decomposing heavy oil, which is characterized by thermally decomposing it under the conditions of G. The heavy oil to be thermally decomposed by the method of the present invention is not particularly limited and may include various oils such as atmospheric residual oil and vacuum residual oil. Next, the hydrogenating agent used in the method of the present invention is not hydrogen gas itself, but hydrogen obtained by causing a shift reaction (CO+H 2 O→CO 2 +2H) with carbon monoxide and water vapor. In addition, various gases can be considered as sources of carbon monoxide used here.
Further, this gas may also contain hydrogen gas. As the gas as the carbon monoxide source, it is common and convenient to use synthesis gas, that is, the product gas of the so-called steam reforming reaction of hydrocarbons during hydrogen production. The method of the present invention is economically very advantageous because such synthesis gas can be used as a hydrogenating agent without undergoing any treatment such as CO conversion or purification. In the method of the present invention, the ratio of carbon monoxide and water vapor to be present in the thermal decomposition reaction system is not particularly limited and may be adjusted so that the shift reaction sufficiently proceeds and a large amount of active hydrogen is generated. Although stoichiometrically they should be equimolar, it is usually preferable to have a slight excess of water vapor. In addition, the supply ratio of carbon monoxide and steam to heavy oil, which is a raw material, can be selected appropriately depending on various conditions and cannot be unambiguously determined, but for example, the ratio of steam to heavy oil is 0.05 to 0.5. (weight ratio) is preferable. When the amount of water vapor supplied increases, the yield of the target middle distillate increases, but the reaction rate itself decreases, so it is preferable to set it within the above range depending on the purpose, taking into account the balance between the two. Become. In addition, when synthesis gas is used as a carbon monoxide source in the method of the present invention, hydrogen gas (molecular hydrogen) is supplied into the reaction system in an approximately equimolar ratio to carbon monoxide. Since this molecular hydrogen has a lower activity than the hydrogen produced in the shift reaction, it is thought that it hardly participates in the thermal decomposition reaction. Therefore, it seems that the presence of this hydrogen gas does not substantially affect the thermal decomposition reaction of the present invention. Furthermore, the method of the invention is carried out in the presence of an alkali metal compound. The method of the present invention carries out a thermal decomposition reaction of heavy oil using active hydrogen obtained by a shift reaction between carbon monoxide and steam as a hydrogen source. It plays the role of facilitating smooth promotion. The alkali metal compounds used as catalysts for this shift reaction include various compounds such as lithium, sodium, and potassium, such as carbonates,
Examples include hydroxide. Specific examples include potassium carbonate, lithium carbonate, sodium carbonate, potassium hydroxide, and the like. Furthermore, it is of course possible to use these compounds by fixing them on solids such as silica gel, alumina, and activated carbon. Furthermore, in the method of the present invention, the temperature of the pyrolysis reaction is 400-470°C, preferably 430-460°C, and the pressure is 50°C.
~130Kg/ cm2 -G, preferably 90-130Kg/cm2 - G
Should be. In the present invention, the reaction temperature is 400℃.
The yield of middle distillates is high at low temperatures below ℃;
The reaction rate becomes extremely low, and high temperatures exceeding 470° C., although the reaction rate is high, are undesirable because the yield of middle distillates decreases and the yield of light fractions and coke increases. In addition, the reaction pressure is 50Kg/cm 2
If it is less than -G or exceeds 130 Kg/cm 2 -G, the yield of the middle distillate will be low and undesirable. The method of the present invention can be implemented in various embodiments, and one embodiment will be explained below based on FIG. First, after dispersing powder of an alkali metal compound, which is a shift reaction catalyst, into heavy oil, which is a feedstock oil,
It is preheated in a preheater 1 and introduced into a reactor 2. Further, into this reactor 2 are introduced a synthesis gas (a gas whose main components are carbon monoxide and hydrogen gas) from a gasifier 3 and water from a water washing step 4 and others. Then, in this reactor 2, a shift reaction (CO + H 2 O→
CO 2 +2H) occurs, and then the generated hydrogen causes the thermal decomposition reaction of heavy oil to proceed. Note that reactors that can be used here include those of various shapes, such as empty columns, tubes, and packed columns (up flow type and down flow type). This reactor 2
The oil produced in the column is led to the fractionating column 5, where naphtha fractions or middle distillates such as kerosene and light oil are separated, and unreacted oil is extracted from the bottom of the fractionating column 5 as residual oil. Served. Note that this residual oil contains a used shift reaction catalyst. Most of this residual oil is recycled to the reactor 2 while still containing the shift reaction catalyst, but a portion is used as fuel or a raw material for synthesis gas. If the presence of the shift catalyst is undesirable for the gasification reaction, the shift catalyst may be separated from the residue by washing with water or dilute acid. Further, when the shift catalyst is supported on a solid, the catalyst may be separated by filtration or other known solid-liquid separation methods. When separated by water washing, the washing liquid can be fed again to the reactor 2 for the purpose of supplying the catalyst and water. If the method of the present invention is carried out in the manner described above, unreacted heavy oil will be recycled to the reactor as residual oil, resulting in a high reaction rate and a shift reaction catalyst. Since it is constructed as a closed system, it can be reused and is extremely economical. As mentioned above, the method of the present invention does not use expensive high-pressure hydrogen as a hydrogenating agent, but instead uses highly active hydrogen produced by a shift reaction between inexpensive synthesis gas and steam, making it extremely economical. At the same time, it is possible to suppress the production of pitches and cokes and obtain middle distillates in high yield. Furthermore, the method of the present invention is basically a thermal decomposition reaction, and unlike the case of using a normal solid acid catalyst, skeletal isomerization does not occur. Therefore, when linear paraffins are decomposed, the products are low molecular weight linear paraffins and α-olefins, and the molecular weight of these products can be changed significantly by controlling the reaction temperature, reaction time, etc. It is. Therefore, the method of the present invention can be used very effectively industrially. Next, the method of the present invention will be explained more specifically and in detail based on Examples. Example 1 and Comparative Example (Using high-grade paraffin as raw material oil) A 150 ml induction stirring autoclave (made of stainless steel) was used as a reaction vessel, and a model compound of heavy oil with the composition shown in Fig. 2 was used as raw material oil. high-grade paraffin (manufactured by Koizumi Chemicals, melting point 58~
60℃, average molecular weight 395) approx. 25.0g (6.3×10 -2 mol)
Injected and further shifted K 2 CO 3 as a reaction catalyst
About 1.25 g of powder was dispersed, and water was added thereto at a ratio of 0 to 0.15 (weight ratio) to the above-mentioned high paraffin. Next, a gas selected from synthesis gas (equimolar mixture of CO and H 2 gas), nitrogen gas, or hydrogen gas is introduced into this system to give an initial pressure of 50 Kg/cm 2 -G, and the operating pressure is further increased to 90 ~ It was selected in the range of 130Kg/cm 2 -G. The reaction temperature is set in the range of 400 to 460℃,
The reaction time starts from the time when the reaction system reaches the specified temperature.
The duration was 15 to 45 minutes. Note that it took about 30 minutes to raise the temperature. In addition, from the time when the temperature reached 100℃ after the start of temperature rise, stirring was continued at 100℃ during the reaction and after the reaction was completed.
It was carried out at 300 rpm until the temperature dropped below ℃. It took about 60 minutes to let it cool. The reaction was carried out in the above order, and the obtained product was analyzed by the following method. (A) Gas: After the autoclave was allowed to cool to room temperature, the final pressure was measured, and the gas in the autoclave was collected and analyzed for its composition. Quantification of CO, CO 2 , N 2 , CH 4 It was carried out using a thermal conductivity gas chromatograph using a 2 m activated carbon column. Quantification of H2 : 3m molecular sieve 13×
The thermal conductivity was measured using a gas chromatograph using a column and a nitrogen carrier. Quantification of gaseous hydrocarbons Measurement was performed by hydrogen flame gas chromatography using a 2m activated alumina column at elevated temperatures of 60 to 140°C. Standard gas was used for quantitative determination. (B) Liquid: After the liquid was weighed, it was analyzed by hydrogen flame gas chromatography using a 2m Dexyl 300GC column and heating from room temperature to 380°C at a rate of 5°C/min. (C) Bromine number: The bromine number of the liquid hydrocarbon was measured according to JISK-2543, and the olefin content was calculated from the average molecular weight of the hydrocarbon. (D) Reaction rate and selectivity of each fraction The reaction rate was calculated using the following formula. Reaction rate = Amount of product having 1 to 19 carbon atoms/Amount of raw oil supplied x 100 (
%) The selectivity of each fraction is, for example, carbon number 1
For products with carbon numbers of 1 to 4, the selectivity of products with 1 to 4 carbon atoms was calculated as follows: Amount of products with 1 to 4 carbon atoms/Amount of products with 1 to 19 carbon atoms x 100 (%) . The results of the reaction conducted under the above conditions are shown below. (1) Effect of filling gas Table 1 shows the reaction results with various filling gases.

【表】 上記第1表からわかるように、反応率はH2
系>N2系>合成ガス(CO+H2)系>合成ガス
−水蒸気(CO+H2+H2O)系の順であり、H2
系での反応が特に分解促進の効果を示した。し
かし選択率をみると、H2系はC1〜C4ガスの生
成量が多く、一方合成ガス−水蒸気系ではC1
〜C4ガスの生成量が極端に少なく、C10〜C14
C15〜C19の生成量が増大していることがわか
る。しかもこの合成ガス−水蒸気系では生成液
中のオレフイン含有率が非常に小さい。従つて
これらのことを考慮すると合成ガス−水蒸気系
の充填ガスを用いると、いわゆる中間留分の収
率が著しく増大することがわかる。 (2) 反応時間による影響 充填ガスCO+H2、水供給量H2O/原料パラ
フイン=1(モル比)、反応温度450℃の条件で
反応時間を変化させて反応を行なつた。得られ
た分解生成物の重量分布を第3図に示す。 第3図からわかるように、分解生成物は反応
時間が長くなるにつれて二次的、三次的分解が
進行し、分布は低炭素原子数側へシフトする。 (3) 反応温度による影響 充填ガスCO+H2、水供給量H2O/原料パラ
フイン=1(モル比)、反応時間30分の条件で温
度を変化させて反応を行なつた。得られた分解
生成物のモル分布を第4図に示す。 (4) 水の供給量による影響 充填ガスCO+H2、反応温度450℃、反応時
間30分の条件で水の供給量を変化させて反応を
行なつた。反応の際のCO消費量およびCO2
成量を第5図に示す。また、第6図には上記反
応で得られた分解生成物のモル分布を示す。 実施例 2 (原料油として大慶常圧残油使用) 反応容器として150ml容の誘導撹拌式オートク
レーブ(ステンレス製)を用い、これに原料油と
して大慶常圧残油(平均分子量612、元素分析
値:C85.03%、H13.90%、N0.24%、S0.16%、
O0.67%)25gまたは35gを注入し、さらにシフ
ト反応触媒としてK2CO3の粉末を原料油に対し
て5重量%の割合で分散させ、これに水を原料油
に対して10重量%の割合で加えた。続いてこの系
に合成ガス(COとH2の等モル混合ガス)を導入
して初圧を50Kg/cm2−Gとし、さらに操作圧を90
〜130Kg/cm2−Gの範囲で選定した。反応温度は
400〜460℃の範囲で定め、反応時間は反応系が所
定の温度に達した時点より15〜45分間とした。な
お昇温には約30分を要した。また撹拌は昇温開始
後100℃に達した時点より、反応中および反応終
了後の水冷により100℃以下になるまで300r.p.m.
で行なつた。なお冷却には約10分を要した。 上記順序で反応を行ない、得られた生成物は下
記の方法で分析した。 (A) ガス:基本的には前述した高級パラフインの
熱分解によつて得られたガスの分析方法と同じ
である。 (B) 液:熱てんびんを用い、N2気流中で蒸留曲
線を測定した。またGPCによる測定も行なつ
た。以上により分解の目安とした。なおコーク
は液中の固形分のうちベンゼンに溶解しないも
のを指す。 上述の条件で行なつた反応の結果を以下に示
す。 (1) 合成ガスおよび水蒸気を共存させる効果 大慶常圧残油35.0g、反応温度440℃、反応
時間30分の条件で水蒸気添加量を変化させて反
応を行なつた。得られた反応結果を第2表に示
す。また異なつた雰囲気下で反応させて得た分
解生成物の重量分布を第7図に示す。なお第7
図における反応の反応温度440℃に選定した。 第2表からわかるように、水蒸気の添加の有
無によつてガス生成量および液生成量に大きな
違いは認められないが、コークの生成量は水蒸
気添加量を増すことにより著しく減少すると同
時に、シフト反応がより進行し、水素が消費さ
れる以上に生成する。 また、第7図から明らかなように、合成ガス
+水蒸気の雰囲気下での反応は、分解反応その
ものは水素雰囲気下での反応に比較してその速
さは若干小さいが、不活性気体である窒素雰囲
気下での反応と同程度であり、また特にコーク
の生成に関してはいずれの雰囲気よりも著しく
少ない。つまり、本発明の方法によれば、コー
クの生成を最小限に抑制しつつ、残渣油を効率
的に分解し得ることがわかる。
[Table] As can be seen from Table 1 above, the reaction rate is H 2
The order is system > N 2 system > synthesis gas (CO + H 2 ) system > synthesis gas - water vapor (CO + H 2 + H 2 O) system, and H 2
The reaction in the system was particularly effective in accelerating decomposition. However, when looking at the selectivity, the H 2 system produces a large amount of C 1 to C 4 gas, while the synthesis gas-steam system produces a large amount of C 1 to C 4 gas.
~ The amount of C 4 gas produced is extremely small, and C 10 ~ C 14 ,
It can be seen that the amount of C 15 to C 19 produced is increasing. Moreover, in this synthesis gas-steam system, the olefin content in the produced liquid is extremely small. Therefore, taking these things into consideration, it can be seen that the yield of so-called middle distillates increases significantly when a syngas-steam-based filling gas is used. (2) Effect of reaction time The reaction was carried out under the conditions of filling gas CO+H 2 , water supply amount H 2 O/raw material paraffin=1 (molar ratio), and reaction temperature 450° C. while changing the reaction time. The weight distribution of the obtained decomposition products is shown in FIG. As can be seen from FIG. 3, secondary and tertiary decomposition of the decomposition products progresses as the reaction time increases, and the distribution shifts to the lower carbon atom number side. (3) Effect of reaction temperature The reaction was carried out under the conditions of filling gas CO+H 2 , water supply amount H 2 O/raw material paraffin=1 (molar ratio), and reaction time 30 minutes while varying the temperature. The molar distribution of the decomposition products obtained is shown in FIG. (4) Effect of water supply amount The reaction was carried out under the conditions of filling gas CO + H 2 , reaction temperature 450° C., and reaction time 30 minutes while changing the water supply amount. Figure 5 shows the amount of CO consumed and the amount of CO 2 produced during the reaction. Moreover, FIG. 6 shows the molar distribution of the decomposition products obtained in the above reaction. Example 2 (Using Daqing atmospheric residual oil as raw material oil) A 150 ml induction stirring autoclave (made of stainless steel) was used as a reaction vessel, and Daqing atmospheric residual oil (average molecular weight 612, elemental analysis value: C85.03%, H13.90%, N0.24%, S0.16%,
Inject 25g or 35g of O0.67%), further disperse K 2 CO 3 powder as a shift reaction catalyst at a ratio of 5% by weight based on the feedstock oil, and add water to this at a rate of 10% by weight based on the feedstock oil. added at the rate of Next, synthesis gas (equimolar mixture of CO and H2 ) was introduced into the system to give an initial pressure of 50Kg/cm2-G, and the operating pressure was further increased to 90Kg/ cm2 -G.
It was selected in the range of ~130Kg/cm 2 -G. The reaction temperature is
The temperature was set in the range of 400 to 460°C, and the reaction time was 15 to 45 minutes from the time the reaction system reached the predetermined temperature. Note that it took about 30 minutes to raise the temperature. In addition, stirring was carried out at 300 r.pm from the point when the temperature reached 100℃ after the start of temperature rise until the temperature reached 100℃ or less during the reaction and after the reaction was completed.
I did it at Note that cooling required approximately 10 minutes. The reaction was carried out in the above order, and the obtained product was analyzed by the following method. (A) Gas: Basically, the analysis method is the same as that of the gas obtained by thermal decomposition of high-grade paraffin described above. (B) Liquid: The distillation curve was measured in a N 2 stream using a thermal balance. We also conducted measurements using GPC. The above was used as a guideline for decomposition. Note that coke refers to the solid content in the liquid that does not dissolve in benzene. The results of the reaction conducted under the above conditions are shown below. (1) Effect of coexistence of synthesis gas and steam The reaction was carried out under the conditions of 35.0 g of Daqing atmospheric residual oil, reaction temperature of 440° C., and reaction time of 30 minutes while varying the amount of steam added. The reaction results obtained are shown in Table 2. Moreover, the weight distribution of the decomposition products obtained by the reaction under different atmospheres is shown in FIG. Furthermore, the seventh
The reaction temperature for the reaction shown in the figure was selected to be 440°C. As can be seen from Table 2, there is no significant difference in the amount of gas or liquid produced depending on whether or not steam is added, but the amount of coke produced is significantly reduced by increasing the amount of steam added. The reaction progresses more and more hydrogen is produced than is consumed. Furthermore, as is clear from Figure 7, in the reaction in an atmosphere of synthesis gas + steam, the decomposition reaction itself is slightly slower than the reaction in a hydrogen atmosphere, but it is an inert gas. The reaction is comparable to that under a nitrogen atmosphere, and the production of coke is significantly lower than in either atmosphere. In other words, it can be seen that according to the method of the present invention, residual oil can be efficiently decomposed while suppressing the production of coke to a minimum.

【表】 (2) 反応時間の影響 大慶常圧残油25.0g、反応温度450℃の条件
で反応時間を変化させて反応を行なつた。得ら
れた反応結果を第3表に示すと共に、分解生成
物の重量分布を第8図に示す。 またゲルパーミネーシヨンクロマトグラフを
用いて生成物の分子量分布についての結果を第
9図に示す。この第9図においてPSとはポリ
スチレン換算の分子量を示す。第3表および第
8図に示す結果より、本発明の方法によつて分
解を行なうと70〜80%の分解率が容易に達成さ
れると同時に、ガスおよびコークの収率が著し
く低いことならびに反応時間を適当に調節する
ことによつて、主生成物を灯油あるいは軽油留
分に制御し得ることがわかる。また第9図に示
した結果より、反応生成物の分子量は、原料残
渣油に比較して低分子側に移行するが、特に分
子量10000あるいはそれ以上の高分子量物質が
優先的に分解され、軽質分になることがわか
る。
[Table] (2) Effect of reaction time The reaction was carried out under the conditions of 25.0 g of Daqing atmospheric residual oil and a reaction temperature of 450°C, while varying the reaction time. The reaction results obtained are shown in Table 3, and the weight distribution of the decomposition products is shown in FIG. Furthermore, the results of molecular weight distribution of the product obtained using gel permeation chromatography are shown in FIG. In FIG. 9, PS indicates the molecular weight in terms of polystyrene. The results shown in Table 3 and FIG. 8 show that when cracking is carried out by the method of the present invention, a cracking rate of 70 to 80% is easily achieved, while at the same time the yields of gas and coke are extremely low. It can be seen that by appropriately adjusting the reaction time, the main product can be controlled to be kerosene or gas oil fraction. Also, from the results shown in Figure 9, the molecular weight of the reaction product shifts to the lower molecular weight side compared to the raw material residual oil, but in particular, high molecular weight substances with a molecular weight of 10,000 or more are preferentially decomposed, resulting in light I know it will take a minute.

【表】 (3) 反応温度の影響 大慶常圧残油35.0g、反応時間30分の条件で
反応温度を変化させて反応を行なつた。得られ
た反応結果を第4表に示すと共に、分解生成物
の重量分布を第10図に示す。 第10図に示した結果より、反応温度400℃
では分解はほとんど進行しないが、温度の上昇
とともに分解率が上昇することがわかる。特に
反応温度460℃ではほとんどの残渣油は分解す
るが、ガスおよびコークの生成が増大すること
がわかる。
[Table] (3) Effect of reaction temperature The reaction was carried out under the conditions of 35.0 g of Daqing atmospheric residual oil and 30 minutes of reaction time while varying the reaction temperature. The reaction results obtained are shown in Table 4, and the weight distribution of the decomposition products is shown in FIG. From the results shown in Figure 10, the reaction temperature was 400°C.
It can be seen that although decomposition hardly progresses in this case, the decomposition rate increases as the temperature rises. In particular, it can be seen that at a reaction temperature of 460°C, most of the residual oil is decomposed, but the production of gas and coke increases.

【表】 実施例3および比較例 (原料油としてクウエート常圧残油を使用) 原料油としてクウエート常圧残油(硫黄分3.84
%、比重0.910、残炭10.5%)を用いたこと以外
は実施例2と同様にして行なつた。充填ガスによ
る反応の結果を第5表に示す。
[Table] Example 3 and comparative example (Kuwait atmospheric residual oil was used as feedstock oil) Kuwait atmospheric residual oil was used as feedstock oil (sulfur content 3.84
%, specific gravity 0.910, residual carbon 10.5%) was used in the same manner as in Example 2. The results of the reaction with gas filling are shown in Table 5.

【表】 第5表から明らかなように、反応率はN2系お
よび(CO+H2O)系共にほとんど変らない。し
かし、生成物の分布をみると、N2系ではC1〜C4
ガスおよびコークの生成量が多く、一方(CO+
H2O)系はC1〜C4ガスおよびコークの生成量が
少なく(特にコークについてはN2系に比べると
半分以下である。)、灯軽油留分が増大しているこ
とがわかる。 実施例4および比較例 (原料油として大慶常圧残油使用) 反応容器として150ml容の誘導撹拌式オートク
レーブ(ステンレス製)を用い、これに原料油と
して大慶常圧残油(平均分子量612)35gを注入
し、さらにシフト反応触媒としてK2CO3の粉末
を原料油に対して5重量%の割合で分散させ、こ
れに水を原料油に対して10重量%の割合で加え
た。続いてこの系に合成ガス(COとH2の等モル
混合ガス)を導入して初圧50Kg/cm2−Gとし、さ
らに操作圧を90Kg/cm2−Gとした。反応温度は
440℃とし、反応時間は反応系が所定の温度に達
した時点より30分間とした。なお昇温には約30分
を要した。また撹拌は昇温開始後100℃に達した
時点より、反応中および反応終了後の水冷により
100℃以下になるまで300r.p.m.で行なつた。な
お、冷却には10分間を要した。反応圧力の相違に
よる反応結果を第6表に示す。
[Table] As is clear from Table 5, the reaction rates are almost the same for both the N 2 system and the (CO+H 2 O) system. However, looking at the distribution of products, in the N2 system C1 to C4
The amount of gas and coke produced is large, while (CO+
It can be seen that in the H 2 O) system, the amount of C 1 to C 4 gas and coke produced is small (in particular, coke is less than half of that in the N 2 system), and the kerosene fraction is increased. Example 4 and Comparative Example (Daqing atmospheric residual oil used as raw material oil) A 150 ml induction stirring autoclave (made of stainless steel) was used as the reaction vessel, and 35 g of Daqing atmospheric residual oil (average molecular weight 612) was used as the raw material oil. was injected, and furthermore, K 2 CO 3 powder was dispersed as a shift reaction catalyst at a ratio of 5% by weight based on the raw oil, and water was added thereto at a ratio of 10% by weight based on the raw oil. Subsequently, a synthesis gas (equimolar mixed gas of CO and H 2 ) was introduced into the system to give an initial pressure of 50 Kg/cm 2 -G, and an operating pressure of 90 Kg/cm 2 -G. The reaction temperature is
The temperature was 440°C, and the reaction time was 30 minutes from the time when the reaction system reached a predetermined temperature. Note that it took about 30 minutes to raise the temperature. In addition, stirring is performed from the point when the temperature reaches 100℃ after the start of temperature rise, during the reaction and after the completion of the reaction by water cooling.
It was carried out at 300 rpm until the temperature dropped to below 100°C. Note that cooling required 10 minutes. Table 6 shows the reaction results depending on the difference in reaction pressure.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の一態様を示すフローチ
ヤートである。第2図は実施例で用いた高級パラ
フインの組成分布を示す。第3図、第4図および
第6図〜第10図は本発明の方法によつて得られ
た分解生成物の組成分布を示す。第5図は本発明
の方法を行なつたときのCO消費量とCO2生成量
を示す。第1図中1は予熱器、2は反応器、3は
ガス化炉、4は水洗工程、5は分溜塔、6はガス
洗浄器を示す。
FIG. 1 is a flowchart showing one embodiment of the method of the present invention. FIG. 2 shows the composition distribution of higher paraffin used in the examples. 3, 4 and 6 to 10 show the composition distribution of the decomposition products obtained by the method of the present invention. FIG. 5 shows the amount of CO consumed and the amount of CO 2 produced when the method of the present invention is carried out. In FIG. 1, 1 is a preheater, 2 is a reactor, 3 is a gasifier, 4 is a water washing step, 5 is a fractionation column, and 6 is a gas scrubber.

Claims (1)

【特許請求の範囲】 1 重質油をアルカリ金属化合物の存在下で一酸
化炭素および水蒸気を用いて、反応温度400〜470
℃、反応圧力50〜130Kg/cm2−Gの条件下におい
て、熱分解することを特徴とする重質油の熱分解
方法。 2 一酸化炭素源として合成ガスを用いる特許請
求の範囲第1項記載の方法。
[Claims] 1. Heavy oil is treated with carbon monoxide and steam in the presence of an alkali metal compound at a reaction temperature of 400 to 470.
A method for thermally decomposing heavy oil, characterized by thermally decomposing it under conditions of temperature and reaction pressure of 50 to 130 kg/cm 2 -G. 2. The method according to claim 1, in which synthesis gas is used as the carbon monoxide source.
JP4517780A 1980-04-08 1980-04-08 Pyrolysis of heavy oil Granted JPS56141387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4517780A JPS56141387A (en) 1980-04-08 1980-04-08 Pyrolysis of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4517780A JPS56141387A (en) 1980-04-08 1980-04-08 Pyrolysis of heavy oil

Publications (2)

Publication Number Publication Date
JPS56141387A JPS56141387A (en) 1981-11-05
JPH0137437B2 true JPH0137437B2 (en) 1989-08-07

Family

ID=12711980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4517780A Granted JPS56141387A (en) 1980-04-08 1980-04-08 Pyrolysis of heavy oil

Country Status (1)

Country Link
JP (1) JPS56141387A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559428B2 (en) * 2010-05-28 2014-07-23 グレイトポイント・エナジー・インコーポレイテッド Conversion of liquid heavy hydrocarbon feedstock to gaseous products

Also Published As

Publication number Publication date
JPS56141387A (en) 1981-11-05

Similar Documents

Publication Publication Date Title
US4527003A (en) Thermal cracking process for producing olefins from hydrocarbons
US6395944B1 (en) Process for the preparation of mono-olefins from paraffinic hydrocarbons
US5322617A (en) Upgrading oil emulsions with carbon monoxide or synthesis gas
US3252774A (en) Production of hydrogen-containing gases
US5472596A (en) Integrated fluid coking paraffin dehydrogenation process
US4600499A (en) Combination process for upgrading reduced crude
KR100743310B1 (en) Method for producing hydroformylation products of olefins with 2 to 8 carbon atoms
CA1191805A (en) Process for converting heavy oils or slop oil into gaseous and distillable hydrocarbons
JPH0244355B2 (en)
SU434660A3 (en) METHOD OF CATALYTIC GASIFICATION OF HYDROCARBONS
US4744883A (en) Production of synthesis gas and related products via the cracking of heavy oil feeds
US9663419B2 (en) Hydrocarbon conversion process
US4606811A (en) Combination process for upgrading reduced crude
GB1584584A (en) Coal liquefaction process employing carbon monoxide
EP0059772B1 (en) Crude oil cracking using partial combustion gases
JPH0137437B2 (en)
EP0101878A2 (en) Combination process for upgrading reduced crude
JPH0244354B2 (en)
US3838993A (en) Two stage process for the conversion of heavy hydrocarbons to a methane rich gas stream
US3097935A (en) Production of unsaturated gaseous hydrocarbons and of synthesis gas
CA1081258A (en) Process for the manufacture of aldehydes
US3890112A (en) Two-stage process for the conversion of liquid hydrocarbon to a methane rich gas stream
KR20220147128A (en) Systems and processes for upgrading crude oil directly to hydrogen and chemicals
US4375425A (en) Catalyst for the production of a hydrogen-rich gas
US5435905A (en) Integrated fluid coking paraffin dehydrogenation process