JPH01312067A - Vacuum arc vapor deposition apparatus - Google Patents

Vacuum arc vapor deposition apparatus

Info

Publication number
JPH01312067A
JPH01312067A JP14255888A JP14255888A JPH01312067A JP H01312067 A JPH01312067 A JP H01312067A JP 14255888 A JP14255888 A JP 14255888A JP 14255888 A JP14255888 A JP 14255888A JP H01312067 A JPH01312067 A JP H01312067A
Authority
JP
Japan
Prior art keywords
magnetic field
vacuum
vacuum arc
substrates
arc evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14255888A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamagaki
浩 玉垣
Tetsuya Yoshikawa
哲也 吉川
Kunihiko Tsuji
辻 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14255888A priority Critical patent/JPH01312067A/en
Publication of JPH01312067A publication Critical patent/JPH01312067A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form good-quality films free from contamination with molten grains on substrates, respectively, by forming cusp-shaped magnetic fields in a vacuum treatment chamber, introducing the plasma of evaporated grains to substrates by means of the above magnetic fields, and also disposing the substrates so that they are optically shaded from evaporation sources. CONSTITUTION:Coils 1, 2 are oppositely provided to the upper and lower outside parts of a vacuum treatment chamber 3 having a shape of rotor with a cruciform section, respectively, and formed into the same polarity by means of excitation, by which cusp-shaped magnetic fields CF are formed. Vacuum arc evaporation sources 5 are provided, respectively, to the close vicinities of the positions where the intensity of the magnetic fields CF is maximal so that the evaporation surfaces of the above evaporation sources 5 are allowed to face the magnetic fields CF, and substrates 6 are disposed, respectively, in the positions in which the magnetic fields CF diverge and which are optically shaded from the evaporation sources 5. When the evaporation sources 5 are ignited in the above constitution and film-forming materials are evaporated, a plasma consisting of the ions of the evaporated materials is allowed to flow efficiently via the magnetic fields CF to the substrates 6 and deposited so as to be formed into films on the substrates 6, respectively. On the other hand, molten grains are not ionized, and are allowed to proceed straight independently of the magnetic fields CF and stopped by the collision with the walls of the treatment chamber 3, and as a result, these molten grains are not deposited on the substrates 6. By this method, the good-quality films free from contamination with the molten grains can be rapidly formed on the substrates 6, respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、切削工具、ヘアリング、ギア等の耐摩耗性コ
ーティング、電子部品、プリント回路、光学、磁気装置
等の分野での被膜形成に使用される真空アーク蒸着装置
の改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to the formation of coatings in the fields of wear-resistant coatings for cutting tools, hair rings, gears, etc., electronic components, printed circuits, optics, magnetic devices, etc. This invention relates to improvements in vacuum arc evaporation equipment used.

(従来の技術) 真空アーク蒸着法は、基本的には、真空室内で蒸発源(
陰極)からアーク放電により被膜材料粒子を発生させ、
これをマイナスのバイアス電圧を印可した基板上に堆積
させる方法であり、蒸発源である陰極からは高アーク電
流により高エネルギーの陰極材料原子がプラズマビーム
となって放出され、陰極と基板との間にかけられた電圧
により加速され、基板上に被膜が形成されるようにする
。この真空アーク蒸着法の特長は1つは、入射粒子のエ
ネルギーが高いため、被膜の密度が高く、強度および耐
久性に優れた膜が得られる点であり、それにもまして実
用的に注目されるのは、成膜速度が速く生産性が高い点
である。
(Prior art) The vacuum arc evaporation method basically uses an evaporation source (
Coating material particles are generated by arc discharge from the cathode,
This is a method in which this is deposited on a substrate to which a negative bias voltage is applied, and high-energy cathode material atoms are emitted as a plasma beam from the cathode, which is the evaporation source, due to a high arc current, and between the cathode and the substrate. The voltage applied causes acceleration and formation of a film on the substrate. One of the features of this vacuum arc evaporation method is that because the energy of the incident particles is high, a film with high density, strength and durability can be obtained, and it is also attracting attention from a practical standpoint. The main points are that the film formation rate is fast and the productivity is high.

真空アーク蒸着法の進歩した従来技術の代表的なものと
しては、特公昭58−3033号、特公昭52−146
90号がある。特公昭58−3033号は、要約して[
真空室内で蒸発源物質とアーク電極との間にアーク放電
を発生させ、蒸発源物質の原子およびイオンよりなる粒
子のビームを射出し、この際100ボルト以下の低電圧
で約50〜300アンペアのアーク放電電流を供給して
各粒子に約10〜100電子ボルトの運動エネルギーを
与え、上記粒子を基板の表面上に堆積させる」ことを要
旨とし、この方法を実施する装置として、ビームの指向
性を高めるために、陽極を円錐台筒状に形成してビーム
指向方向を決定し、その開口度および拡径角度を制御す
ることによってビーム幅を規制することが開示され、さ
らに指向性を高めるために磁界の利用が有効の旨記載さ
れている。
Representative examples of advanced vacuum arc deposition techniques include Japanese Patent Publication No. 58-3033 and Japanese Patent Publication No. 52-146.
There is No. 90. Special Publication No. 58-3033 summarizes [
An arc discharge is generated between the source material and the arc electrode in a vacuum chamber, ejecting a beam of particles consisting of atoms and ions of the source material, at a low voltage of less than 100 volts and a current of about 50 to 300 amperes. The gist of this method is to provide an arc discharge current to impart kinetic energy of about 10 to 100 electron volts to each particle, depositing the particles on the surface of a substrate. In order to increase the directivity, it is disclosed that the anode is formed into a truncated conical tube shape to determine the beam directivity direction, and the beam width is controlled by controlling its aperture degree and diameter expansion angle. It is stated that the use of magnetic fields is effective.

また、特公昭52−14690号は、要約して[冷却床
に配置した蒸発源金属陰極、陰極の蒸発面に放電の陰極
点を発生させるトリガ電極、排気室およびアーク電極を
備える真空金属被覆装置において、陽極が外囲器であり
、陰極の蒸発面は外囲器内空間に面し、かつ陰極点保持
装置が陰極の蒸発面を制御しかつ陰極点が陰極の蒸発面
から非蒸発面へ転移するのを妨げるように陰極の近くに
配置される」ことを要旨とするもので、この構造により
アークの安定性、陰極材料利用率を向上させている。
In addition, Japanese Patent Publication No. 52-14690 summarizes [a vacuum metal coating device comprising an evaporation source metal cathode placed on a cooling bed, a trigger electrode for generating a cathode point of discharge on the evaporation surface of the cathode, an exhaust chamber, and an arc electrode]. , the anode is an envelope, the evaporation surface of the cathode faces the inner space of the envelope, and the cathode spot holding device controls the evaporation surface of the cathode, and the cathode spot is moved from the evaporation surface of the cathode to the non-evaporation surface. This structure improves arc stability and cathode material utilization.

(発明が解決しようとする問題点) 従来の真空アーク蒸着技術は、前記2特公に開示の技術
を含めて、陰極蒸発面から発生するイオンや中性子から
なるプラズマ粒子の他に、陰極材料の溶融粒子、すなわ
ちプラズマ粒子に較べて大きいマクロパーティクル、マ
クロドロップレット等が発生し、これが基板上の堆積膜
中に混入して膜表面粗度の悪化、密着力の低下を起し、
また反応性コーテイング膜の場合には熔融粒子が未反応
のまま膜中にとり込まれるという点に解決すべき問題点
がある。
(Problems to be Solved by the Invention) Conventional vacuum arc evaporation techniques, including the techniques disclosed in the above-mentioned two patent publications, in addition to plasma particles consisting of ions and neutrons generated from the cathode evaporation surface, Molten particles, i.e., macro particles, macro droplets, etc., which are larger than plasma particles, are generated, and these are mixed into the deposited film on the substrate, causing deterioration of the film surface roughness and reduction of adhesion.
Further, in the case of a reactive coating film, there is a problem to be solved in that molten particles are incorporated into the film without reacting.

この問題点を解決する従来技術としては、第8図の磁界
利用装置があり、すなわち真空アーク蒸発源(a)と基
板(b)との間を直角に曲げられソレノイド(C)が配
置された真空に維持される管路(d)で連結し、発生源
から発生したプラズマはソレノイド(C)の磁場の作用
のもとに曲がり管路(d)内を曲進して基板(b)まで
導かれるが、溶融粒子は磁場の影響を受けずに直進して
光学的に影となる位置にある基板(b)には到達できず
、こうして溶融粒子を含まぬ良質な被膜の形成が可能で
あるとしている。
As a conventional technique to solve this problem, there is a magnetic field utilizing device shown in Fig. 8, in which a solenoid (C) is bent at right angle between the vacuum arc evaporation source (a) and the substrate (b). They are connected by a pipe (d) maintained in a vacuum, and the plasma generated from the source bends under the action of the magnetic field of the solenoid (C) and travels through the pipe (d) to the substrate (b). However, the molten particles go straight without being affected by the magnetic field and cannot reach the optically shaded substrate (b), making it possible to form a high-quality film that does not contain molten particles. It is said that there is.

しかしこの技術は、図示のように装置が大掛かりで、利
用空間が狭〈実施、制御に困難があり、有効なコーティ
ングエリアが小さいために、工業的規模での実施には不
向きである。
However, as shown in the figure, this technique is unsuitable for implementation on an industrial scale because the equipment is large, the available space is limited (implementation and control are difficult, and the effective coating area is small).

以上次第で、本発明は従来技術の真空アーク蒸着装置は
、通常の構造では蒸発源からの溶融粒子が堆積被膜中に
混入することを避けられず、第8図の構造では装置が大
掛かりであり、しかもコーティングエリアが小さく工業
的装置としては不経済であるという問題に解決を与える
ことを目的とする。
Based on the above, the present invention provides that the vacuum arc evaporation apparatus of the prior art cannot avoid mixing of molten particles from the evaporation source into the deposited film in the conventional structure, and that the structure of FIG. 8 requires a large-scale apparatus. Moreover, the purpose is to provide a solution to the problem that the coating area is small and is uneconomical as an industrial device.

(問題点を解決するための手段) 前記目的は、本発明においては、真空アーク蒸着装置を
カスプ形状磁場に沿う一定の配置のもとに構成すること
により達成される。
(Means for Solving the Problems) In the present invention, the above object is achieved by configuring the vacuum arc evaporation apparatus in a fixed arrangement along the cusp-shaped magnetic field.

カスプ(Cusp)形状磁場とは、第1図に示すように
、同一軸線(X)上に同じ磁性で向い合う1対の磁極を
対設し、例えばコイル(1)(2)を平行に向い合わせ
、矢印(C)で示すように互いに逆の方向に電流を流す
ことにより、その間に生ずる磁力線(F)が磁極中央の
仮想の面(S)を対称面とする尖頭山形対称形に分布す
る磁場(CF)を言う。
As shown in Figure 1, a cusp-shaped magnetic field is a magnetic field in which a pair of magnetic poles with the same magnetism and facing each other are placed on the same axis (X), and for example, coils (1) and (2) are oriented in parallel. By applying currents in opposite directions as shown by the arrows (C), the lines of magnetic force (F) generated between them are distributed in a symmetrical peak-to-peak shape with the imaginary plane (S) at the center of the magnetic pole as the plane of symmetry. It refers to the magnetic field (CF).

このカスプ形状磁場では、電荷を持つプラズマ粒子が磁
力線を横切って外に出ようとするとこれを妨げる方向に
力が働くことにより、第2図にハツチングを施して示す
内部領域(P)の範囲内に閉じ込められるようになるの
で、この部分のプラズマは磁場が軸線(X)のまわりに
集束する点(八)あるいは磁場が発散する中央面(S)
の磁場を横切らない位置より外部に流れ出ようとする。
In this cusp-shaped magnetic field, when charged plasma particles try to cross the magnetic field lines and go out, a force acts in a direction that prevents them from moving out, so that they are within the internal region (P) shown by hatching in Figure 2. Therefore, the plasma in this part is either at the point (8) where the magnetic field converges around the axis (X) or at the central plane (S) where the magnetic field diverges.
Try to flow out from a position that does not cross the magnetic field.

本発明では、このカスプ形状磁場の特性を利用し、具体
的には、カスプ形状磁場の前記(八)点(少なくともそ
の1つ)にプラズマ給源となる真空アーク発生源を設置
してここからカスプ形状磁場の中央に向けて堆積材料を
蒸発させてプラズマ粒子を射出し領域(P)につめ込む
ことにより、その駆動力乃至はポテンシャルのもとにこ
の領域からプラズマがカスプ形状磁場外に流出しようと
する中央面(S)の外周部に基板を配置することにより
流出プラズマを基板上に被膜として堆積させるようにす
る。その一方でそれと同時に基板又は真空アーク蒸発源
からみて相手方が光学的に影となるような配置を与え、
すなわち両者間に見透しを遮る何等からの光学遮蔽が介
在するようにすることにより、真空アーク蒸発源から発
生する中性の溶融粒子が磁場の影響を受けずに直進し、
見透しのない位置にある基板には到達できないようにす
る。このような役割を果たす光学遮蔽としては、真空処
理室の部分を利用してもよく、あるいは特に遮蔽体を設
けてもよいこととなる。
In the present invention, by utilizing the characteristics of this cusp-shaped magnetic field, specifically, a vacuum arc generation source serving as a plasma supply source is installed at the above-mentioned (8) points (at least one of them) of the cusp-shaped magnetic field, and from there the cusp-shaped magnetic field is By evaporating the deposited material toward the center of the shaped magnetic field and packing the plasma particles into the injection region (P), the plasma will flow out from this region outside the cusp shaped magnetic field under its driving force or potential. By arranging the substrate at the outer periphery of the central plane (S), the outflowing plasma is deposited as a film on the substrate. On the other hand, at the same time, the other party is placed in an optical shadow when viewed from the substrate or vacuum arc evaporation source,
In other words, by interposing an optical shield between the two that blocks visibility, neutral molten particles generated from the vacuum arc evaporation source travel straight without being affected by the magnetic field.
Make it impossible to reach a board located in a position where there is no visibility. As an optical shield that plays such a role, a portion of the vacuum processing chamber may be used, or a shield may be provided in particular.

またカスプ形状磁場を形成する磁極としては、上記のコ
イルに限らず永久磁石を利用してもよく、あるいは両者
を混用しても同様にカスプ形状磁場を形成することがで
きる。
Further, as the magnetic poles for forming the cusp-shaped magnetic field, permanent magnets may be used in addition to the above-mentioned coils, or a cusp-shaped magnetic field can be similarly formed by using a combination of both.

これらの構想を総合して、本発明の真空アーク蒸着装置
は、その具体的全体構成としては、基板面上に真空アー
ク蒸着により被膜を形成するため、真空処理室に対し同
じ極性で向い合う1対の磁極を同一軸線上に対設して真
空処理室内の両磁極間空間にカスプ形状磁場を形成する
ようにし、カスプ形状磁場に関連して磁場が点状に集束
し磁場強度が最大となる位置の少なくとも1つの近傍に
被膜形成物質の真空アーク蒸発源をその蒸発面を磁場中
央に向けて配設し、磁場が発散する中央面の周囲位置の
近傍に基板を配置し、かつ基板が真空アーク蒸発源の蒸
発面とその間に介在する光学遮蔽により相互に光学的に
影となる非見透しの位置を占めるようにしたことを特徴
とする。
Combining these concepts, the vacuum arc evaporation apparatus of the present invention has a specific overall configuration in which a film is formed on a substrate surface by vacuum arc evaporation. A pair of magnetic poles are arranged oppositely on the same axis to form a cusp-shaped magnetic field in the space between the two magnetic poles in the vacuum processing chamber, and the magnetic field is focused in a point shape in relation to the cusp-shaped magnetic field, and the magnetic field strength is maximized. A vacuum arc evaporation source for a film-forming substance is arranged near at least one of the positions, with its evaporation surface facing the center of the magnetic field, a substrate is arranged near a position around the center plane where the magnetic field diverges, and the substrate is placed in a vacuum. It is characterized in that the evaporation surface of the arc evaporation source and the optical shielding interposed therebetween occupy a non-see-through position that optically shadows each other.

(作 用) 本発明によると、真空アーク蒸発源の蒸発面から光学的
に影となる位置に配置した基板には、中性粒子である熔
融粒子は到達せず、蒸発粒子プラズマはカスプ形状磁場
に導かれ効率良く基板に流れて堆積するので、溶融粒子
の混入が少ない良質膜を形成することができる。
(Function) According to the present invention, molten particles, which are neutral particles, do not reach the substrate placed in a position optically shaded from the evaporation surface of the vacuum arc evaporation source, and the evaporation particle plasma is caused by the cusp-shaped magnetic field. Since the molten metal is guided by the molten metal and efficiently flows and deposits on the substrate, a high-quality film with less contamination of molten particles can be formed.

また本発明の装置は第8図の従来技術の装置に較べて小
形化できるにかかわらず、プラズマの発散は平面的に起
こるのでこれを利用して同時に多数の基板の被膜蒸着を
実施でき、コーティングエリアが大きく、処理効率が良
い。
Although the apparatus of the present invention can be made more compact than the prior art apparatus shown in FIG. 8, since plasma divergence occurs in a plane, this can be utilized to perform coating deposition on a large number of substrates at the same time. Large area and high processing efficiency.

(実施例) 以下、本発明を第3〜7図を参照し、実施例に即して具
体的に説明し、その特質を明らかにする。第3図は本発
明装置の基本的構成を示す第1実施例の縦断側面図、第
4図はその横断平面図、第5図はその作動状況を模式的
に示す断面斜視図である。
(Examples) Hereinafter, the present invention will be specifically explained based on examples with reference to FIGS. 3 to 7, and its characteristics will be clarified. FIG. 3 is a longitudinal sectional side view of the first embodiment showing the basic structure of the device of the present invention, FIG. 4 is a lateral plan view thereof, and FIG. 5 is a sectional perspective view schematically showing its operating condition.

この実施例では、真空処理室(3)は軸線(X)を中心
とする十字形断面の回転体の形状の密閉可能な室で真空
ポンプ(4)により排気され真空化される。
In this embodiment, the vacuum processing chamber (3) is a sealable chamber in the shape of a rotating body with a cross-shaped cross section centered on the axis (X), and is evacuated and evacuated by a vacuum pump (4).

真空処理室(3)の上下の部分の外側には、同一極性で
向い合う1対の磁極として、前記のコイル(1)(2)
が軸線(X)上に相対して配置され、互いに逆の(C)
方向に通電して励磁することにより互に向い合う方向に
同一の極性となる。このようにすることにより、前記の
カスプ形状の磁場(CF)が形成される。真空処理室(
3)の壁を非磁性材料で形成することにより外部のコイ
ルにより真空室内にかかる磁場が支障なく形成される。
On the outside of the upper and lower parts of the vacuum processing chamber (3), the above-mentioned coils (1) and (2) are installed as a pair of magnetic poles facing each other with the same polarity.
are arranged oppositely on the axis (X), and opposite to each other (C)
By applying current and excitation in the directions, the polarity becomes the same in the directions facing each other. By doing so, the cusp-shaped magnetic field (CF) described above is formed. Vacuum processing chamber (
3) By forming the wall with a non-magnetic material, the magnetic field applied inside the vacuum chamber by the external coil can be created without any problem.

カスプ形状磁場(CP)が点状に集束し磁場強度が最大
となる位置、すなわちコイル(1)(2)の内側に該当
する真空処理室(3)内の位置、またはその近傍に真空
アーク蒸発源(5)をその蒸発面がカスプ形状磁場の中
央に向うようにして配設する。
Vacuum arc evaporation occurs at or near the position in the vacuum processing chamber (3) that corresponds to the inside of the coils (1) and (2), which is the position where the cusp-shaped magnetic field (CP) is focused into a point and the magnetic field strength is maximum. The source (5) is arranged with its evaporation surface towards the center of the cusp-shaped magnetic field.

真空アーク蒸発源(5)には、図示省略されているが、
電源、アークの点弧機構、アークの安定化機構、水冷機
構等を必要に応じて付属させる。
Although not shown in the vacuum arc evaporation source (5),
A power source, arc ignition mechanism, arc stabilization mechanism, water cooling mechanism, etc. are attached as necessary.

これらは前出特発に準じた任意の構造とすることができ
る。通常、真空アーク蒸発源(5)はカスプ形状磁場の
2つの磁場集束点の双方に設けるが、その一方だけであ
ってもよい。
These can have any structure similar to the above-mentioned special attack. Usually, the vacuum arc evaporation source (5) is provided at both of the two magnetic field focus points of the cusp-shaped magnetic field, but it may be provided only at one of them.

被膜を堆積しようとする基板(6)は、真空処理室(3
)内にあって、カスプ形状磁場(CF)が発散してくる
位置、すなわちこの磁場の対称中央面(S)上で軸線(
X)より外方に放射状に発散してくる周囲位置に配置す
る。同時にこの位置は、真空アーク蒸発源(5)より基
板(6)が光学的に真空処理室(3)の壁の影となるよ
うな、すなわち互に見透しの利かない位置であるように
する。すなわちこの実施例では真空処理室(3)の壁が
見透しを遮る光学遮蔽としての役割を果たす。基板(6
)の数は回倒では8つで、第4図に示すように軸線(×
)まわりの点対称に配置されている。これらの基板(6
)は真空処理室(3)に接地しておいてもよいが、図示
省略の基板ホルダに取付は負のバイアス電圧を印可して
もよい。
The substrate (6) on which the coating is to be deposited is placed in a vacuum treatment chamber (3).
) and the position where the cusp-shaped magnetic field (CF) diverges, that is, on the central plane of symmetry (S) of this magnetic field, is the axis (
X) is placed at a peripheral position that radially diverges outward. At the same time, this position is such that the substrate (6) is optically in the shadow of the wall of the vacuum processing chamber (3) compared to the vacuum arc evaporation source (5), that is, the position is such that they cannot see through each other. do. That is, in this embodiment, the wall of the vacuum processing chamber (3) serves as an optical shield that blocks visibility. Substrate (6
) is 8 in rotation, and as shown in Figure 4, the number of axis lines (×
) are arranged symmetrically around the points. These boards (6
) may be grounded to the vacuum processing chamber (3), or a negative bias voltage may be applied to the substrate holder (not shown) for attachment.

このような装置構成において、真空アーク蒸発源(5)
に点弧し被膜となる物質を蒸発させると、第5図にハツ
チングを施して示すように、電子と蒸発物質のイオンか
らなるプラズマはカスプ形状磁場の中央部に向けて放射
されその過程でこのプラズマは磁場の影響を受けて、真
空処理室(3)の壁に向かわずにカスプ形状磁場が発散
する個所から流出して基板(6)に効率良く輸送され、
基板上に被膜となって堆積する。一方、溶融粒子はイオ
ン化していないのが通常であるので、真空アーク蒸発源
で発生したとしても、磁場の影響を受けずに直進して真
空処理室の壁に衝突して留められ基板(6)には堆積し
ない。
In such a device configuration, a vacuum arc evaporation source (5)
When the film is ignited to evaporate the material that forms the film, a plasma consisting of electrons and ions of the evaporated material is emitted toward the center of the cusp-shaped magnetic field, as shown by the hatching in Figure 5, and in the process, this plasma is emitted toward the center of the cusp-shaped magnetic field. Under the influence of the magnetic field, the plasma flows out from the location where the cusp-shaped magnetic field diverges without heading toward the wall of the vacuum processing chamber (3), and is efficiently transported to the substrate (6).
It is deposited as a film on the substrate. On the other hand, molten particles are usually not ionized, so even if they are generated in a vacuum arc evaporation source, they will travel straight without being affected by the magnetic field and will collide with the wall of the vacuum processing chamber and be stopped. ) is not deposited.

また本発明によると、基板(6)は磁場が軸線(X)よ
り周囲に360°全方位に向い発散する位置に置かれる
ため、第4図のように多くの基板を配置して同時処理可
能で、大きいコーティングエリアを得ることができる。
Further, according to the present invention, since the substrate (6) is placed in a position where the magnetic field is directed and diverged in all directions around the axis (X) at 360 degrees, many substrates can be arranged and processed simultaneously as shown in Fig. 4. With this, a large coating area can be obtained.

第6図は、本発明の第2実施例を示し、第1実施例と均
等の各部は同一符号を使用して指摘し説明の重複を省略
する。
FIG. 6 shows a second embodiment of the present invention, and parts equivalent to those in the first embodiment are indicated using the same reference numerals, and redundant explanation will be omitted.

この実施例では、カスプ形状磁場(CF)を形成する磁
極として、前実施例のコイルの代わりに、永久磁石(L
A) (2A)を、同じ極、例えばN極を向い合わせて
設置している。また光学遮蔽として、前実施例のように
真空処理室(3)の壁を利用する代わりに、真空アーク
蒸発源(5)の蒸発面の前方にこれを囲む蒸発源と同軸
の円筒体の光学遮蔽(7)を特設している。この円筒体
(7)はまたシールド機構となり、溶融粒子の飛散を防
止し、プラズマの通路を確保し、さらに真空アーク蒸発
源(5)の陰極に対する陽極としてプラズマ流を制御す
る役割を持たせることができ、また真空処理室(3八)
の形状を図示のように簡単化して製作を容易にするのに
も役立つ。
In this embodiment, a permanent magnet (L
A) (2A) are installed with the same poles, for example, N poles facing each other. In addition, instead of using the wall of the vacuum processing chamber (3) as in the previous embodiment as an optical shield, a cylindrical optical shield coaxial with the evaporation source surrounding the vacuum arc evaporation source (5) is placed in front of the evaporation surface of the vacuum arc evaporation source (5). A special shield (7) is provided. This cylindrical body (7) also serves as a shield mechanism, prevents the scattering of molten particles, secures a plasma passage, and also has the role of controlling the plasma flow as an anode for the cathode of the vacuum arc evaporation source (5). It also has a vacuum processing chamber (38).
It is also useful for simplifying the shape as shown in the figure to facilitate manufacturing.

第7図は本発明の第3実施例を示し、前実施例と均等の
各部は同一符号を使用して指摘し説明の重複を省略する
FIG. 7 shows a third embodiment of the present invention, in which parts equivalent to those in the previous embodiment are indicated using the same reference numerals, and redundant explanation will be omitted.

この実施例は多数あるいは大形の基板の処理を可能とし
たもので、大形の真空処理室(3B)内に軸線(X)の
方向にわたって基板(6)を列設し、真空アーク蒸発源
(5B)、磁極(IB) (2B)、光学遮蔽(7B)
からなる機構を軸線(X)方向に移動させて真空アーク
蒸着を実施するようにしたものである。
This embodiment makes it possible to process many or large substrates, and the substrates (6) are arranged in a row along the axis (X) in a large vacuum processing chamber (3B), and the vacuum arc evaporation source is (5B), magnetic pole (IB) (2B), optical shielding (7B)
This mechanism is configured to move in the axis (X) direction to carry out vacuum arc deposition.

(発明の効果) 以上のように本発明によると、真空アーク蒸着に際し、
熔融粒子の混入のない良質の被膜を形成させることがで
き、またその形成速度が速いとともに広い被膜面積の基
板あるいは多数の基板に同時に蒸着できて、量産および
大形基板の蒸着が可能で、工業的生産に通し装置の稼働
効率が良く、装置費用は安価に留る等の諸効果を実現す
ることができる。
(Effects of the Invention) As described above, according to the present invention, during vacuum arc deposition,
It is possible to form a high-quality film without contamination with molten particles, and the formation speed is fast, and it can be deposited on a wide coating area or on many substrates at the same time, making mass production and deposition on large substrates possible, making it suitable for industrial use. It is possible to realize various effects such as high operating efficiency of the equipment and low cost of the equipment through efficient production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるカスプ形状磁場の形成状況を示す
斜視図、第2図はこの磁場内のプラズマの所在状況を示
す断面図、第3図は本発明の真空アーク蒸着装置の基本
的第1実施例の縦断側面図、第4図はその横断平面図、
第5図はその作動状況を模式的に示す縦断斜視図、第6
図は本発明の第2実施例の縦断側面図、第7図は本発明
の第3実施例の縦断側面図、第8図は従来技術の真空蒸
着装置の1例の縦断側面図である。 (1)(2)・・・コイル、(IA) (2A)・・・
永久磁石、(3)(3A)(3B)・・・真空処理室、
(4)・・・真空ポンプ、(5)(5B)・・・真空ア
ーク蒸発源、(6)(6B)・・・基板、(7)(7B
)・・・光学遮蔽、(X)・・・軸線、(C)・・・電
流方向、(F)・・・磁力線、(CF)・・・カスプ形
状磁場、(S)・・・中央面、(P)・・・プラズマ閉
鎖領域、(A)・・・磁場集束点、(a)・・・真空ア
ーク蒸発源、(b)・・・基板、(C)・・・ソレノイ
ド、(d)・・・管路。 茄] 図 算3図
FIG. 1 is a perspective view showing the formation of a cusp-shaped magnetic field according to the present invention, FIG. 2 is a cross-sectional view showing the location of plasma within this magnetic field, and FIG. A vertical side view of the first embodiment, FIG. 4 is a cross-sectional plan view thereof,
Figure 5 is a vertical perspective view schematically showing its operating condition;
7 is a longitudinal sectional side view of a second embodiment of the invention, FIG. 7 is a longitudinal sectional side view of a third embodiment of the invention, and FIG. 8 is a longitudinal sectional side view of an example of a conventional vacuum evaporation apparatus. (1) (2)...Coil, (IA) (2A)...
Permanent magnet, (3) (3A) (3B)...vacuum processing chamber,
(4)...Vacuum pump, (5)(5B)...Vacuum arc evaporation source, (6)(6B)...Substrate, (7)(7B)
)...Optical shielding, (X)...Axis, (C)...Current direction, (F)...Magnetic field lines, (CF)...Cusp-shaped magnetic field, (S)...Central plane , (P)...Plasma closed region, (A)...Magnetic field focusing point, (a)...Vacuum arc evaporation source, (b)...Substrate, (C)...Solenoid, (d )...pipeline. Eggplant] Illustration 3

Claims (6)

【特許請求の範囲】[Claims] (1)基板面上に真空アーク蒸着により被膜を形成する
ため、真空処理室に対し同じ極性で向い合う1対の磁極
を同一軸線上に対設して真空処理室内の両磁極間空間に
カスプ形状磁場を形成するようにし、カスプ形状磁場に
関連して磁場が点状に集束し磁場強度が最大となる位置
の少なくとも1つの近傍に被膜形成物質の真空アーク蒸
発源をその蒸発面を磁場中央に向けて配設し、磁場が発
散する中央面の周囲位置の近傍に基板を配置し、かつ基
板が真空アーク蒸発源の蒸発面とその間に介在する光学
遮蔽により相互に光学的に影となる非見透し位置を占め
るようにしたことを特徴とする真空アーク蒸着装置。
(1) In order to form a film on the substrate surface by vacuum arc evaporation, a pair of magnetic poles facing each other with the same polarity are placed oppositely on the same axis, and a cusp is formed in the space between the two magnetic poles in the vacuum processing chamber. The vacuum arc evaporation source of the film-forming substance is placed near at least one position where the magnetic field is focused into a point in relation to the cusp-shaped magnetic field and the magnetic field strength is maximum, and the evaporation surface is placed at the center of the magnetic field so as to form a shaped magnetic field. The substrate is placed near the central plane where the magnetic field diverges, and the substrate is optically shaded by the evaporation surface of the vacuum arc evaporation source and the optical shielding interposed between them. A vacuum arc evaporation device characterized in that it occupies a non-see-through position.
(2)前記両磁極が対設されたコイルからなり両コイル
に互に反対方向の電流を通ずるところの特許請求の範囲
第1項記載の真空アーク蒸着装置。
(2) The vacuum arc evaporation apparatus according to claim 1, which comprises a coil in which both the magnetic poles are arranged opposite each other, and currents in opposite directions are passed through both coils.
(3)前記両磁極が対設された永久磁石からなり両永久
磁石を同じ極性の側で向い合わせた特許請求の範囲第1
項記載の真空アーク蒸着装置。
(3) Claim 1, which comprises permanent magnets with both magnetic poles facing each other, with both permanent magnets facing each other with the same polarity side.
Vacuum arc evaporation apparatus described in .
(4)前記光学遮蔽が真空処理室の部分からなるところ
の特許請求の範囲第1項記載の真空アーク蒸着装置。
(4) The vacuum arc evaporation apparatus according to claim 1, wherein the optical shield comprises a portion of a vacuum processing chamber.
(5)前記光学遮蔽が真空アーク蒸発源の蒸発面を同軸
に囲む筒状の遮蔽部材からなるところの特許請求の範囲
第1項記載の真空アーク蒸着装置。
(5) The vacuum arc evaporation apparatus according to claim 1, wherein the optical shield comprises a cylindrical shielding member coaxially surrounding the evaporation surface of the vacuum arc evaporation source.
(6)真空処理室内においてカスプ形状磁場形成装置が
その軸線の方向に移動するようになっており、その方向
に沿って基板が列設されているところの特許請求の範囲
第1項記載の真空アーク蒸着装置。
(6) The vacuum according to claim 1, wherein the cusp-shaped magnetic field forming device moves in the direction of its axis in the vacuum processing chamber, and the substrates are arranged in a row along that direction. Arc evaporation equipment.
JP14255888A 1988-06-09 1988-06-09 Vacuum arc vapor deposition apparatus Pending JPH01312067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14255888A JPH01312067A (en) 1988-06-09 1988-06-09 Vacuum arc vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14255888A JPH01312067A (en) 1988-06-09 1988-06-09 Vacuum arc vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JPH01312067A true JPH01312067A (en) 1989-12-15

Family

ID=15318132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14255888A Pending JPH01312067A (en) 1988-06-09 1988-06-09 Vacuum arc vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPH01312067A (en)

Similar Documents

Publication Publication Date Title
EP0495447B1 (en) Method of controlling an arc spot in vacuum arc vapor deposition and an evaporation source
US6214183B1 (en) Combined ion-source and target-sputtering magnetron and a method for sputtering conductive and nonconductive materials
JP3868483B2 (en) Rectangular vacuum arc plasma source
JPH08176807A (en) Method and apparatus for vapor-depositing highly ionized medium in electromagnetically controlled environment
KR20140143352A (en) Filtered cathodic arc deposition apparatus and method
KR100343033B1 (en) Vacuum arc evaporation source and vacuum arc deposition apparatus
EP0334204A2 (en) Process and apparatus for coating articles
RU2000127113A (en) METHOD AND DEVICE FOR DEPOSITION OF TWO-AXIS TEXTURED COATINGS
US7622721B2 (en) Focused anode layer ion source with converging and charge compensated beam (falcon)
US5262611A (en) Apparatus for ion-plasma machining workpiece surfaces including improved decelerating system
JP2851320B2 (en) Vacuum arc deposition apparatus and method
EP0094473B1 (en) Apparatus and method for producing a stream of ions
JPH11269634A (en) Vacuum arc evaporation source
US20090020415A1 (en) "Iontron" ion beam deposition source and a method for sputter deposition of different layers using this source
JPH01312067A (en) Vacuum arc vapor deposition apparatus
KR20010021341A (en) Arc type ion plating apparatus
JP4019457B2 (en) Arc type evaporation source
KR101921139B1 (en) Ion beam generating apparatus
JP3409874B2 (en) Ion plating equipment
JP3464998B2 (en) Ion plating apparatus and method for controlling thickness and composition distribution of deposited film by ion plating
JP3079802B2 (en) Plasma gun
JP2012092380A (en) Vacuum arc deposition method
JPH0548299B2 (en)
KR101005204B1 (en) Facing target type sputtering apparatus
KR100684736B1 (en) Film forming apparatus