JPH0132961B2 - - Google Patents

Info

Publication number
JPH0132961B2
JPH0132961B2 JP6745782A JP6745782A JPH0132961B2 JP H0132961 B2 JPH0132961 B2 JP H0132961B2 JP 6745782 A JP6745782 A JP 6745782A JP 6745782 A JP6745782 A JP 6745782A JP H0132961 B2 JPH0132961 B2 JP H0132961B2
Authority
JP
Japan
Prior art keywords
aberration
curvature
fresnel
radius
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6745782A
Other languages
Japanese (ja)
Other versions
JPS5816201A (en
Inventor
Kenichi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6745782A priority Critical patent/JPS5816201A/en
Publication of JPS5816201A publication Critical patent/JPS5816201A/en
Publication of JPH0132961B2 publication Critical patent/JPH0132961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Description

【発明の詳細な説明】[Detailed description of the invention]

プラスチツク製フレネルレンズは、ガラスレン
ズに比べて大口径、軽量、経済性の上で利点があ
り、集光レンズとして多く用いられているもので
ある。 従来一般に使用されているフレネルレンズは、
そのフレネル面が平面状に構成されており、集光
レンズとしての用途の面では、球面収差が良く補
正されているけれども、軸外収差を除去すること
ができないために、像形成の目的で使用すること
はできなかつた。 そこで、フレネル面をカーブさせて、軸外収差
を改良しようとする発明が、特開昭53―57054
号公報、特公昭47―3775号および特公昭51―
14900号公報などで公開されている。 しかしながら、これらの発明には、次のような
欠点がある。 即ち、の発明においては、従来のフレネルレ
ンズ光学系に比し収差が減少しているとはいえ、
その補正方法は理論的でなく、実験的に求めてい
るので、収差を定量的にあらわせず、また物体距
離などの条件が変わつた場合に適用できないとい
う欠点がある。 の発明においては、無収差像を形成できるの
は2組の物点が光軸上にある場合のみであり、そ
の像点も光軸上に結ぶから、集光レンズとして使
用する限りにおいて有効であるが、拡がりを有す
る物体面上のどの部分でも無収差な像を要求する
場合には不適である。 の発明においては、無収差像を形成できるの
は、その物点が光軸に垂直な面内にあつて、光軸
を中心とする1個の同心円の円周上にある場合の
みであり、その像も光軸と同心な円になる。ここ
では、子午面内の光線だけが無収差であり、球欠
的光束については考慮されていないから、の発
明と同様に、集光レンズとして使用する限りにお
いて有効であるが、拡がりを有する物体面上のど
の部分でも無収差な像を要求する場合には、不適
である。 本発明は、このように従来不可能であつた軸外
のどの部分でも収差が少ない像を得るため、フレ
ネルレンズの収差理論式を求め、この式を2個の
フレネル面より構成されるレンズ系に適用し、無
収差光学系を設計しようとするものである。 そこで、先ずフレネル面に関する収差理論式を
第2図ないし第4図にもとづいて導出すると次の
通りである。 フレネルレンズを構成する各輪帯状屈折面は、
曲率中心をとする半径のフレネル面1、即ち
各屈折面が配置される母面上に配列されているも
のとする。 物点Oから出た光線は入射高さhの屈折点qで
屈折し、その屈折光線が像点O′に到達する。 任意の高さの屈折点qにおける屈折面は定点c
を中心とする半径rの球面の一部と考えると、q
とcを通る直線2は屈折面に垂直な法線になる。 c及びは一直線上にあつて共軸系を構成す
る。h=0におけるrを特に近軸曲率半径とい
い、これをr0であらわす。 屈折面の頂点Aから物点Oまで及び像点O′ま
での距離をs,s′、近軸光線に関するそれらを
s0,s0′とし、同じく絞り3までおよび絞りの像
3′までの距離をz,z′とし、近軸光線に関する
それらをz0,z0′とする。さらに物空間および像
空間の屈折率をn,n′、面間隔をd′とし、物点O
から出た光線と光軸xが交わる角をu、像点
O′に向う屈折光線と光軸xが交わる角をu′とし、
物体の大きさをy、像の大きさをy′とする。距離
の符号は屈折面の頂点Aを基準にして光線の進行
方向と同じ方向に測るとき正とし、入射高さhに
ついては光軸xから上方へ測るとき正とする。角
度については光線から法線へまたは光線から光軸
xへ最小の角度で測り、その方向が時計の針の回
転と同じであれば正とする。 球面レンズ系の補助量 近軸光線の追跡結果から得られ、一般に用い
られている球面系の補助量は面番号をiとし
て、 Δ(1/ns)i=1/nis0i−1/ni′s′0i Qsi=ni(1/r0i−1/s0i)=n′i(1/r0i−1/s
0i) Qxi=ni(1/r0i−1/z0i)=n′i(1/r0i−1/z
0i) Li=Qxi−Qsi =ni(1/s0i−1/z0i)=n′i(1/s′0i−1/z
0i) εi=(h1/hi21/Qsi δii2 d′i-1/nihi/h1 hi-1/h1 τi=εi+δi Pi=1/r0i(1/n′i−1/ni) である。これらに加えて とする。 球面レンズ系においては、次の関係式があ
り、Hは絞りの中心を通る光線、即ち、主光線
の屈折点qにおける入射高さである。 HihiLi=H1h1L1 (1―1) Hi/H1=hi/h1(1+L1δi) (1―2) HiQxi=H1Qsihi/h1(1+L1τi) (1―3) これらの式から Qsi/Li=1/εi(1/L1+δi) (1―4) Qxi/Li=1/εi(1/L1+τi) (1―5) Qsi/Qzi=1+L1δi/1+L1τi (1―6) 以上の式を考慮して次の通り本発明の無収差
フレネルレンズ系の各収差の式を求めると、次
の通りである。 球面収差 近軸光線の結像公式は、n/s0−n′/s′0=n−n′
/r0 (2―1) 屈折点qから物点Oまでおよび像点O′までの距
離pおよびp′とし、入射角、屈折角をそれぞれ
i,i′とすれば、正弦法則より sini/s−r0=sinθ/−p sini′/s′−r0=sinθ/
−p′ p/s=1−h2/2s(1/r−1/s)−Δr/s s′/p′=1+h2/2s′(1/r−1/s′)−Δr/s
′ 従つて、 n(1/r0−1/s)=n′(1/r0−1/s′)p/s
s′/p′ =n′(1/r0−1/s′)[1−h2/2s(1/r−1
/s)+h2/2s′ (1/r−1/s′)+(1/s−1/s′)Δr] [ ]内の第2項以下は補正項であるから、 n(1/r−1/s)≒Qs とすれば、 n/s−n′/s′=n−n′/r0+h2/2Q2 sΔ(1/ns
)−Qs(1/s− 1/s′)Δr 球面収差をΔs、Δs′とすれば、s=s0+Δs、s′=
s′0+Δs′ ∴ n/s20Δs−n′/s′0 2Δs′= −h2/2Q2 s[Δ(1/ns)−(P−)] (2―2) 屈折面がk個であり、Δs1=0であれば、(2―
2)式の辺々を加えて、 Δs′k=s′0k/2n′k h41/h2kk1 (hi/h14Q2 si[Δ(1/ns)i −(P−)i] ここで (hi/h14Q2 si[Δ(1/ns)i−(P−)i]=Ai(
2―3) であらわすと、球面収差がない条件は、 i1 Ai=0 コマ収差 第2図において軸外の物点と球心cを通る
直線をとし、軸とr0面との交点までの高
さをh0とする。また物点から出た光線は軸
から高さのqで屈折した後、像点′に至る。
角度その他の量については図示の記号を用い
る。 (2―2)式より n/S20Δs−n′/s′0 2Δs′=−h/―2/2Q2 sΔ
(1/ns) +(h/―+h02/2Q2 s(P−) cosθ≒1−h20/2r20とすれば Δ=Δs−h20/2 s0−r0/r20 同様に Δ′=Δs′−h20/2 s′0−r0/r20 ∴ n/s20Δ−n′/s′0 2Δ′ =n/s20Δs−n′/s′0 2Δs′ −nh20/2 s0−r0/s20r20+n′h20/2 s
0−r0/s′0 2−r20 =−h2/2Q2 s[Δ(1/ns)−(P−)] +h0Q2 s(P−)−h20/2Q2 s (3―1) 横倍率βは、β=y′/y=s′−r0/s−r0=np′/n
′p ここで、 p=s[1−h/―2/2s(1/r−1/s)+Δr/s
] ≒s0(1+h20/2nr0Qs+Δs/―/s0)(1−h
/―2/2ns0Qs+ Δr/s0) p′≒s′0(1+h20/2n′r0Qs+Δs/―′/s′0
(1−h/―2/2n′s′0 Qs+Δr/s′0) ∴ β=ns′0/n′s0[1+h/―2/2QsΔ(1/ns
)+h20/2QsP −(Δs/―/s0−Δs/―′/s′0)−(1/s0
1/s′0)Δr] β0=ns′0/n′s0 (1/s0−1/s′0)Δr=(h+h02/2Qs(P−
) これより、 β/β0=1+h/―2/2Qs[Δ(1/ns)−(P−
)] −h0Qs(P−)+h20/2Qs−(Δs/―/s
0− Δs/―′/s′0) Qx−Qs=Lとおくと、 Δs/―/s0−Δs/―′/s′0=1/L(n/s20
Δ−n′/s′20Δ′) −Δs/―/z0−s0+Δs/―′/z′0−s′0 ∴ β/β0=1+h/―2/2 QxQs/L[Δ(1/ns
)−(P− P)] −h0QxQs/L(P−)+h20/2 QxQs/L +Δs/―/z0−s0−Δs′/z′0−s′0 (3―2) フレネル面が複数個あれば、 −i=θi−θi-1−′i-1 βi=nis′i/n′isi 従つて、 h/―i/si=θi−θi-1+1/βi-1 ni-1/n′i-1
/―i-1/si-1 ここで、h/―1/s1=h1/s1とすれば、 βi,k=βiβi+1………βk≒ni/n′k s′k/si hi/hk hi/s′i=hi+1/si+1 θi=yi/si−r0i これらから次の結果が導かれる。i =hi[(si/si−r0i−1)yi/hi+(1/hi−1/
hi-1)yi +(1/hi-1−1/hi-2)yi-1……−(s1/s1−r01
−1) y1/h1+1] ラグランジユヘルムホルツの定理より n1u1y1=niuiyi 従つて、 (si/si−r0i−1)yi/hi=−n1u1y1/h21εi (1/hi−1/hi-1)y1≒−n1u1y1/nihi-1hid′i-1 そして、n1y1/s1=w1とおくと、i =hi/h1[h1−(ε1−τi)w1] h0i=−h1w1/hi
Qsi 第1面において入射光線と入射瞳との交点の光
軸からの高さを1とすれば、 h111−n1H/―1/s1L1+Qziw1/Qs1L1 s1が十分大きければ第2項は消えるから、i =hi/h11+(1/L1+τi)w1] Δ1=0とすれば、(1―5)、(2―3)式に
より(3―2)式は β/β0=1+1/2k1 (1/L1+τi)[1+(1/L1+τi) w12Ai +w1k1 1/εi(1/L1+τi)[1+(1/L1+τi)w1] (P−)i +w21/2k 〓 〓1 (1/L1+τii−Δs/―′k/z′0k−s′0k(3―
3) (3―1)式において、Δi=0とすれば、
Δ′iが求められるが、この収差は(i+1)
番目以下の縦倍率α αi+1,k=n′i/n′k(s′0k/s′0i hi/hk2 により拡大されて最後の像面において、Δ′k
,i=Δ′iαi+1,kの収差になる。 全系を通しての収差は Δs/―′k/z′0k−s′0k=g/2k11+(1/L1+τi)w12Ai +w1gk1 1/εi1+(1/L1+τi)w1](P−)i +w2 1g/2k1 i ただし、g=1/n′k(h1/hk2s′0 2k/z′0k−s
0k 1 を含まない項をa、bとすれば、(3―3)
式は β/β0=H/―21/2k1 (1/L1+τi)Ai1w1k1 (1/L1+τi2 Ai1w1k1 (1/L1+τi)(P−P/―/ε)i+α− Δs/―′k/z′0k−s′0k (3―4) Δs′k/z′0k−s′0k=H21/2gk1 Ai1w1g[k1 (1/L1+τi) Aik1 (P−P/ε)i]+b いまk1 (1/L1+τi)Ai=−k1 (P−P/―/ε)i=0 (3―5) であると、Δ′k=(H/―1/2gk1 Ai+b)(z′0k− s′pk) となり、±1に対してΔ′kは等値になる。 さらに(3―4)式において±1に対する
y′kの平均値を′kとすれば、 β/β0=y/―′k/y′0k=Δs/―′k/s′0k−z′
0k+α 即ち、′kはΔ′kの1次関数になり、直線
の勾配y′0k/(s′0k−z′0k)は主光線の勾配と近
似的に等しいから、光線束は主光線を中心とし
て対称性を有することになる。従つて(3―
5)式はコマ収差を除去するための条件であ
る。 非点収差 1個の輪帯は定点cを中心とする半径rの球
面の一部と考えれば、その回転対称性から物点
sより出る球欠的光束は直線sc上にある。
第3図のように主光線の入射高さをHとし、入
射光線とおよびqとの交角をiおよびj
とし、屈折光線についてはi′、j′とする。また
qcとqおよびscが光軸xと交わる角を各
θ、、ωとし、 子午的光束は隣り合う輪帯を通過する2本の光
線を考え、その間隔を微小量dhとする。 qn=pn、q′n=p′nとすれば、 di=du−dθ=[1/rcos(i−j)−1/pncosj]dh di′=du′−dθ=[1/rcos(i−j)−1/p′nco
sj′] dh ncosidi=n′cosi′di′の関係から n/pncosicosj−n′/p′ncosi′cosj′ =cos(i−j)/r(ncosi−n′cosi′) これと(4―1)式から n/ps−n′/p′s≒n/pn(1−tanitanj) −n′/p′n(1−tani′tanj′) (4―2) いま、ps−pn=δ、p′s−p′n=δ′とし、δが小
さければ、 1/ps=1/pn−δ/p2n 1/p′s=1/p′n−δ′
/p′n 2 これと(4―2)式より n/p2nδ−n′/p′n 2δ′=n/pntanitanj −n′/p′ntani′tanj′ pn≒s0、p′n≒s′0、tani≒tanu−tanθ と考えてよい範囲では、 n/s20δ−n′/s′0 2δ′=H2Q2 x(1/Nxs0−1/
N′xs′0)(4-3) 但し、
Plastic Fresnel lenses have advantages over glass lenses in terms of large diameter, light weight, and economy, and are often used as condensing lenses. The commonly used Fresnel lens is
Its Fresnel surface has a planar configuration, and although spherical aberration is well corrected when used as a condensing lens, off-axis aberration cannot be removed, so it is used for image forming purposes. I couldn't do it. Therefore, an invention was developed in Japanese Patent Application Laid-Open No. 53-57054 to curve the Fresnel surface to improve off-axis aberrations.
Publications, Special Publication No. 3775 and Special Publication No. 51-
It is published in Publication No. 14900, etc. However, these inventions have the following drawbacks. That is, in the invention, although the aberration is reduced compared to the conventional Fresnel lens optical system,
Since the correction method is determined experimentally rather than theoretically, it has the disadvantage that it does not quantitatively represent aberrations and cannot be applied when conditions such as object distance change. In the invention, an aberration-free image can be formed only when two sets of object points are on the optical axis, and the image points are also focused on the optical axis, so it is effective as long as it is used as a condensing lens. However, it is not suitable when an aberration-free image is required on any part of the object surface that has a spread. In the invention, an aberration-free image can be formed only when the object point is in a plane perpendicular to the optical axis and on the circumference of one concentric circle centered on the optical axis, The image also becomes a circle concentric with the optical axis. Here, only the rays in the meridian plane are aberration-free, and the spherical rays are not taken into consideration, so it is effective as long as it is used as a condensing lens, similar to the invention of 2. It is unsuitable when an aberration-free image is required anywhere on the surface. In order to obtain an image with little aberration in any off-axis part, which was previously impossible, the present invention determined a theoretical aberration formula for a Fresnel lens, and applied this formula to a lens system composed of two Fresnel surfaces. The aim is to design an aberration-free optical system. First, the aberration theoretical formula regarding the Fresnel surface is derived based on FIGS. 2 to 4 as follows. Each annular refractive surface that makes up a Fresnel lens is
It is assumed that the Fresnel surfaces 1 have a radius centered on the center of curvature, that is, they are arranged on a generatrix surface on which each refracting surface is arranged. The light ray emerging from the object point O is refracted at the refraction point q at the incident height h, and the refracted ray reaches the image point O'. The refracting surface at a refractive point q at an arbitrary height is a fixed point c
If we consider q to be part of a spherical surface of radius r centered on q
A straight line 2 passing through and c becomes a normal line perpendicular to the refractive surface. c and are on a straight line and form a coaxial system. In particular, r at h=0 is called the paraxial radius of curvature, and this is expressed as r 0 . The distances from the vertex A of the refractive surface to the object point O and to the image point O' are s and s', and those regarding the paraxial ray are
Similarly, let s 0 and s 0 ' be the distances to the aperture 3 and to the image 3' of the aperture, and let z 0 and z 0 ' be the distances related to the paraxial rays. Furthermore, let the refractive indices of the object space and the image space be n, n', the interplanar spacing be d', and the object point O
The angle where the ray of light intersects with the optical axis x is u, the image point
Let u′ be the angle at which the refracted ray toward O′ intersects the optical axis x,
Let the size of the object be y and the size of the image be y'. The sign of the distance is positive when measured in the same direction as the traveling direction of the ray with respect to the vertex A of the refracting surface, and the sign of the distance is positive when measured upward from the optical axis x for the incident height h. The angle is measured by the smallest angle from the ray to the normal or from the ray to the optical axis x, and is positive if the direction is the same as the rotation of the clock's hands. Auxiliary amount of a spherical lens system The auxiliary amount of a spherical lens system, which is obtained from the tracing results of paraxial rays and is generally used, is as follows, where the surface number is i, Δ(1/ns) i = 1/n i s 0i −1/ n i ′s′0 i Q si = n i (1/r 0i −1/s 0i )=n′ i (1/r 0i −1/s
0i ) Q xi = n i (1/r 0i −1/z 0i )=n′ i (1/r 0i −1/z
0i ) L i =Q xi −Q si = n i (1/s 0i −1/z 0i )=n′ i (1/s′ 0i −1/z
0i ) ε i = (h 1 /h i ) 2 1/Q si δ i = i2 d′ i-1 /n i h i /h 1 h i-1 /h 1 τ iii P i =1/r 0i (1/n′ i −1/n i ). In addition to these shall be. In a spherical lens system, there is the following relational expression, where H is the incident height of the ray passing through the center of the aperture, that is, the principal ray, at the refraction point q. H i h i L i =H 1 h 1 L 1 (1-1) H i /H 1 = h i /h 1 (1+L 1 δ i ) (1-2) H i Q xi =H 1 Q si h i /h 1 (1+L 1 τ i ) (1-3) From these equations, Q si /L i =1/ε i (1/L 1i ) (1-4) Q xi /L i =1/ ε i (1/L 1i ) (1-5) Q si /Q zi =1+L 1 δ i /1+L 1 τ i (1-6) Considering the above formula, the aberration-free design of the present invention is as follows. The expressions for each aberration of the Fresnel lens system are as follows. Spherical aberration The imaging formula for paraxial rays is n/s 0 −n′/s′ 0 = n−n′
/r 0 (2-1) If the distances from the refraction point q to the object point O and the image point O' are p and p', and the angle of incidence and angle of refraction are i and i', respectively, then according to the sine law, sini/s−r 0 = sinθ/−p sini′/s′−r 0 = sinθ/
−p′ p/s=1−h 2 /2s (1/r−1/s)−Δr/s s′/p′=1+h 2 /2s′(1/r−1/s′)−Δr/ s
′ Therefore, n(1/r 0 −1/s)=n′(1/r 0 −1/s′)p/s
s'/p' = n' (1/r 0 -1/s') [1-h 2 /2s (1/r-1
/s)+h 2 /2s'(1/r-1/s')+(1/s-1/s')Δr] Since the second and subsequent terms in brackets are correction terms, n(1/ r−1/s)≒Q s , then n/s−n′/s′=n−n′/r 0 +h 2 /2Q 2 s Δ(1/ns
) − Qs (1/s − 1/s′) Δr If the spherical aberration is Δs, Δs′, s=s 0 +Δs, s′=
s′ 0 +Δs′ ∴ n/s 2 / 0 Δs−n′/s′ 0 2 Δs′= −h 2 /2Q 2 s [Δ(1/ns)−(P−)] (2−2) Refraction If there are k surfaces and Δs 1 = 0, then (2−
2) Adding the sides of the equation, Δs′ k = s′ 0k /2n′ k h 4 / 1 /h 2 / kk1 (h i /h 1 ) 4 Q 2 si [Δ(1/ns) i −(P−) i ] where (h i /h 1 ) 4 Q 2 si [Δ(1/ns) i −(P−) i ]=A i (
2-3), the condition that there is no spherical aberration is i1 A i = 0 comatic aberration In Fig. 2, let the straight line passing through the off-axis object point and the spherical center c, and the line between the axis and the r 0 plane. Let the height to the intersection be h 0 . Furthermore, the ray of light emitted from the object point reaches the image point ' after being refracted at a height q from the axis.
For angles and other quantities, use the symbols shown. From formula (2-2), n/S 2 / 0 Δs−n′/s′ 0 2 Δs′=−h/− 2 /2Q 2 s Δ
(1/ns) +(h/-+h 0 ) 2 /2Q 2 s (P-) If cosθ≒1-h 2 / 0 /2r 2 / 0 , then Δ=Δs-h 2 / 0 /2 s 0 −r 0 /r 2 / 0 Similarly, Δ′=Δs′−h 2 / 0 /2 s′ 0 −r 0 /r 2 / 0 ∴ n/s 2 / 0 Δ−n′/s′ 0 2 Δ ′ =n/s 2 / 0 Δs−n′/s′ 0 2 Δs′ −nh 2 / 0 /2 s 0 −r 0 /s 2 / 0 r 2 / 0 +n′h 2 / 0 /2 s
0 −r 0 /s′ 0 2 −r 2 / 0 = −h 2 /2Q 2 s [Δ(1/ns)−(P−)] +h 0 Q 2 s (P−)−h 2 / 0 /2Q 2 s (3-1) The lateral magnification β is β=y′/y=s′−r 0 /s−r 0 =np′/n
'p Here, p=s[1-h/- 2 /2s (1/r-1/s)+Δr/s
] ≒s 0 (1+h 2 / 0 /2nr 0 Q s +Δs/-/s 0 ) (1-h
/− 2 /2ns 0 Q s + Δr/s 0 ) p′≒s′ 0 (1+h 2 / 0 /2n′r 0 Q s +Δs/−′/s′ 0 )
(1−h/− 2 /2n′s′ 0 Q s +Δr/s′ 0 ) ∴ β=ns′ 0 /n′s 0 [1+h/− 2 /2Q s Δ(1/ns
) + h 2 / 0 / 2Q s P − (Δs/−/s 0 −Δs/−′/s′ 0 )−(1/s 0
1/s′ 0 )Δr] β 0 =ns′ 0 /n′s 0 (1/s 0 −1/s′ 0 )Δr=(h+h 0 ) 2 /2Q s (P−
) From this, β/β 0 =1+h/- 2 /2Q s [Δ(1/ns)-(P-
)] -h 0 Q s (P-) + h 2 / 0 / 2Q s - (Δs/-/s
0 − Δs/−′/s′ 0 ) Q x −Q s = L, then Δs/−/s 0 −Δs/−′/s′ 0 = 1/L(n/s 2 / 0
Δ−n′/s′ 2 / 0 Δ′) −Δs/−/z 0 −s 0 +Δs/−′/z′ 0 −s′ 0 ∴ β/β 0 =1+h/− 2 /2 Q x Q s /L[Δ(1/ns
)−(P− P)] −h 0 Q x Q s /L(P−)+h 2 / 0 /2 Q x Q s /L +Δs/−/z 0 −s 0 −Δs′/z′ 0 − s′ 0 (3−2) If there are multiple Fresnel surfaces, − i = θ i −θ i-1 −′ i-1 β i = n i s′ i /n′ i s iTherefore, h/ ― i /s ii −θ i-1 +1/β i-1 n i-1 /n′ i-1 h
/- i-1 /s i-1Here , if h/- 1 /s 1 = h 1 /s 1 , β i,k = β i β i+1 ......β k ≒ n i / n′ k s′ k /s i h i /h k h i /s′ i =h i+1 /s i+1 θ i =y i /s i −r 0iFrom these, the following results are derived. i = h i [(s i /s i −r 0i −1)y i /h i +(1/h i −1/
h i-1 )y i +(1/h i-1 −1/h i-2 )y i-1 …−(s 1 /s 1 −r 01
−1) y 1 /h 1 +1] From Lagrange Helmholtz's theorem, n 1 u 1 y 1 = n i u i y i Therefore, (s i /s i −r 0i −1) y i /h i = −n 1 u 1 y 1 /h 2 / 1 ε i (1/h i −1/h i-1 )y 1 ≒−n 1 u 1 y 1 /n i h i-1 h i d′ i- 1And if we set n 1 y 1 /s 1 = w 1 , then i = h i / h 1 [h 1 − (ε 1 − τ i ) w 1 ] h 0i = −h 1 w 1 / h i
If the height from the optical axis of the intersection of the incident ray and the entrance pupil on the first surface of Q si is 1 , then h 1 = 1 = 1 −n 1 H/- 1 /s 1 L 1 +Q zi w 1 / If Q s1 L 1 s 1 is large enough, the second term disappears, so if i = h i / h 1 [ 1 + (1/L 1 + τ i ) w 1 ] Δ 1 = 0, then (1-5 ), and according to equation (2-3), equation (3-2) is β/β 0 =1+1/2 k1 (1/L 1i ) [ 1 + (1/L 1i ) w 1 ] 2 A i +w 1k1 1/ε i (1/L 1i ) [ 1 + (1/L 1 + τ i ) w 1 ] (P-) i +w 2 / 1 /2 k 〓 〓 1 (1/ L 1i ) i −Δs/−′ k /z′ 0k −s′ 0k (3−
3) In equation (3-1), if Δ i =0,
Δ′ i is calculated, but this aberration is (i+1)
After being enlarged by the vertical magnification α α i+1,k = n′ i /n′ k (s′ 0k /s′ 0i h i /h k ) 2 , at the last image plane, Δ
, i = Δ′ i α i+1,k . The aberration throughout the entire system is Δs/-' k /z' 0k -s' 0k = g/2 k1 [ 1 + (1/L 1 + τ i )w 1 ] 2 A i +w 1 g k1 1 /ε i [ 1 + (1/L 1i )w 1 ] (P-) i +w 2 1 g/2 k1 iwhere g=1/n' k (h 1 /h k ) 2 s ′ 0 2 / k /z′ 0k −s
0k If the terms that do not include 1 are a and b, then (3-3)
The formula is β/β 0 = H/− 2 / 1 /2 k1 (1/L 1 + τ i ) A i + 1 w 1k1 (1/L 1 + τ i ) 2 A i + 1 w 1k1 (1/L 1i ) (P−P/−/ε) i +α− Δs/−′ k /z′ 0k −s′ 0k (3−4) Δs′ k /z′ 0k −s′ 0k =H 2 / 1 / 2g k1 A i + 1 w 1 g [ k1 (1/L 1 + τ i ) A i + k1 (P-P/ε) i ] + b Now k1 ( 1/L 1i ) A i =− k1 (P−P/−/ε) i =0 (3−5), then Δ′k=(H/− 1 /2g k1 A i + b) (z′ 0k − s′ pk ), and Δ′ k is equal to ± 1 . Furthermore, in equation (3-4), for ± 1
If the average value of y′ k is ′ k , β/β 0 =y/−′ k /y′ 0k =Δs/−′ k /s′ 0k −z′
0k + α In other words, ′ k is a linear function of Δ′ k , and the slope of the straight line y′ 0k / (s′ 0k −z′ 0k ) is approximately equal to the slope of the principal ray, so the ray flux is the principal ray It has symmetry around . Therefore (3-
Equation 5) is a condition for removing coma aberration. Astigmatism If one annular zone is considered to be a part of a spherical surface with a radius r centered at a fixed point c, the spherical beam emitted from the object point O s lies on a straight line s c due to its rotational symmetry.
As shown in Figure 3, the incident height of the principal ray is H, and the intersection angles between the incident ray and q are i and j.
and i' and j' for the refracted rays. Also
Let θ, ω be the angles at which qc, q , and sc intersect with the optical axis x, The meridional light flux is considered to be two rays passing through adjacent annular zones, and the distance between them is a minute amount dh. If q n = p n and q′ n = p′ n , then di = du − dθ = [1/rcos (i-j) − 1/p n cosj] dh di′ = du′ − dθ = [1 /rcos(i-j)-1/p′ n co
sj′] dh From the relationship ncosidi=n′cosi′di′, n/p n cosicosj−n′/p′ n cosi′cosj′ = cos(i−j)/r(ncosi−n′cosi′) and From equation (4-1), n/p s −n′/p′ s ≒n/p n (1−tanitanj) −n′/p′ n (1−tani′tanj′) (4−2) Now, Let p s −p n = δ, p′ s −p′ n = δ′, and if δ is small, 1/p s = 1/p n −δ/p 2 / n 1/p′ s = 1/p ′ n −δ′
/p′ n 2From this and equation (4-2), n/p 2 / n δ−n′/p′ n 2 δ′=n/p n tanitanj −n′/p′ n tani′tanj′ p n ≒s 0 , p′ n ≒s′ 0 , tani≒tanu−tanθ, n/s 2 / 0 δ−n′/s′ 0 2 δ′=H 2 Q 2 x (1/ N x s 0 −1/
N′ x s′ 0 )(4-3) However,

【式】【formula】

【式】 物体の大きさをyとすれば、 Qx−Qs=ny/s0H=n′y′/s′0H これと(4―3)式より δ/ny2−δ′/n′y′2=(Qx/L)2(1/Nxs0−1
/N′xs′0)(4―3′) 1/nz0−1/n′z′0=Qx/QsΔ(1/ns)+L/Qs
(4-4) これより 1/Nxs0−1/N′xs′0=Δ(1/ns)−Qs/Qx(P−
) である。屈折面が複数個あれば、添字iを付け
て 1/Nxis0i−1/N′xis′0i=Δ(1/ns)i−(P−
i +L1εi/1+L1τi(P−)i (4―5) (4―3′)式は辺々を加え δ1/n1y21−δ′k/n′ky′k 2k1 Q2xi/L2i(1/Nxis0i−1/N′xis′0i) δ1=0であれば、非点収差がないためにはδ′k
=0であるから右辺の和がゼロであればよい。 右辺は(1―5)、(4―5)式などによりk1 (1/L1+τi2Aik1 (1/L1+τi)(P−P/―/ε)i= 0 (4―6) 歪曲収差 フレネル面頂点Aから絞り3とその像3′ま
での距離をそれぞれz,z′、近軸光線によるそ
れをz0,z′0、球面収差をΔz,Δz′とすれば、 z=z0+Δz、z′=z′0+Δz′ 近軸光線による倍率をβ0とすれば、 β0=(z′0−s′0)z0/(z0−s0)z′0 Δz/z0−s0−Δz/z0=Δz/z20(1/s0−1/z0) Δz/z0−Δz′/z′0=−1/L(n/z20Δz−n′
/z′0 2Δz′) +Δz/z0−s0−Δz′/z′0−s′0 これと(2―2)式より β=β0{1+H2Q2x/2L[Δ(1/nz)−(P−)
]− H2/2Qx} 屈折面がk個であれば、 β01β02………β0kk1 β0iとして β=k1 β0i{1+H21/2k1 (Hi/H12Q2xi/Li[Δ(1/nz)i −(P−)i]−H21/2k1 (Hi/H12Qxi i} (5―1) ここで(1―1)、(1―3)式を考えると、 (Hi/H12Q2xi/Li[Δ(1/nz)i−(P−)i
−Li/Qxi i] =1/L1ε2i(1+L1τi3[Qsi/QxiΔ(1/nz
i −(P−)i−Qsi/Q2xiLiPi+(1−Q2si/Q2
xi)(P− P)i] に変形できる。さらに(4―4)式より[ ]
内は Δ(1/ns)i−(P−)i+Li/QxiPi−Qsi/Q2xi
LiPi +(1−Q2si/Q2xi)(P−)i =Δ(1/ns)i−(P−)i+(L1εi/1+L1τi
2 i +2(L1εi/1+L1τi)(P−)i 結局(5―1)式は β=k1 β0i{1+1/2H2 1L2 1k1 [(1/L1+τi3Ai +(1/L1+τii+2(1/L1+τi2(P−P
/―/ε)i]} (5―2) 従つて歪曲収差がない条件はk1 (1/L1+τi3Aik1 (1/L1+τii +2k1 (1/L1+τi2(P−P/―/ε)i=0 (5―3) 像画湾曲 物体面および像画の曲率半径をR,R′とす
る。A点を原点にとると、軸外の物点、像点
O′、屈折点qの座標は、 ……(s0+y2/2R、y) ′……(s′0+y′2/2R′、y′) 球欠的光束は(4―1)式より n/ps−ncosi/r=n′/p′s−n′cosi′/r (6―1) cosi≒1−i2/2、i≒H(1/r0−1/z0これらから(6―1)式の左辺は 右辺は同様にして 辺々相引いて 1/n′R′s−1/nRs=(Qx/L)2Δ(1/ns)+P
−(Qs/L)2(P −) (6―2) 屈折面がk個あれば 1/n′kR′sk−1/n1Rs1=1/L21k1 (1+L1τi2Aik1 Pi+1/L21k1 (1+L1τi/εi2[1− (1+L1δi/1+L1τi2] ×(P−)ik1 (1/L1+τi2Aik1 i +2k1 (1/L1+τi) (P−P/―/ε)i (6―3) 従つてRs1=∞であれば、球欠的像面湾曲がな
いためには、上式の右辺がゼロになればよい。 子午的光束は(4―2)式より n/pn(1−tanitanj)−n/rcosi =n′/p′n(1−tani′tanj′)−n′/rcosi′(6
―4) であるから、球欠的光束の場合を参考にする
と、(6―4)式の左辺は (6―4)式の右辺も同様にして求め辺々相引
くと 1/n′R′n−1/nRn=(Qx/L)2[Δ(1/ns)+
2(1/Nxs0− 1/N′xs′0)] +P−(Qs/L)2(P−) 屈折面がk個あれば、(6―2)式より 1/n′kR′nk−1/n1Rn1=1/n′kR′sk−1/n1Rs1 +2k1 (Qxi/Li)(1/Nxis0i−1/N′xis′0i) =3k1 (1/L1+τi2Aik1 i +4k1 (1/L1+ τi)(P−/ε)i (6―5) 従つてRn1=∞であれば、子午的像面に湾曲が
ないためには、上式の右辺がゼロであればよ
い。 上記説明した各収差をまとめると、 球面収差 S(1)=ΣAi=Σ1/ε2i[Δ(1/ns)i−(P−
i] 子午的像面湾曲 S(3)=3Σ(1/L1+τi2Ai+Σi+4Σ(1/L1
τi) (P−P/―/ε)i 球欠的像面湾曲 S(4)=Σ(1/L1+τi2Ai+Σi+2Σ(1/L1
τi) (P−P/―/ε)i 歪曲収差 S(5)=Σ(1/L1+τi3Ai+Σ(1/L1+τii +2Σ(1/L1+τi2(P−P/―/ε)i 平均的像面湾曲 S(3)+S(4)/2=2Σ(1/L1+τi2Ai+Σi +3Σ(1/L1+τi)(P−P/―/ε)i 非点収差 S(3)−S(4)/2=Σ(1/L1+τi2Ai+Σ(1/L1
+τi) (P−P/―/ε)i (7―1) ここでΣは面番号を1からkまでとすれば、k1
の意味である。 各収差をゼロにするためには、上記の式の右辺
をゼロにすればよい。 コマ収差を除去する条件は Σ(1/L1+τi)Ai=−Σ(P−P/―/ε)i=0(7
―1′) 屈曲面が通常の球面であれば、i=Piである
から、これらの式の最後の項は消えてザイデルの
三次収差式を与えることが直ちにわかる。 以下本発明によつて開示した三次収差式を2個
のフレネル面より構成されるレンズ系に適用して
みる。 実施例: 第1図は従来技術である2個の球面より構成さ
れ、かつ各々の曲率中心が絞りの中心に一致する
レンズである。このレンズには主光線に関する対
象性からコマ収差はないが、第1表の子午面光線
の追跡結果からわかるように球面収差と像画湾曲
が大きい。本実施例では第1面と第2面の球面を
フレネル面に置きかえて前記の無収差条件を適用
してコマ収差と像画湾曲を同時に除去しようとす
るものである。 いま第1面に関する物空間の屈折率をn1、像空
間の屈折率をn′1、第2面に関するそれらをn2
n′2とし、各々の近軸曲率半径r01,r02の中心を絞
りの中心に一致させると、各面については 1/L1+τi=0 となり、(7―1)、(7―1′)式のこれを含む項
はすべてゼロになる。 全系としてコマ収差がないためには(7―1′)
式の −Σ(P−P/―/ε)i=0 より P11=−ε1/ε2(P22) (7―2) である。また全系として像面湾曲がないためには
(7―1)式中の像面湾曲の式より Σ=0、
即ち12=0であればよい。 これを(7―2)式に代入して P11=−ε1/ε2(P21) レンズ系の前後の屈折率が同じならば、n1
n′2として (7―3) 物体が十分遠方にあれば、s01=∞として 1/ε1=Qs1=n1/r01 h2/h1=1−d′1/s′01=n1/n2(1−n1−n2/n1 r0
2
/r01)(7―4) 1/s02=1/s′01−d′1=−1/n2r01/n1−n2−r
02 Qs2=n2(1/r02−1/s02)=n2/r02(1/1−n1
n2/n1 r02/r01) (7―5) 1/ε2=(h2/h12Qs2 これに(7―4)、(7―5)式を代入すれば、 ∴ ε1/ε2=1−n1/n2+n1/n2 r01/r02 これと(7―3)式より このようにフレネル面を定めると、球面収差以外
の収差が除去される。 第5図は12=∞の場合であり、(7―6)
式より r01=−n2/n1r02 上記の場合の子午面追跡計算結果を示すと第2
表の通りになるが、この表から大きい画角におい
てもコマ収差と像画湾曲が除去され、球面収差も
十分小さいことがわかる。 本発明は、以上に説明した通り、2個の球面よ
り構成される球面レンズでは、像面湾曲を除去で
きないが、フレネル面にかえることにより、コマ
収差と像面湾曲を同時に除去でき、球面収差も著
しく低減させることができ、またプラスチツク材
を使うことにより軽量なレンズが得られ、量産化
が可能になる。
[Formula] If the size of the object is y, then Q x −Q s = ny/s 0 H=n′y′/s′ 0 H From this and equation (4-3), δ/ny 2 −δ′ /n′y′ 2 = (Q x /L) 2 (1/N x s 0 −1
/N' x s' 0 ) (4-3') 1/nz 0 -1/n'z' 0 = Q x /Q s Δ(1/ns) + L/Q s P
(4-4) From this, 1/N x s 0 -1/N' x s' 0 = Δ(1/ns) - Q s /Q x (P-
). If there are multiple refractive surfaces, add a subscript i and write 1/N xi s 0i −1/N′ xi s′ 0i = Δ(1/ns) i −(P−
) i +L 1 ε i /1+L 1 τ i (P-) i (4-5) Formula (4-3') adds the sides and becomes δ 1 /n 1 y 2 / 1 −δ′ k /n′ k y' k 2 = k1 Q 2 / xi /L 2 / i (1/N xi s 0i -1/N' xi s' 0i ) If δ 1 = 0, there is no astigmatism. δ′k
= 0, so the sum on the right side only needs to be zero. The right side is k1 (1/L 1 + τ i ) 2 A i + k1 (1/L 1 + τ i ) (P-P/-/ε ) i = 0 (4-6) Distortion aberration The distances from Fresnel surface vertex A to the aperture 3 and its image 3' are z and z' respectively, those due to paraxial rays are z 0 and z' 0 , and the spherical aberration is Δz , Δz′, then z=z 0 +Δz, z′=z′ 0 +Δz′ If the magnification by the paraxial ray is β 0 , then β 0 = (z′ 0 −s′ 0 )z 0 /(z 0 −s 0 )z′ 0 Δz/z 0 −s 0 −Δz/z 0 = Δz/z 2 / 0 (1/s 0 −1/z 0 ) Δz/z 0 −Δz′/z′ 0 =−1/L(n/z 2 / 0 Δz−n′
/z' 0 2 Δz') +Δz/z 0 -s 0 -Δz'/z ' 0 -s' 0From this and equation (2-2), β=β 0 {1+H 2 Q 2 / x /2L[Δ (1/nz)-(P-)
]− H 2 /2Q x } If there are k refracting surfaces, β 01 β 02 ………β 0k = k1 β 0i , β= k1 β 0i {1+H 2 / 1 /2 k1 (H i /H 1 ) 2 Q 2 / xi / Li [Δ(1/nz) i − (P-) i ] − H 2 / 1 / 2 k1 (H i /H 1 ) 2 Q xi i } (5-1) Now, considering equations (1-1) and (1-3), (H i /H 1 ) 2 Q 2 / xi /L i [Δ(1/nz) i −( P-) i
−L i /Q xi i ] =1/L 1 ε 2 / i (1+L 1 τ i ) 3 [Q si /Q xi Δ(1/nz
) i −(P−) i −Q si /Q 2 / xi L i P i +(1−Q 2 / si /Q 2
/ xi )(P-P) i ]. Furthermore, from equation (4-4) [ ]
Inside is Δ(1/ns) i −(P−) i +L i /Q xi P i −Q si /Q 2 / xi
L i P i + (1-Q 2 / si / Q 2 / xi ) (P-) i = Δ (1/ns) i - (P-) i + (L 1 ε i /1 + L 1 τ i
) 2 i +2(L 1 ε i /1+L 1 τ i )(P-) iIn the end, equation (5-1) is β= k1 β 0i {1+1/2H 2 1 L 2 1k1 [(1/ L 1i ) 3 A i +(1/L 1i ) i +2(1/L 1i ) 2 (P-P
/-/ε) i ]} (5-2) Therefore, the condition for no distortion is k1 (1/L 1 + τ i ) 3 A i + k1 (1/L 1 + τ i ) i + 2 k1 (1/L 1i ) 2 (P-P/-/ε) i = 0 (5-3) Image curvature Let the radii of curvature of the object surface and image be R and R'. Taking point A as the origin, the coordinates of the off-axis object point, image point O', and refraction point q are: ′, y′) From equation (4-1), the spherical luminous flux is n/p s −ncosi/r=n′/p′ s −n′cosi′/r (6-1) cosi≒1−i 2 /2, i≒H (1/r 0 −1/z 0 ) From these, the left side of equation (6-1) is Do the same for the right side Subtracting the sides, 1/n′R′ s −1/nR s = (Q x /L) 2 Δ(1/ns) + P
-(Q s /L) 2 (P -) (6-2) If there are k refracting surfaces, 1/n' k R' sk -1/n 1 R s1 = 1/L 2 / 1k1 (1+L 1 τ i ) 2 A i + k1 P i +1/L 2 / 1k1 (1+L 1 τ ii ) 2 [1− (1+L 1 δ i /1+L 1 τ i ) 2 ] × (P −) i = k1 (1/L 1i ) 2 A i + k1 i +2 k1 (1/L 1i ) (P-P/-/ε) i (6-3) Therefore, if R s1 =∞, the right side of the above equation should be zero in order to avoid truncated field curvature. From equation (4-2), the meridional luminous flux is n/p n (1-tanitanj)-n/rcosi = n'/p' n (1-tani'tanj')-n'/rcosi'(6
-Four) Therefore, referring to the case of a spherical luminous flux, the left side of equation (6-4) is Similarly, find the right side of equation (6-4) and subtract each side to get 1/n'R' n -1/nR n = (Q x /L) 2 [Δ(1/ns) +
2 (1/N x s 0 - 1/N' x s' 0 )] +P- (Q s /L) 2 (P-) If there are k refracting surfaces, 1/n from equation (6-2) ′ k R′ nk −1/n 1 R n1 =1/n′ k R′ sk −1/n 1 R s1 +2 k1 (Q xi /L i )(1/N xi s 0i −1/N ′ xi s′ 0i ) =3 k1 (1/L 1i ) 2 A i + k1 i +4 k1 (1/L 1 + τ i )(P−/ε) i (6− 5) Therefore, if R n1 = ∞, the right side of the above equation should be zero in order for there to be no curvature in the meridional image plane. To summarize each aberration explained above, spherical aberration S(1)=ΣA i =Σ1/ε 2 / i [Δ(1/ns) i −(P−
) i ]Meridional curvature of field S(3)=3Σ(1/L 1i ) 2 A ii +4Σ(1/L 1 +
τ i ) (P-P/-/ε) i Spherical curvature of field S(4)=Σ(1/L 1i ) 2 A ii +2Σ(1/L 1 +
τ i ) (P-P/-/ε) i Distortion S(5)=Σ(1/L 1i ) 3 A i +Σ(1/L 1i ) i +2Σ(1/L 1i ) 2 (P-P/-/ε) i Average field curvature S(3)+S(4)/2=2Σ(1/L 1i ) 2 A ii +3Σ(1/L 1i )(P-P/-/ε) i Astigmatism S(3)-S(4)/2=Σ(1/L 1i ) 2 A i +Σ(1/L 1
i ) (P-P/-/ε) i (7-1) Here, if Σ is the surface number from 1 to k, then k1
This is the meaning of In order to make each aberration zero, the right side of the above equation should be made zero. The condition for removing comatic aberration is Σ(1/L 1i )A i =−Σ(P−P/−/ε) i =0(7
-1') If the curved surface is a normal spherical surface, then i = P i , so it is immediately obvious that the last term in these equations disappears, giving Seidel's third-order aberration equation. Hereinafter, the third-order aberration formula disclosed by the present invention will be applied to a lens system composed of two Fresnel surfaces. Embodiment: FIG. 1 shows a prior art lens that is composed of two spherical surfaces, each of whose center of curvature coincides with the center of the aperture. This lens has no comatic aberration due to its symmetry with respect to the principal ray, but as can be seen from the tracing results of meridional rays in Table 1, spherical aberration and image curvature are large. In this embodiment, the spherical surfaces of the first and second surfaces are replaced with Fresnel surfaces, and the above-mentioned aberration-free condition is applied to simultaneously eliminate coma aberration and image curvature. Now let the refractive index of the object space with respect to the first surface be n 1 , the refractive index of the image space with n′ 1 , those with respect to the second surface be n 2 ,
n' 2 , and if the center of each paraxial radius of curvature r 01 and r 02 coincides with the center of the aperture, then for each surface, 1/L 1i =0, (7-1), (7- 1') All terms containing this in equation become zero. In order to have no comatic aberration as a whole system (7-1')
From the equation -Σ(P-P/-/ε) i = 0, P 1 - 1 = -ε 12 (P 2 - 2 ) (7-2). Also, in order to have no field curvature as a whole system, from the field curvature equation in equation (7-1), Σ=0,
That is, it is sufficient if 1 + 2 = 0. Substituting this into equation (7-2), P 11 = −ε 12 (P 2 + 1 ) If the refractive index at the front and rear of the lens system is the same, then n 1 =
as n′ 2 (7-3) If the object is far enough away, s 01 = ∞ and 1/ε 1 = Q s1 = n 1 / r 01 h 2 / h 1 = 1-d′ 1 /s′ 01 = n 1 / n 2 (1−n 1 −n 2 /n 1 r 0
2
/r 01 )(7-4) 1/s 02 =1/s' 01 -d' 1 =-1/n 2 r 01 /n 1 -n 2 -r
02 Q s2 = n 2 (1/r 02 - 1/s 02 ) = n 2 / r 02 (1/1 - n 1 -
n 2 /n 1 r 02 /r 01 ) (7-5) 1/ε 2 = (h 2 /h 1 ) 2 Q s2 Substituting equations (7-4) and (7-5) into this, we get ∴ ε 12 =1−n 1 /n 2 +n 1 /n 2 r 01 /r 02From this and equation (7-3) When the Fresnel surface is defined in this way, aberrations other than spherical aberration are removed. Figure 5 shows the case of 1 = 2 = ∞, (7-6)
From the formula, r 01 = −n 2 / n 1 r 02 The meridian tracking calculation result in the above case is shown as the second
As shown in the table, it can be seen that coma aberration and image curvature are eliminated even at large angles of view, and spherical aberration is also sufficiently small. As explained above, a spherical lens composed of two spherical surfaces cannot eliminate field curvature, but by replacing it with a Fresnel surface, coma aberration and field curvature can be simultaneously eliminated, and spherical aberration can be eliminated. In addition, by using plastic materials, lightweight lenses can be obtained and mass production becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術である2個の球面より構成さ
れたコマ収差のない球面レンズ、第2図はフレネ
ル面に関する収差理論式を導出するための説明
図、第3図はコマ収差の説明図、第4図は非点収
差の説明図、第5図は本発明の係る無収差フレネ
ルレンズ系を示す図である。 1…フレネルレンズの各輪帯状屈折面、3…絞
り、3′…絞りの像。
Figure 1 shows a conventional spherical lens composed of two spherical surfaces and has no coma, Figure 2 is an explanatory diagram for deriving the aberration theory formula regarding a Fresnel surface, and Figure 3 is an explanatory diagram of coma aberration. , FIG. 4 is an explanatory diagram of astigmatism, and FIG. 5 is a diagram showing an aberration-free Fresnel lens system according to the present invention. 1...Each annular refractive surface of the Fresnel lens, 3...Aperture, 3'...Image of the aperture.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 2個のフレネル面を共軸に配置したレンズ系
において、光軸からの高さがhである各輪帯状屈
折面を曲率半径がrである球面の一部と考えて、
各屈折面の中心を絞りの中心に一致するように構
成し、かつ第1面の物空間の屈折率をn1、第2面
の物空間の屈折率をn2、第1面のフレネル面半径
1、第2面のフレネル面半径を2で表わし、更
にh=0における曲率半径rを近軸曲率半径とし
て第1面の近軸曲率半径をr01、第2面の近軸曲
率半径をr02で表わすとき、 を満足するようにフレネル面半径を選ぶことに
より全系としてコマ収差と像面湾曲を除去した無
収差フレネルレンズ系。
[Claims] 1. In a lens system in which two Fresnel surfaces are arranged coaxially, each annular refractive surface whose height from the optical axis is h is considered to be a part of a spherical surface whose radius of curvature is r. hand,
The center of each refractive surface is configured to coincide with the center of the diaphragm, and the refractive index of the object space of the first surface is n 1 , the refractive index of the object space of the second surface is n 2 , and the Fresnel surface of the first surface The radius is expressed as 1 , the Fresnel surface radius of the second surface is expressed as 2 , and the radius of curvature r at h=0 is the paraxial radius of curvature, and the paraxial radius of curvature of the first surface is r 01 and the paraxial radius of curvature of the second surface is When expressed as r 02 , An aberration-free Fresnel lens system that eliminates comatic aberration and field curvature as a whole system by selecting a Fresnel surface radius that satisfies the following.
JP6745782A 1982-04-23 1982-04-23 Stigmatic fresnel lens system Granted JPS5816201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6745782A JPS5816201A (en) 1982-04-23 1982-04-23 Stigmatic fresnel lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6745782A JPS5816201A (en) 1982-04-23 1982-04-23 Stigmatic fresnel lens system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7265879A Division JPS55164801A (en) 1979-06-09 1979-06-09 Aberrationless fresnel lens system

Publications (2)

Publication Number Publication Date
JPS5816201A JPS5816201A (en) 1983-01-29
JPH0132961B2 true JPH0132961B2 (en) 1989-07-11

Family

ID=13345482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6745782A Granted JPS5816201A (en) 1982-04-23 1982-04-23 Stigmatic fresnel lens system

Country Status (1)

Country Link
JP (1) JPS5816201A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL85862A (en) * 1988-03-24 1993-01-14 Orbot Systems Ltd Telecentric imaging system
JP2002055273A (en) * 2000-08-07 2002-02-20 Enplas Corp Image pickup lens
GB2426075B (en) * 2005-05-12 2007-12-05 Everspring Ind Co Ltd Thin-type spherical lens

Also Published As

Publication number Publication date
JPS5816201A (en) 1983-01-29

Similar Documents

Publication Publication Date Title
JP2628627B2 (en) Aspheric objective lens for endoscope
JP4611111B2 (en) Optical system
JPH04157412A (en) Projector lens system
JP2991524B2 (en) Wide-angle lens
JPH0829726A (en) Beam shaping optical system
JPH04215610A (en) Element of single-hybrid reflecting and refracting optical system
JPS6232414A (en) Eyepiece lens
JPH0784185A (en) Reflection optical system
JPH0310925B2 (en)
JPH0132961B2 (en)
JPS6212483B2 (en)
JP3724520B2 (en) Infrared optics
JPS6142245B2 (en)
JP2006313213A (en) Optical system for illumination and microscope lighting system
JPS60121412A (en) Aspherical collimator lens
JPS5811913A (en) Reflecting and refracting lens
US2627205A (en) Corrected four-unit photographic objective comprising two half systems enclosing thediaphragm
JPS60203909A (en) Compound lens of distributed refractive index rod and homogeneous convex lens
JPS59195213A (en) Photographic compact lens
JP2006154365A (en) Optical system
JPH0293511A (en) Telecentric ftheta lens
JPS6053847B2 (en) front aperture lens
US2640393A (en) Reflecting optical objective
JP3033914B2 (en) Objective lens for optical disc
JPS6111721A (en) Collimating lens