JPH0133687B2 - - Google Patents

Info

Publication number
JPH0133687B2
JPH0133687B2 JP54114336A JP11433679A JPH0133687B2 JP H0133687 B2 JPH0133687 B2 JP H0133687B2 JP 54114336 A JP54114336 A JP 54114336A JP 11433679 A JP11433679 A JP 11433679A JP H0133687 B2 JPH0133687 B2 JP H0133687B2
Authority
JP
Japan
Prior art keywords
tube
fiber
power transmission
transmission shaft
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54114336A
Other languages
Japanese (ja)
Other versions
JPS5539397A (en
Inventor
Putsuku Arufuretsuto
Fuoiroru Peeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of JPS5539397A publication Critical patent/JPS5539397A/en
Publication of JPH0133687B2 publication Critical patent/JPH0133687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 本発明は、高度のこわさ、即ち剛性
(Stiffness)を持つ繊維により補強され、硬化で
きるプラスチツク材を含浸したこれ等の補強化繊
維を心棒に所定の巻付け角度で当てがい、次でこ
の全体を硬化して成るプラスチツク管の製法に関
する。又本発明は、この製法により作つたプラス
チツク管と、このようなプラスチツク管を備えた
伝動軸とに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that these reinforced fibers, which are reinforced with fibers having a high degree of stiffness and impregnated with a hardenable plastic material, are applied to a mandrel at a predetermined wrapping angle. Next, we will discuss a method for manufacturing a plastic tube made by curing the entire structure. The present invention also relates to a plastic tube made by this manufacturing method and a power transmission shaft equipped with such a plastic tube.

繊維補強プラスチツク管においては、高い値の
強さ及びこわさを得るのに高い含量の繊維を必要
とすることが多い。ガラス繊維強化プラスチツク
技術において、普通の方法は、ガラス繊維を所定
の張力のもとに仕上がりの繊維構造体に最終の周
辺巻付け(巻付け角約90゜)を行うことである。
この周辺巻付けにより、その下側で繊維構造体を
圧縮し、余分の積層樹脂を押出す。しかしこの方
法は、高度のこわさを持つ繊維とくに炭素繊維に
より補強するプラスチツク管を作るのには有効で
ない。なぜなら、これ等の繊維が極めて高い異方
性を持つているからである。この種の炭素繊維周
辺巻付けを、たとえば縦方向巻付け(巻付け角が
0゜に近い)又は45゜の巻付けに対して行なうなら
ば、繊維の異方性によつて、管材の製造中又はそ
の引続く作業中に、積層樹脂の硬化時又は温度の
変動時に、高度の層間応力が発生する。これ等の
応力は、管材の強度特性に非常に著しい影響を持
つている。
Fiber-reinforced plastic tubing often requires high fiber contents to obtain high values of strength and stiffness. In glass fiber reinforced plastics technology, the usual method is to carry out a final circumferential wrapping (wrapping angle of about 90°) of the glass fibers under a predetermined tension onto the finished fiber structure.
This peripheral wrapping compresses the fibrous structure underneath and extrudes excess laminated resin. However, this method is not effective in making plastic tubes reinforced with highly stiff fibers, especially carbon fibers. This is because these fibers have extremely high anisotropy. This type of winding around the carbon fiber can be performed, for example, in the longitudinal direction (with a winding angle of
(approximately 0°) or 45° winding, the anisotropy of the fibers will result in a lower temperature during the manufacturing of the tubing or its subsequent operations, during curing of the laminated resin, or during temperature fluctuations. A high degree of interlaminar stress occurs. These stresses have a very significant effect on the strength properties of the tubing.

したがつて本発明の目的は、高度のこわさ又は
著しい異方性を持つ補強繊維の場合にさえも高い
繊維含量の得られる繊維補強プラスチツク管の製
法を提供しようとするにある。
It is therefore an object of the present invention to provide a process for producing fiber-reinforced plastic tubes which results in high fiber contents even in the case of reinforcing fibers with a high degree of stiffness or significant anisotropy.

本発明の他の目的は、とくに伝動軸又は駆動軸
として使用するための新規な炭素繊維補強プラス
チツク管を提供しようとするにある。
Another object of the invention is to provide a new carbon fiber reinforced plastic tube, especially for use as a transmission or drive shaft.

本発明の繊維補強プラスチツク管の製法は、補
強繊維を熱硬化性樹脂マトリツクス系に含浸し、
これを心棒にフイラメントワインデイング法に従
つて管軸線に対し最高±30゜の角度の所定の巻付
け角で交差して巻付け、そして巻き付け後樹脂マ
トリツクス系を熱により硬化させ、これによつて
作られる補強繊維―樹脂マトリツクス コンパウ
ンドが相当の異方性をもつ、繊維補強プラスチツ
クねじり管、特に伝動軸の製法において、前記樹
脂マトリツクス系を硬化させるのに先だつて、前
記補強繊維の上に、硬化された補強繊維―樹脂マ
トリツクス コンパウンドの管円周方向の弾性率
より低い繊維縦方向の弾性率をもちかつ補強繊維
―樹脂マトリツクス コンパウンドの管円周方向
の熱膨張係数より高い繊維縦方向の熱膨張係数を
もつ軽量繊維材料の周辺加圧巻付け材を巻き付
け、この際前記周辺加圧巻付け材が管軸線に対し
80゜ないし90゜の範囲の巻付け角に配向するように
しかつ下側の繊維構造体中の補強繊維が圧縮され
余分の樹脂が該構造体より押し出されるようにテ
ンシヨンを繊維に加えることを特徴とするもので
ある。
The method for manufacturing fiber-reinforced plastic tubes of the present invention involves impregnating reinforcing fibers into a thermosetting resin matrix system,
This is wound around the mandrel according to the filament winding method, crossing the tube axis at a predetermined winding angle of up to ±30°, and after winding, the resin matrix system is cured by heat. In the production of fibre-reinforced plastic twisted tubes, especially power transmission shafts, in which the reinforcing fiber-resin matrix compound has considerable anisotropy, the reinforcing fibers are cured prior to curing the resin matrix system. The reinforcing fibers have a modulus of elasticity in the longitudinal direction that is lower than the modulus of elasticity in the circumferential direction of the tube of the resin matrix compound, and the thermal expansion coefficient of the reinforcing fibers in the longitudinal direction is higher than the coefficient of thermal expansion in the circumferential direction of the tube of the reinforcing fiber-resin matrix compound. Wrapping a peripheral pressure wrapping material of lightweight fiber material having a coefficient, at this time, the peripheral pressure wrapping material is
characterized by applying tension to the fibers such that they are oriented at a wrap angle in the range of 80° to 90° and the reinforcing fibers in the underlying fibrous structure are compressed and excess resin is forced out of the structure. That is.

この製法において、周辺加圧巻付け材を、形成
した管状体内の補強繊維含量が50ないし70体積%
の範囲になるような張力のもとに当てがうように
するのが好ましい。また、該巻付け材は弾性率が
約3000N/mm2であると好ましい。
In this manufacturing method, the reinforcing fiber content in the formed tubular body is 50 to 70% by volume.
It is preferable to apply the tension to a range of . Further, it is preferable that the wrapping material has an elastic modulus of about 3000 N/mm 2 .

また、本発明の伝動軸は、炭素繊維補強プラス
チツク材から成る管と、この管の2端部に固定し
た取付物と、前記管の各端部に設けられ、前記管
と少くともほぼ同じ異方性を持つように、この管
に類似な補強繊維構造を持つ炭素繊維補強プラス
チツク材から成り、前記管の中間部に向い実質的
にゆるやかなテーパを付けた壁補強材と、これら
の壁補強材の領域に位置し、前記取付物を前記管
に固定する半径方向のボルトとを包含するもので
ある。
Further, the power transmission shaft of the present invention includes a tube made of carbon fiber reinforced plastic material, an attachment fixed to two ends of the tube, and a shaft having at least substantially the same difference as the tube. wall reinforcements consisting of a carbon fiber reinforced plastic material having a reinforcing fiber structure similar to that of the tube, tapering substantially gently towards the middle of said tube; radial bolts located in the area of the pipe and securing the fitting to the tube.

さらに、本発明は、繊維補強プラスチツク管が
炭素繊維を管軸線に対し所定の巻付け角で配向し
てなるとともに、前記補強炭素繊維に比べて比較
的弾性があり、高い熱膨張係数を持つ材料から成
り、前記炭素繊維のまわりに、前記管軸線に対し
±80゜ないし±90゜の範囲の角度をなして巻付けら
れた周辺巻付け体をさらに含む伝動軸に関する。
Furthermore, the present invention provides that the fiber-reinforced plastic tube is made of carbon fibers oriented at a predetermined wrapping angle with respect to the tube axis, and that the fiber-reinforced plastic tube is made of a material that is relatively elastic and has a high coefficient of thermal expansion compared to the reinforced carbon fibers. The present invention relates to a power transmission shaft further comprising a peripheral wrapping body wound around the carbon fiber at an angle in the range of ±80° to ±90° with respect to the tube axis.

本発明によれば、硬化作業に先だつて、繊維に
比べて比較的弾性を持ち又高い熱膨張係数を持つ
材料による周辺巻付け(巻付け角約±80゜ないし
±90゜)を補強繊維に対して行う。たとえばポリ
エステル又はポリアミドから成る繊維、細片又は
布でよい巻付け材料は、管壁の繊維含量が約50な
いし70体積%になるように或る張力のもとに施す
のがよい。この巻付け材料の弾性係数は、たとえ
ば約3000N/mm2である。
According to the present invention, prior to the curing operation, the reinforcing fibers are wrapped around the reinforcing fibers with a material that is relatively elastic and has a high coefficient of thermal expansion compared to the fibers (wrapping angle of approximately ±80° to ±90°). Do it against. The wrapping material, which may be fibers, strips or cloth, for example of polyester or polyamide, is preferably applied under tension so that the fiber content of the tube wall is about 50 to 70% by volume. The elastic modulus of this wrapping material is, for example, approximately 3000 N/mm 2 .

補強繊維は炭素でよく、管軸線に対し最高±
30゜、なるべくは±10゜ないし±20゜の巻付け角で向
きを定めるのがよい。繊維含量は50ないし70体積
%にするのがよい。
The reinforcing fibers may be carbon, with a maximum ±
It is preferable to determine the direction with a wrapping angle of 30°, preferably ±10° to ±20°. The fiber content is preferably between 50 and 70% by volume.

管に又はその各端部にトルク取付物を固定して
推進軸を形成することができる。
A torque fitting may be secured to the tube or to each end thereof to form a propulsion shaft.

米国特許第4041599号又は同第4089190号の各明
細書に記載されているような炭素繊維補強プラス
チツク材から成る従来の伝動軸においては、管の
製造中に取付物をプラスチツク管の各端部に接合
し又は各管端部に長い管状部分により一体化する
(巻付ける)。どちらの場合にも、トルク伝達は接
合した継手を介して行われるが、このことはとく
に高いトルクでは不適当であることが分つてい
る。さらに継手を管に、前記の注意に従つて必要
な極めて小さな巻付け角(管軸線に対し約±10゜
ないし±20゜)で巻付けることは実際上むずかし
い。これ等のすべての問題と高い繊維価格とは繊
維補強プラスチツク製推進軸が従来有利でない原
因になつている。
In conventional power transmission shafts made of carbon fiber reinforced plastic material, such as those described in U.S. Pat. No. 4,041,599 or U.S. Pat. Joined or integrated (wrapped) with a long tubular section at each tube end. In both cases, torque transmission takes place via a joined joint, which has proven to be unsuitable, especially at high torques. Moreover, it is difficult in practice to wrap the fitting around the tube at the extremely small wrap angle (approximately .+-.10 DEG to .+-.20 DEG relative to the tube axis) required in accordance with the above precautions. All of these problems, together with the high cost of fibers, have made propulsion shafts made of fiber-reinforced plastics not traditionally advantageous.

従つて本発明の他の目的は、トルク導入の向上
した伝動軸を提供しようとするにある。
It is therefore another object of the invention to provide a transmission shaft with improved torque introduction.

以下本発明によるプラスチツク管伝動軸及びそ
の製法の実施例を添付図面について詳細に説明す
る。
Embodiments of the plastic tube power transmission shaft and the manufacturing method thereof according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図及び第2図に例示した伝動軸は、炭素繊
維により強化され、内側接合の壁補強材すなわち
スリーブ2と外側接合の壁補強材すなわちスリー
ブ3とにより各端部(第1図には一端部だけ示し
てある)を補強したプラスチツク管1により構成
してある。金属製取付物4は、内側補強スリーブ
2内に押込まれている。トルクは、金属製取付物
4から伝動軸に半径方向のボルト5により伝えら
れる。各ボルト5は、外側補強スリーブ3に接合
したスリーブ6により固定される。
The power transmission shaft illustrated in FIGS. 1 and 2 is reinforced with carbon fibers and is provided at each end (as shown in FIG. It consists of a reinforced plastic tube 1 (only one end is shown). A metal fitting 4 is pushed into the inner reinforcing sleeve 2. Torque is transmitted from the metal fitting 4 to the transmission shaft by means of radial bolts 5. Each bolt 5 is secured by a sleeve 6 joined to the outer reinforcing sleeve 3.

本発明による繊維強化プラスチツク管は、たと
えば米国特許第2723705号、同第3068134号、同第
3202560号、同第3216876号、同第3700519号及び
同第4089190号の各明細書に記載されている巻付
け法によつて作られる。第5図、、第6図及び第
7図に示すように、硬化性プラスチツクを含浸し
た強化炭素繊維Fは、2個のリールから心棒Dに
所定の巻付け角αで巻付けられ、一方のリールか
らの繊維が他方のリールからの繊維に交さし、第
3図及び第7図に示すような巻付け模様を形成す
るようにする。一方のリールからの繊維Fを心棒
Dに角度αで巻付け、他方のリールからの繊維F
を心棒Dに角度―αで巻付ける場合には、一方の
組の繊維が他方の組の繊維に2αの角度で交さす
る。次いでこの全体を熱により硬化させる。
The fiber-reinforced plastic tube according to the present invention is disclosed in, for example, U.S. Pat.
It is made by the winding method described in the specifications of No. 3202560, No. 3216876, No. 3700519, and No. 4089190. As shown in FIGS. 5, 6, and 7, the reinforced carbon fiber F impregnated with curable plastic is wound around the mandrel D from two reels at a predetermined winding angle α. The fibers from one reel intersect with the fibers from the other reel so as to form a wrapping pattern as shown in FIGS. 3 and 7. The fiber F from one reel is wound around the mandrel D at an angle α, and the fiber F from the other reel is wound around the mandrel D at an angle α.
When wound around mandrel D at an angle -α, the fibers of one set intersect the fibers of the other set at an angle of 2α. The whole is then cured by heat.

使用する強化炭素繊維は、米国ニユーヨーク州
ニユーヨーク市のパーク・アベニユー270、10017
のユニオン・カーバイド・コーポレイシヨン
(Union Carbide Corporation)によりソーネル
P形(Thornel Type P)として市販されてい
る炭素繊維すなわちピツチ繊維が好適である。
The reinforced carbon fiber used was purchased from Park Avenue 270, 10017, New York City, New York, USA.
Carbon or pitch fibers sold as Thornel Type P by Union Carbide Corporation are preferred.

管軸線に対する繊維の傾斜すなわち巻付け角
は、所期の用途に従つて変化する。管軸線Aに対
する巻付け角α(第3図)は、約±25゜ないし最高
±30゜であるが、最高±20゜又はそれ以下がよい。
10゜より小さい巻付け角は、縦方向における管の
弾性係数を増すけれども、又ねじりこわさが、推
進軸として使うには許容できないほど低い値まで
低下する。±11゜ないし±17゜の巻付け角は実際上
有利であり、とくに±12゜ないし±14゜の範囲の角
度が有利であることが判明した。これ等の巻付け
角により、十分に高いねじりこわさと、十分に高
い縦方向曲げこわさとが得られる。又与えられた
限度内の互に異る巻付け角度で、それぞれ向きを
定めた強化繊維から成る複数の層を設けることが
できるのは明らかである。
The inclination or wrap angle of the fibers relative to the tube axis varies according to the intended application. The winding angle α (FIG. 3) with respect to the tube axis A is about ±25° to a maximum of ±30°, but preferably a maximum of ±20° or less.
A wrap angle of less than 10° increases the elastic modulus of the tube in the longitudinal direction, but also reduces the torsional stiffness to an unacceptably low value for use as a propulsion shaft. Wrapping angles of ±11° to ±17° have proven advantageous in practice, particularly angles in the range of ±12° to ±14°. These wrap angles provide a sufficiently high torsional stiffness and a sufficiently high longitudinal bending stiffness. It is clear that it is also possible to provide a plurality of layers of reinforcing fibers each oriented with different winding angles within the given limits.

プラスチツク管の繊維含量は、約50ないし70体
積%なるべくは約60ないし70体積%である。この
比較的高い繊維含量を得るには、本発明によれば
管の外側に、弾性率の低い軽量材料の周辺巻付け
7(第3図)を設ける。この軽量材料は、炭素繊
維に比べて比較的弾性を持ち、又高い熱膨張係数
を持つ。この作業は、製造中にすなわち積層樹脂
がなお流動性を持つ間に実施される。たとえばポ
リエステル〔たとえばダイオレン(R.T.M.)弾
性係数約3000N/mm2)〕、又はポリアミド〔+Bナ
イロン(R.T.M.)テイヤーストリツプ
(tearstrip)(インターグラス品質7849)〕は、適
当な材料(繊維、細片又は布)である。この種量
材料の熱膨張係数は、周辺方向で強化繊維―樹脂
―配合物の対応係数より高くなければならなく
て、たとえば約25〜30・10-6/oK及びそれ以上
である。周辺巻付けは最高の張力(けん引力約
200ないし500N)で行う。しかしけん引力が、材
料を損傷するような値になつてはならないのはも
ちろんである。この周辺巻付けにより、余分な積
層樹脂を繊維体から押出すが、その熱膨張係数及
び弾性が高いので、硬化後の冷却及び管の冷却の
ときに層間応力はほとんど生じない。
The fiber content of the plastic tube is about 50 to 70% by volume, preferably about 60 to 70% by volume. To obtain this relatively high fiber content, according to the invention, the outside of the tube is provided with a peripheral wrapping 7 (FIG. 3) of a lightweight material with a low modulus of elasticity. This lightweight material is relatively elastic compared to carbon fiber and also has a high coefficient of thermal expansion. This operation is carried out during manufacture, ie while the laminated resin is still flowable. For example, polyester (e.g. Diolene (RTM) elastic modulus approx. 3000 N/mm 2 ) or polyamide (+B nylon (RTM) tearstrip (Interglass quality 7849)) can be or cloth). The coefficient of thermal expansion of this seed material must be higher in the peripheral direction than the corresponding coefficient of the reinforcing fiber-resin blend, for example about 25-30.10 -6 /oK and above. Peripheral wrapping has the highest tension (traction force approx.
200 to 500N). However, the traction force must of course not reach a value that would damage the material. This peripheral wrapping pushes out excess laminated resin from the fiber body, but due to its high coefficient of thermal expansion and elasticity, almost no interlaminar stress occurs during cooling after curing and during cooling of the tube.

低粘度の硬化性エポキシ樹脂、たとえばスイス
国バーゼル市のチバ・ガイギー・アクチエンゲゼ
ルシヤフトにより商品名アラルデイツト
(Araldit)CY209として市販されている樹脂と、
硬化剤HT972との組合わせ、又はその他の樹脂
及び硬化剤の組合わせであつて、所要の耐熱強さ
及び機械的強さを持つものを本発明管の生産用の
プラスチツク材として使う。
a curable epoxy resin of low viscosity, such as the resin sold under the trade name Araldit CY209 by Ciba Geigy Aktiengesellschaft, Basel, Switzerland;
A combination with the hardener HT972 or other resin and hardener combinations having the required heat resistance and mechanical strength is used as the plastic material for the production of the tubes of the invention.

著しい異方性であり、さらに管軸線に対し小さ
な角度を挾むように向きを定めた強化繊維を持つ
管1は、特に縦方向及び周辺方向に非常に異なる
強さ、弾性係数値及び熱膨張係数によつて、明ら
かである著しい異方性を持つ。
The tube 1, which is highly anisotropic and also has reinforcing fibers oriented at small angles to the tube axis, exhibits very different strengths, modulus of elasticity values and coefficients of thermal expansion, especially in the longitudinal and circumferential directions. Therefore, it has obvious significant anisotropy.

多重層管構造の著しい異方性によつて、管1の
端部を間に挾み高い伝動トルクを受ける補強スリ
ーブ2,3は、管1と同じ材料又は類似の材料か
ら成り、又管1と同じ又は少くとも実質的に同じ
異方性を持つことが極めて重要である。さもなけ
れば温度の変動時に、各補強スリーブ2,3及び
管端部の間に著しい応力が生じ、極端な場合に破
壊するようになる。
Due to the significant anisotropy of the multilayer tube structure, the reinforcing sleeves 2, 3, which sandwich the ends of the tube 1 and are subjected to high transmission torques, are made of the same or similar material as the tube 1; It is extremely important that the anisotropy is the same, or at least substantially the same. Otherwise, during temperature fluctuations, significant stresses will occur between each reinforcing sleeve 2, 3 and the tube end, leading to breakdown in extreme cases.

又管1の補強区域は急激には終らなくて、各管
端部における管壁の厚みが、管1の壁厚まで徐徐
に薄くなることが大切である。このために補強ス
リーブ2,3は、これ等に管中心に向い円すい形
のテーパを付けるように機械加工する。補強した
管端部から管1の補強してない壁区域までのこの
ようななめらかな連続的転移により応力のピーク
を防ぐことができる。
It is also important that the reinforced area of the tube 1 does not end abruptly, but that the thickness of the tube wall at each tube end tapers gradually down to the wall thickness of the tube 1. For this purpose, the reinforcing sleeves 2, 3 are machined so that they have a conical taper toward the center of the tube. Such a smooth continuous transition from the reinforced tube end to the unreinforced wall area of the tube 1 makes it possible to avoid stress peaks.

第1図、第2図及び第4図においては、各管端
部の壁補材は、管1の外側又は内側に接着した前
もつて形成した補強スリーブにより形成される。
しかしこれ等の補強材は、若干の他の方法で作つ
てもよい。ただしこの場合巻付け法によると極め
て小さな巻付け角を使う必要があるのであまり簡
単ではない。
In FIGS. 1, 2 and 4, the wall reinforcement at each tube end is formed by a previously formed reinforcing sleeve glued to the outside or inside of the tube 1. In FIGS.
However, these reinforcements may be made in a number of other ways. However, in this case, the winding method requires the use of an extremely small winding angle, so it is not very easy.

たとえば第5図に示すように、管を作るのに使
う心棒D上に所期の管長さに対応する間隔を隔て
て配置した前もつて形成した適当な形状の各補強
スリーブ12を、これ等を炭素繊維Fで覆うこと
により、管構造に合体させることができる。
For example, as shown in FIG. 5, reinforcing sleeves 12 of a suitable shape, which have been previously formed and are placed on a mandrel D used for making a tube at intervals corresponding to the desired length of the tube, are By covering it with carbon fiber F, it can be integrated into a tube structure.

第6図に示すように、前もつて形成した補強ス
リーブ12の代りに、心棒Dへの局部的巻付け2
2を使う。巻付け22は、単方向繊維布Gから成
つている。布Gの繊維は巻付け22内で管の繊維
と同じ位置を占めるように整合させ同じ異方性が
得られるようにしてある。
As shown in FIG.
Use 2. The winding 22 consists of a unidirectional fiber cloth G. The fibers of the fabric G are aligned to occupy the same position within the winding 22 as the fibers of the tube so as to provide the same anisotropy.

管繊維組織に壁補強材を直接合体させる(第5
図及び第6図)代りに、単方向布Gの巻付け22
を第7図に示すように引続いて仕上がり管1に当
てがつてもよい。
Integrating the wall reinforcement directly into the tubular fiber structure (fifth step)
Figures 6 and 6) Alternatively, wrapping 22 of unidirectional cloth G
may be subsequently applied to the finished tube 1 as shown in FIG.

ガラス繊維強化プラスチツク管の場合に従来普
通に行われていたような連続式管生産に対して
は、最も有利な方法は、第5図に示すように前も
つて形成したスリーブ上に巻付けることであると
考えられる。
For continuous tube production, as is conventional in the case of glass fiber reinforced plastic tubes, the most advantageous method is to wrap the tube over a preformed sleeve as shown in FIG. It is thought that.

第5図、第6図及び第7図により作つた管の場
合には各管端部は外部に向い単純に厚くしてあ
る。しかしこのことは、このようにして得られる
壁厚が使用時に加わるトルクにより生ずる応力を
吸収するのに十分であれば問題ではない。
In the case of tubes made according to FIGS. 5, 6 and 7, each tube end is simply thickened outwardly. However, this is not a problem if the wall thickness thus obtained is sufficient to absorb the stresses caused by the torques applied during use.

軸線に対する巻付け角を±12゜としピツチ繊維
含量を全材料体積の70%として構成したプラスチ
ツク材製カルダン式伝動軸は、8100Npm以上の
臨界速度と、12゜の所要の最高軸ねじれ角を最高
トルク(1500Nm)で越えないようなねじりこわ
さとを持つていた。
The cardan type transmission shaft made of plastic material with a winding angle of ±12° to the axis and a pitch fiber content of 70% of the total material volume has a critical speed of more than 8100 Npm and a required maximum shaft torsion angle of 12°. It had such twisting stiffness that it could not be exceeded by the torque (1500Nm).

以上本発明をその実施例について詳細に説明し
たが本発明はなおその精神を逸脱しないで種種の
変化変型を行うことができるのはもちろんであ
る。
Although the present invention has been described in detail with reference to its embodiments, it is obvious that the present invention can be modified in various ways without departing from its spirit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製法により作つた伝動軸の1実
施例の一端部の軸断面図、第2図は第1図の―
線に沿う断面図、第3図は第1図の軸を構成す
る管の巻付け構造を示す縮小斜視図、第4図は第
1図の軸の壁補強体の軸断面図、第5図、第6図
及び第7図は本製法により作るそれぞれ異る壁補
強材の製造工程図である。 1……管、2,3……スリーブ(壁補強材)、
4……断手、5……ボルト、F……繊維、D……
心棒。
FIG. 1 is a axial cross-sectional view of one end of an embodiment of a power transmission shaft manufactured by the manufacturing method of the present invention, and FIG.
3 is a reduced perspective view showing the winding structure of the tube constituting the shaft in FIG. 1; FIG. 4 is an axial sectional view of the wall reinforcement of the shaft in FIG. 1; FIG. 5 is a sectional view taken along the line; , FIG. 6, and FIG. 7 are manufacturing process diagrams of different wall reinforcing materials produced by the present manufacturing method. 1...Pipe, 2, 3...Sleeve (wall reinforcement material),
4... Stump, 5... Bolt, F... Fiber, D...
Mandrel.

Claims (1)

【特許請求の範囲】 1 (イ) 炭素繊維補強プラスチツク材から成る管
と、(ロ)この管の2端部に固定した取付物と、(ハ)前
記管の各端部に設けられ、前記管と少くともほぼ
同じ異方性を持つように、この管に類似な補強繊
維構造を持つ炭素繊維補強プラスチツク材から成
り、前記管の中間部に向い実質的にゆるやかなテ
ーパを付けた壁補強材と、(ニ)これ等の壁補強材の
領域に位置し、前記取付物を前記管に固定する半
径方向のボルトとを包含する伝動軸。 2 管の各端部に固定され、半径方向ボルトを固
定するスリーブを備えた特許請求の範囲第1項記
載の伝動軸。 3 管の各端部を、この管の外側においてだけ補
強した特許請求の範囲第2項記載の伝動軸。 4 管の各端部を、この管の外側とこの管の内側
との両方において補強した特許請求の範囲第1項
記載の伝動軸。 5 壁補強材を管と一体にした特許請求の範囲第
1項記載の伝動軸。 6 壁補強材を、管構造に、その製造中に巻けた
各々別に作つた管状部分により形成した特許請求
の範囲第4項記載の伝動軸。 7 壁補強材を、管の製造中に当てがつた単方向
繊維布の局部的な付加的の巻付け体により形成し
た特許請求の範囲第1項記載の伝動軸。 8 付加的な巻付け体を管繊維の上側に配置した
特許請求の範囲第7項記載の伝動軸。 9 管繊維の少くとも若干を、付加的巻付け体の
上側に配置した特許請求の範囲第7項記載の伝動
軸。 10 壁補強材を、管に接合した各々別に作つた
管状部分により形成した特許請求の範囲第1項記
載の伝動軸。 11 (イ)管軸線に対し所定の巻付け角をなして向
きを定めた炭素繊維により形成した管と、 (ロ)前記補強炭素繊維に比べて比較的弾性があ
り、高い熱膨張係数を持つ材料から成り、前記炭
素繊維のまわりに、前記管軸線に対し±80゜ない
し±90゜の範囲の角度をなして巻付けられた周辺
巻付け体と、(ハ)前記管の各端部に設けられ、前記
管と少くともほぼ同じ異方性を持つように、この
管に類似の補強繊維構造を持つ炭素繊維補強プラ
スチツク材で形成され、前記管の中間部に向い実
質的にゆるやかなテーパを付けた壁補強材と、(ニ)
前記管の各端部に設けた取付物と、(ホ)前記各壁補
強材の領域に位置し前記取付物を前記管に固定す
る半径方向ボルトとを包含する伝動軸。 12 補強繊維の含量を50ないし70体積%の範囲
にした特許請求の範囲第11項記載の伝動軸。 13 ほぼ全部の補強繊維を、管軸線に対し最高
±30゜の角度をなして向きを定めた特許請求の範
囲第11項記載の伝動軸。 14 補強繊維を、管軸線に対し±10゜ないし±
20゜の角度をなして向きを定めた特許請求の範囲
第13項記載の伝動軸。 15 補強繊維を熱硬化性樹脂マトリツクス系に
含浸し、これを心棒にフイラメントワインデイン
グ法に従つて管軸線に対し最高±30゜の角度の所
定の巻付け角で交差して巻付け、そして巻き付け
後樹脂マトリツクス系を熱により硬化させ、これ
によつて作られる補強繊維―樹脂マトリツクス
コンパウンドが相当の異方性をもつ、繊維補強プ
ラスチツクねじり管、特に伝動軸の製法におい
て、前記樹脂マトリツクス系を硬化させるのに先
だつて、前記補強繊維の上に、硬化された補強繊
維―樹脂マトリツクス コンパウンドの管円周方
向の弾性率より低い繊維縦方向の弾性率をもちか
つ補強繊維―樹脂マトリツクス コンパウンドの
管円周方向の熱膨張係数より高い繊維縦方向の熱
膨張係数をもつ軽量繊維材料の周辺加圧巻付け材
を巻付け、この際前記周辺加圧巻付け材が管軸線
に対し80゜ないし90゜の範囲の巻付け角に配向する
ようにしかつ下側の繊維構造体中の補強繊維が圧
縮され余分の樹脂が該構造体より押し出されるよ
うにテンシヨンを繊維に加えることを特徴とする
繊維補強プラスチツク管の製法。 16 周辺加圧巻付け材を、形成した管状体内の
補強繊維含量が50ないし70体積%の範囲になるよ
うな張力のもとに当てがうようにする特許請求の
範囲第15項記載の繊維補強プラスチツク管の製
法。 17 周辺加圧巻付け材として有機質繊維を使用
する特許請求の範囲第16項記載の繊維補強プラ
スチツク管の製法。 18 有機質繊維としてポリエステル繊維を使用
する特許請求の範囲第17項記載の繊維補強プラ
スチツク管の製法。 19 有機質繊維としてポリアミド繊維を使用す
る特許請求の範囲第17項記載の繊維補強プラス
チツク管の製法。 20 補強繊維として炭素繊維を使用する特許請
求の範囲第15項記載の繊維補強プラスチツク管
の製法。 21 周辺加圧巻付け材を、この材料の損傷を伴
わないで最高張力のもとに当てがうようにする特
許請求の範囲第15項記載の繊維補強プラスチツ
ク管の製法。 22 周辺加圧巻付け材の熱膨張係数を、円周方
向において補強繊維―樹脂配合物の対応係数より
大きくする特許請求の範囲第15項記載の繊維補
強プラスチツク管の製法。 23 熱膨張係数を、約25ないし30・10-6/ok
より高くする特許請求の範囲第22項記載の繊維
補強プラスチツク管の製法。 24 周辺加圧巻付け材の弾性率を約3000/mm2
する特許請求の範囲第15項記載の繊維補強プラ
スチツク管の製法。
[Scope of Claims] 1 (a) a tube made of carbon fiber reinforced plastic material; (b) fittings fixed to two ends of the tube; and (c) fittings provided at each end of the tube, a wall reinforcement consisting of a carbon fiber reinforced plastic material having a reinforcing fiber structure similar to that of the tube, having at least approximately the same anisotropy as said tube, tapering substantially gently towards the middle of said tube; (d) radial bolts located in the area of these wall reinforcements and securing said fitting to said tube. 2. The power transmission shaft according to claim 1, comprising a sleeve fixed to each end of the tube and fixing a radial bolt. 3. The power transmission shaft according to claim 2, wherein each end of the tube is reinforced only on the outside of the tube. 4. The power transmission shaft according to claim 1, wherein each end of the tube is reinforced both on the outside of the tube and on the inside of the tube. 5. The power transmission shaft according to claim 1, in which the wall reinforcing material is integrated with the pipe. 6. A power transmission shaft according to claim 4, wherein the wall reinforcement is formed by separately made tubular sections that are wound around the tubular structure during its manufacture. 7. Transmission shaft according to claim 1, wherein the wall reinforcement is formed by local additional wrappings of unidirectional fiber fabric applied during manufacture of the tube. 8. The power transmission shaft according to claim 7, wherein the additional winding body is arranged above the tube fiber. 9. The power transmission shaft according to claim 7, wherein at least some of the tube fibers are arranged above the additional winding. 10. A power transmission shaft according to claim 1, wherein the wall reinforcement is formed by separately made tubular sections joined to the tube. 11 (a) A tube formed of carbon fibers oriented at a predetermined wrapping angle with respect to the tube axis, and (b) a tube that is relatively elastic and has a high coefficient of thermal expansion compared to the reinforcing carbon fibers. (c) a peripheral wrap made of a material wrapped around the carbon fiber at an angle in the range of ±80° to ±90° with respect to the tube axis; a carbon fiber-reinforced plastic material having a reinforcing fiber structure similar to that of said tube and having at least approximately the same anisotropy as said tube, with a substantially gradual taper toward the middle of said tube; wall reinforcement material with
A power transmission shaft comprising a fitting at each end of the tube; and (e) a radial bolt located in the area of each wall reinforcement and securing the fitting to the tube. 12. The power transmission shaft according to claim 11, wherein the reinforcing fiber content is in the range of 50 to 70% by volume. 13. The power transmission shaft according to claim 11, wherein substantially all of the reinforcing fibers are oriented at an angle of at most ±30° with respect to the tube axis. 14 Place the reinforcing fibers at an angle of ±10° or ± to the tube axis.
14. A power transmission shaft as claimed in claim 13, oriented at an angle of 20 degrees. 15 Impregnating the reinforcing fiber into a thermosetting resin matrix system, wrapping it around the mandrel according to the filament winding method at a predetermined winding angle of up to ±30° with respect to the tube axis, and then winding it. Reinforcement fibers made by curing the resin matrix system with heat - resin matrix
In the production of fibre-reinforced plastic twisted pipes, especially power transmission shafts, in which the compound has considerable anisotropy, a cured reinforcing fiber-resin matrix is applied on top of the reinforcing fibers prior to curing the resin matrix system. The reinforcing fiber-resin matrix is made of a lightweight fiber material having a fiber longitudinal elastic modulus lower than the tube circumferential elastic modulus of the compound and a fiber longitudinal thermal expansion coefficient higher than the tube circumferential thermal expansion coefficient of the compound. The peripheral pressure wrapping material is wound such that the peripheral pressure wrapping material is oriented at a wrapping angle in the range of 80° to 90° with respect to the tube axis, and the reinforcing fibers in the lower fibrous structure are A method for making fiber reinforced plastic tubing characterized by applying tension to the fibers so that the compressed excess resin is forced out of the structure. 16. Fiber reinforcement according to claim 15, wherein the peripheral pressure wrapping material is applied under tension such that the reinforcing fiber content in the formed tubular body is in the range of 50 to 70% by volume. How to make plastic pipes. 17. The method for manufacturing a fiber-reinforced plastic tube according to claim 16, wherein organic fiber is used as the peripheral pressure wrapping material. 18. The method for producing a fiber-reinforced plastic tube according to claim 17, wherein polyester fiber is used as the organic fiber. 19. The method for producing a fiber-reinforced plastic tube according to claim 17, wherein polyamide fibers are used as the organic fibers. 20. The method for producing a fiber-reinforced plastic tube according to claim 15, wherein carbon fiber is used as the reinforcing fiber. 21. A method for producing a fiber-reinforced plastic tube according to claim 15, which allows the peripheral pressure wrapping to be applied under maximum tension without damage to this material. 22. The method for producing a fiber-reinforced plastic pipe according to claim 15, wherein the thermal expansion coefficient of the peripheral pressure wrapping material is larger than the corresponding coefficient of the reinforcing fiber-resin compound in the circumferential direction. 23 Thermal expansion coefficient is approximately 25 to 30・10 -6 /ok
23. A method for manufacturing a fiber-reinforced plastic tube according to claim 22, which increases the height of the tube. 24. The method for manufacturing a fiber-reinforced plastic tube according to claim 15, wherein the elastic modulus of the peripheral pressure wrapping material is about 3000/mm 2 .
JP11433679A 1978-09-07 1979-09-07 Transmission shaft and preperation of its pipe Granted JPS5539397A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH940978 1978-09-07

Publications (2)

Publication Number Publication Date
JPS5539397A JPS5539397A (en) 1980-03-19
JPH0133687B2 true JPH0133687B2 (en) 1989-07-14

Family

ID=4351695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11433679A Granted JPS5539397A (en) 1978-09-07 1979-09-07 Transmission shaft and preperation of its pipe

Country Status (1)

Country Link
JP (1) JPS5539397A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128873A (en) * 1974-09-06 1976-03-11 Hitachi Chemical Co Ltd
JPS51118538A (en) * 1975-04-09 1976-10-18 Hitachi Chem Co Ltd Golf club shaft
JPS5380632A (en) * 1976-12-27 1978-07-17 Toray Ind Inc Drive propelling shaft for automotive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128873A (en) * 1974-09-06 1976-03-11 Hitachi Chemical Co Ltd
JPS51118538A (en) * 1975-04-09 1976-10-18 Hitachi Chem Co Ltd Golf club shaft
JPS5380632A (en) * 1976-12-27 1978-07-17 Toray Ind Inc Drive propelling shaft for automotive

Also Published As

Publication number Publication date
JPS5539397A (en) 1980-03-19

Similar Documents

Publication Publication Date Title
US4605385A (en) Fibre reinforced plastics power transmission shaft
US4362521A (en) Power transmission shaft
US4248062A (en) Drive shaft assembly and method for making same
US4421497A (en) Fiber-reinforced drive shaft
US4259382A (en) Fiber reinforced composite shaft with metal connector sleeves secured by adhesive
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
JP3296328B2 (en) Fiber reinforced plastic pipe
US4238540A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
JP3495553B2 (en) Drive shaft with a reinforced plastic tube and a joint coupling vertically connected to it so as not to rotate.
US4279275A (en) Mechanical joinder of composite shaft to metallic end members
US5762352A (en) Bicycle fork having a fiber reinforced steerer tube and fiber reinforced crown and blades and method of making same
US4187135A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
US3886024A (en) Thick-walled, fiber-reinforced composite structures and method of making same
CH645299A5 (en) REINFORCED PIPE CONSTRUCTION.
JPH02225814A (en) Member made of composite material having sorew thread
US4622086A (en) Method of fabricating a hollow body
US9732889B2 (en) Flange, and a method of manufacturing a flange
GB2051303A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JPH02258328A (en) Complex screw member with reinforced fiber and its producing method
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
US10823213B2 (en) Composite joint assembly
GB1327246A (en) Fibre reinforced composites
US4942904A (en) Hollow section, in particular a tube, of long fibre reinforced plastic
US7338380B2 (en) Composite shaft end assembly and composite shaft formed therewith
JPH0133687B2 (en)