JPH01310933A - Preparation of container made of synthetic resin - Google Patents

Preparation of container made of synthetic resin

Info

Publication number
JPH01310933A
JPH01310933A JP63140858A JP14085888A JPH01310933A JP H01310933 A JPH01310933 A JP H01310933A JP 63140858 A JP63140858 A JP 63140858A JP 14085888 A JP14085888 A JP 14085888A JP H01310933 A JPH01310933 A JP H01310933A
Authority
JP
Japan
Prior art keywords
mold
container
parison
temperature
blow molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63140858A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
宏 青山
Azuma Kidokoro
城所 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokan Kogyo Co Ltd
Original Assignee
Tokan Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokan Kogyo Co Ltd filed Critical Tokan Kogyo Co Ltd
Priority to JP63140858A priority Critical patent/JPH01310933A/en
Publication of JPH01310933A publication Critical patent/JPH01310933A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • B29C2049/7864Temperature of the mould
    • B29C2049/78645Temperature of the mould characterised by temperature values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C49/6605Heating the article, e.g. for hot fill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline

Abstract

PURPOSE:To almost prevent the generation of heat shrinkage even when high temp. filling is performed by applying blow molding to a parison, which is formed from amorphous polyethylene terephthalate by injection molding, in a heated mold and quenching the molded body while holding the same to a pressurized state. CONSTITUTION:An amorphous polyethylene terephthalate resin is used to be molded into a parison having an arbitrary shape by injection molding and the molded parison is preheated before cooled perfectly and subjected to stretching blow molding to form, for example, a bottle-shape container. At this time, the surface temp. of a mold is set to 140 deg.C or higher and the polyethylene terephthalate constituting the container is set to crystallinity of 40% or more. Thereafter, the surface temp. of the mold is allowed to fall to 100 deg.C or lower while blow pressure is kept. Next, the blow pressure is released and the mold is opened to take out the bottle-shape container.

Description

【発明の詳細な説明】[Detailed description of the invention]

に産業上の利用分野】 本発明は合成樹脂製容器の製造方法に係り、とくに非晶
性ポリエチレンテレフタレート樹脂(A−PET)を用
いた耐熱性に優れた容器の製造方法に関する。 K発明の概要】 本発明は、非晶性ポリエチレンテレフタレートによって
射出成形されたパリソンを予熱して140℃以上に加熱
された金型内でブロー成形を行なうと同時に熱固定を行
ない、ついで加圧状態に保持しながらこの金型を100
’C以下の温度まで急冷し、その後に金型から容器を取
出すようにしたものであって、高温充填を行なってもほ
とんど熱収縮を起さないようにした容器の製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing containers made of synthetic resin, and particularly to a method for manufacturing containers with excellent heat resistance using amorphous polyethylene terephthalate resin (A-PET). KSummary of the Invention The present invention involves preheating a parison injection-molded with amorphous polyethylene terephthalate and blow-molding it in a mold heated to 140°C or higher, simultaneously heat-setting it, and then placing it in a pressurized state. Hold this mold at 100
The present invention relates to a method for manufacturing a container in which the container is rapidly cooled to a temperature below 1000 C, and then the container is removed from the mold, and almost no thermal shrinkage occurs even when high-temperature filling is performed.

【従来の技術】[Conventional technology]

近年、ガラス製容器の代替え品として、使捨て式のプラ
スチック製容器が広く用いられるようになっている。と
くに最近では、ポリエチレンテレフタレート樹脂のもつ
耐薬品性J3よび機械的強度、透明性、あるいはポリエ
チレン樹脂等よりも優れた炭酸ガス透過性により、炭酸
飲料やジュース用の容器として用いられるようになって
いる。しかしジュース用の容器として用いる場合には、
充填の際に高温殺菌を行なうために、その容器には耐熱
性および耐熱収縮性が要求される。f2菌条件は、ジュ
ースの種類によって、また製造工程によって必ずしも一
定ではないが、一般には85〜95℃の範囲である。 ポリエチレンテレフタレート樹脂は、延伸ブロー成形し
ただけでは、70℃程度の温度で熱収縮してしまう。そ
こでこのような容器の耐熱性および耐熱収縮性の向上の
ために種々の技術が利用される。第1の方法は、射出成
形された有底パリソンを一旦延伸ブロー成形して容器を
作る。そしてこの容器を熱固定用の金型を用いて熱固定
する。 熱固定用の金型は予め加熱しておき、一定の時間で熱固
定を行なった後に、金型を冷却してから容器を取出すよ
うにしている。この場合に容器はその内部が加圧される
ために、金型の壁面に密着されるようになっている。第
2の方法は、上記第1の方法における延伸ブロー成形時
に金型を加熱しておき、同時に熱固定を行なう。そして
金型がら取出すとともに、このときに熱収縮を許容する
。 そして収縮した容器と同程度の容積をもった別の金型で
再度延伸ブロー成形を行なうようにしている。
In recent years, disposable plastic containers have become widely used as an alternative to glass containers. In particular, recently, polyethylene terephthalate resin has come to be used as containers for carbonated drinks and juices due to its J3 chemical resistance, mechanical strength, transparency, and carbon dioxide permeability that is superior to polyethylene resin. . However, when used as a juice container,
In order to perform high temperature sterilization during filling, the container is required to have heat resistance and heat shrinkage resistance. The f2 bacteria conditions are not necessarily constant depending on the type of juice or manufacturing process, but are generally in the range of 85 to 95°C. If polyethylene terephthalate resin is simply subjected to stretch blow molding, it will thermally shrink at a temperature of about 70°C. Therefore, various techniques are used to improve the heat resistance and heat shrinkage resistance of such containers. The first method is to make a container by once stretch blow molding an injection molded parison with a bottom. This container is then heat-set using a heat-setting mold. The mold for heat setting is heated in advance, and after heat setting is performed for a certain period of time, the mold is cooled and then the container is removed. In this case, since the inside of the container is pressurized, the container is brought into close contact with the wall surface of the mold. In the second method, the mold is heated during stretch blow molding in the first method, and heat setting is performed at the same time. Then, the mold is taken out and heat shrinkage is allowed at this time. Stretch blow molding is then performed again using another mold having a volume comparable to that of the contracted container.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら上記第1の方法によると、はぼ同一の大き
さの2種類の金型を必要とする。また1度延伸ブロー成
形を行なわなければならず、しかもその容器は最終製品
とほぼ同一形状で凹凸を有し複雑な形状の場合がある。 従ってこのような容器と対応する形状の第2の金型に対
する位置合わせが非常に面倒になる。また金型に入れら
れる容器は、延伸ブローの後に放冷されて冷えているた
めに、再度金型の熱で加熱することになり、エネルギ的
に無駄が多い方法である。 上記第2の方法も、延伸ブロー兼熱固定用の金型と、最
終ブロー金型とを必要とする。しかも熱固定後の収縮に
よって2つの金型の大きさが異なる。よって大きさの異
なる2種類の金型が必要になり、コストが高くなるばか
りか、装置が大型化することになる。また2つの金型の
大きさの関係は、熱固定後に1度収縮を許容するために
、その収縮Mが樹脂のグレードによって、また成形条件
によって左右されることになり、バランスをとる必要が
ある点で応用性に欠ける。さらに熱固定後に再度延伸ブ
ローを行なうために、この延伸ブローに伴う残留応力が
容器に存在することになり、高温充填の際の耐熱収縮性
に悪影響を及ぼす問題がある。 本発明はこのような問題点に鑑みてなされたものであっ
て、金型の種類が少なく、また装置が小型化でき、しか
も高温充@時の収縮率を実用上支障のない範囲に押える
ことが可能な耐熱性の合成樹脂製容器の製造方法を提供
することを目的とするものである。 K問題点を解決するための手段】 本発明は、非晶性ポリエチレンテレフタレート樹脂によ
って射出成形された有底パリソンを完全に冷却しない内
に、さらに必要な延伸温度まで予熱し、予め加熱された
金型内で2軸延伸ブロー成形する条件下で熱固定し、ざ
らに金型の温度を急冷し、ある一定温度以下になるまで
成形品を加圧保持した後に金型から取出すようにしたも
のである。 射出成形によってパリソンを成形するための原料である
非晶性ポリエチレンテレフタレートは、その原料の極限
粘度(IV)が0.7〜1.2の範囲内であって、ガラ
ス転移温度が65〜80℃の範囲の非晶性ポリエチレン
テレフタレート樹脂を用い、任意の形状のパリソンを射
出成形によって成形する。この成形体は未配向であって
非晶質なものである。このように成形されたパリソンが
完全に冷却しない内に、予備加熱を行なう。この予備加
熱の方法は従来公知の方法であるオーブン加熱、遠赤外
線加熱、高周波誘電加熱等の方法によって行なう。また
予備加熱の温度は80〜130℃の範囲が良好であって
、好ましくは90〜100℃の範囲に加熱する。予備加
熱を行なった有底パリソンは延伸ブロー成形によって所
定の形状を有する、例えばボトル状容器を形成する。 容器の成形のために金型が用いられる。この金型は加熱
流体および冷却流体を通過させるパッセージを有し、こ
れらが加熱流体および冷却流体の供給源と切換え弁を介
して接続されるようになっている。そして加熱流体供給
バイブには好ましくはバルブおよび逆止弁が接続され、
さらに圧力ゲージを接続するようにしている。一方冷却
流体供給バイブにはバルブと逆止弁とが接続されるよう
にすることが好ましい。また金型のパッセージの出口側
は排出用バイブと接続され、しかもこのバイブにはバル
ブを接続するようにしておけばよい。 このような金型によって延伸ブロー成形を行なう場合に
は、切換え弁を切換えて金型内のパッセージに加熱流体
供給源より加熱流体を供給し、金型の温度を所定の温度
、すなわち好ましくは140℃以上の温度に設定してお
く。この場合の加熱流体は、加熱オイルや加熱蒸気であ
ってよい。そして予備加熱を行なった有底パリソンを金
型の口部に装着するとともに、有底パリソン内に延伸棒
を入れ、軸線方向に延伸する。つぎに上記延伸棒を通し
て供給される圧縮空気によってブロー圧力を加えて半径
方向に延伸する。このときの空゛気の圧力は15〜25
 kg / cノの範囲内であることが好ましい。以上
のような温度および圧力で所定時間、例えば6〜10秒
間保持することにより、延伸された容器の熱固定を行な
う。金型表面の温度は140℃以上の温度、好ましくは
140〜160℃の温度とする。なお延伸ブロー熱固定
を経ることによって、容器を構成するポリエチレンテレ
フタレートは40%以上の結晶化度になる。 この後に金型を開いて容器を取出すことなく、しかもブ
ロー圧力を維持したままで冷Wを行なう。 すなわち切換え弁を切換えて冷却用流体供給バイブを通
して金型のパッセージ内に冷却流体を循環させる。そし
て金型の表面温度を100℃以下の温度に降下させる。 冷却流体としては、例えば10℃程度の冷却水や液体窒
素ガス、液化炭酸ガス等が用いられてよい。降下に要す
る時間は10秒程度で十分である。このように金型内に
ブロー圧力を加えながら冷却を行なうことによって、容
器はそのままの形状で固化する。つぎにブロー圧力を解
除し、金型を開いてボトル状容器を取出すことになる。 なお上記のブロー成形用金型の表面温度、とくにブロー
成形および熱固定を行なう際の温度および冷却の温度が
容器の耐熱性に大きな影響をもつことから、これらの温
度と収縮率の関係について実験的に確認したところ、つ
ぎのような事実が知られた。すなわち実用に耐える耐熱
性を有する容器を製造するためには、ブロー成形時の金
型の表面温度をほぼ140℃以上とするとともに、冷却
の際の金型の温度を100℃以下にすることが好ましい
ことが判明した。 K発明の作用および効果】 従って本発明によれば、射出成形された有底パリソンを
冷却しない内に、延伸温度まで予熱することになる。従
って射出成形時の熱を効率よく利用できるようになる。 またパリソンの温度が延伸温度に達した後に、予め表面
温度が140℃以上である金型内において2軸延伸によ
ってブロー成形を行ない、さらに熱固定を行ない、つい
で金型温度を急冷して取出すようにしている。従ってブ
ロー成形加工の回数が1回で済むようになる。また熱固
定用金型および冷却用金型を別にすることなく、1つの
金型によって容器を成形できるようになる。また再ブロ
ーする必要がなく、熱固定の時点で延伸ブローによる残
留応力が完全に取除けるために、使用時、とくに高温充
填時に容器が収縮することがなくなる。また製造の途中
で別の金型に容器を移す必要がなくなるために、熱固定
時の収縮を考慮する必要がなく、高い精度で成形された
容器を得ることが可能になる。従って本発明によれば、
耐熱性に優れた容器を延伸ブロー成形の条件下で熱源の
効率のよい運用と、高い生産効率で得ることが可能にな
る。またその設備も小型化されることになる。 K実施例】 実施例1 射出成形によって非晶性ポリエチレンテレフタレート樹
脂(IV=0.9)から第1図に示すような有底パリソ
ン10を成形した。そしてこのパリソン10を第4図に
示すような金型18によってブロー成形し、第2図およ
び第3図に示すようなボトル状容器13を成形するよう
にした。有底パリソン10は上端側に7ランジ11を備
えるとともに、7ランジ11の上部がキャップを取付け
ることができる口部12になっている。またこのパリソ
ン10から作られたボトル状容器13は第2図33よび
第3図に示すように、その胴の部分の外周面には縦方向
に突条14が形成されるとともに、突条14間が第3図
に示すように凹部15になっている。 つぎにこのようなパリソン10から容器13を成形する
金型について説明すると、第4図に示すように内部が空
洞になっているブロー成形用金型18は、その上端の開
口に口金19が着脱可能に嵌合されるようになっており
、しかも口金19を通して金型18内にブローバイブ2
0が挿入されるようになっている。また金型18の下端
側の開口は底板21によって閉じられるようになってい
る。さらに金型18内には複数のパッセージ22が上下
方向に貫通して形成されており、これらのパッセージ2
2は第5図に示す蒸気配管23および冷却水配管24と
接続されるようになっている。 蒸気配管23には手動操作弁27.28およびリリーフ
弁29が接続され、さらにその下流側には手動操作弁3
0と一方向弁31と電磁弁32とがその順に接続されて
いる。またリリーフ弁29に対して並列に手動操作弁3
3が接続されるとともに、その先端側には圧力計34が
接続されている。これに対して冷却水配管24には手動
操作弁35.36と、一方向弁37とが接続されている
。 さらに一方向弁37の先端側には電磁弁38が接続され
るようになっている。また冷却水配管24には別の電磁
弁39が接続されており、この電磁弁39を通してタン
クに冷却水が流れるようになっている。また金型18の
パッセージ22の出口側はマニホールド40と接続され
るとともに、マニホールド40の下流側が排出口に接続
されるようになっている。 第1図に示すようなパリソン10は射出成形後完全に冷
却しない内に、100℃に予熱した後に、表面温度が1
60℃に加熱された第4図に示す金型18内に挿入され
た。なおパリソン10はブローバイブ20によって保持
された状態で金型18の凹部内に配されており、ブロー
バイブ20が下方へ移動することによって軸線方向に延
伸された。 そしてこの後にブローバイブ20を通して圧縮空気を供
給することによって、パリソン10が半径方向に膨張し
、金型18の凹部の表面に密着してブロー成形が行なわ
れた。 このようにして表面温度が160℃に加圧された金型1
8内でパリソン10が2軸延伸ブロー成形され、さらに
7秒間熱固定された後に、電磁弁32を閉じるとともに
、電磁弁38を開いて高圧の水(9kg/c/)によっ
て金型18の表面を10秒間冷却し、その後に容器13
を取出した。なお取出したときの金型18の表面温度は
表1に示すように100℃であった。また容器13の胴
の部分の結晶化度は50%になっていた。またこのとき
の成形のサイクルタイムは36秒になっている。 このようなボトル状容器13についてその耐熱性をつぎ
の方法によって測定した。すなわち予め成形された容器
13の内容積を20℃の水を充填して測定した。つぎに
容器13に95℃あるいは85℃の泪を充填し、室温ま
で放冷して排出した。 そして再度20℃の水を充填して容器13の内容積を測
定した。そしてその測定値から熱収縮率を計算した。す
なわち容器13の最初の容積をAとし、充填後の容積を
Bとすると、次式によって熱収縮率が計算される。 熱収縮率−(A−8)/A  X100(%)この実施
例において95℃および85℃の瀾をそれぞれ充填した
とぎの容器の熱収縮率は、1.0%および0.5%であ
って、十分な耐熱性を有することが判明した。 実施例2 ブロー成形用金型の表面温度を140℃に設定し、それ
以外の条件は上記第1の実施例と同様にして耐熱容器1
3を製造した。得られた容器13の胴の部分の結晶化度
は40%であった。このような容器について上記と同様
の方法で熱収縮率を測定したところ、85℃の湯を充填
した場合には表1 実施例と比較例の容器の収縮率 収縮率が0.9%になっていた。 比較例1 ブロー成形用金型の表面温度を120℃に設定し、それ
以外の条件を上記実施例1と同様にして容器を製造した
。この容器の熱収縮率は表1に示すように、充填する湯
の温度が85℃の場合で2.5%、95℃の場合で8.
1%であって、外観上からも収縮が明らかであって実用
的ではなかった。 比較例2 ブロー成形用金型の表面温度を室温にして、それ以外の
条件を上記実施例1と同様にして容器を製造した。この
ときの容器の胴の部分の結晶化度は28%であった。こ
のような容器の熱収縮率は、85℃の渇を充填した場合
に15.0%、95℃の瀉を充填した場合に28.5%
であって、原形をとどめないほどに収縮変形した。
However, according to the first method, two types of molds of approximately the same size are required. In addition, stretch blow molding must be performed once, and the container may have a complex shape with irregularities that are approximately the same as the final product. Therefore, it becomes extremely troublesome to align such a container with a second mold having a corresponding shape. Furthermore, since the container placed in the mold is left to cool after being stretched and blown, it has to be heated again by the heat of the mold, which is a wasteful method in terms of energy. The second method also requires a mold for stretch blowing and heat setting, and a final blow mold. Moreover, the sizes of the two molds differ due to shrinkage after heat setting. Therefore, two types of molds of different sizes are required, which not only increases costs but also increases the size of the apparatus. In addition, the relationship between the sizes of the two molds must be balanced, as shrinkage M is affected by the resin grade and molding conditions in order to allow one degree of shrinkage after heat setting. It lacks applicability in some respects. Furthermore, since stretch blowing is performed again after heat setting, residual stress due to this stretch blowing will be present in the container, which poses a problem of adversely affecting heat shrinkage resistance during high temperature filling. The present invention was made in view of these problems, and aims to reduce the number of types of molds, reduce the size of the device, and suppress the shrinkage rate during high-temperature charging to a range that does not cause any practical problems. It is an object of the present invention to provide a method for manufacturing a heat-resistant synthetic resin container that allows for the following. Means for Solving Problem K] The present invention involves preheating a bottomed parison injection-molded from an amorphous polyethylene terephthalate resin to a necessary stretching temperature before it is completely cooled, and then applying the preheated gold to the required stretching temperature. The product is heat-set in the mold under biaxial stretch blow molding conditions, the temperature of the mold is rapidly cooled, and the molded product is held under pressure until it reaches a certain temperature or below, and then removed from the mold. be. Amorphous polyethylene terephthalate, which is a raw material for forming parisons by injection molding, has an intrinsic viscosity (IV) of 0.7 to 1.2 and a glass transition temperature of 65 to 80°C. A parison of any shape is molded by injection molding using amorphous polyethylene terephthalate resin in the range of . This molded body is unoriented and amorphous. Preheating is performed before the parison formed in this way is completely cooled down. This preheating method is performed by conventionally known methods such as oven heating, far infrared heating, and high frequency dielectric heating. The preheating temperature is preferably in the range of 80 to 130°C, preferably in the range of 90 to 100°C. The preheated bottomed parison is stretch blow molded to form a container having a predetermined shape, for example a bottle shape. A mold is used to mold the container. The mold has passages for passing heating and cooling fluids, which are connected to a source of heating and cooling fluids via switching valves. and preferably a valve and a check valve are connected to the heated fluid supply vibrator,
A pressure gauge is also connected. On the other hand, it is preferable that a valve and a check valve are connected to the cooling fluid supply vibe. Further, the outlet side of the passage of the mold is connected to a discharge vibrator, and a valve may be connected to this vibrator. When performing stretch blow molding using such a mold, the switching valve is switched to supply heating fluid from the heating fluid supply source to the passage in the mold, and the temperature of the mold is maintained at a predetermined temperature, preferably 140°C. Set the temperature to ℃ or higher. The heating fluid in this case may be heated oil or heated steam. Then, the preheated bottomed parison is attached to the mouth of the mold, and a stretching rod is inserted into the bottomed parison to stretch it in the axial direction. Next, blowing pressure is applied using compressed air supplied through the stretching rod to stretch it in the radial direction. The air pressure at this time is 15 to 25
It is preferably within the range of kg/c. The stretched container is heat-set by holding it at the above temperature and pressure for a predetermined period of time, for example, 6 to 10 seconds. The temperature of the mold surface is 140°C or higher, preferably 140 to 160°C. The polyethylene terephthalate constituting the container has a crystallinity of 40% or more by undergoing stretch blow heat setting. After this, cold W is performed without opening the mold and taking out the container, while maintaining the blowing pressure. That is, the switching valve is switched to circulate the cooling fluid into the mold passage through the cooling fluid supply vibrator. Then, the surface temperature of the mold is lowered to 100° C. or less. As the cooling fluid, for example, cooling water at about 10° C., liquid nitrogen gas, liquefied carbon dioxide gas, etc. may be used. The time required for descent is approximately 10 seconds. By cooling the mold while applying blow pressure, the container is solidified in its original shape. Next, the blow pressure is released, the mold is opened, and the bottle-shaped container is removed. In addition, since the surface temperature of the blow molding mold mentioned above, especially the temperature during blow molding and heat setting, and the cooling temperature have a large effect on the heat resistance of the container, experiments were conducted to investigate the relationship between these temperatures and shrinkage rate. Upon further investigation, the following facts were discovered. In other words, in order to manufacture containers with heat resistance that can withstand practical use, the surface temperature of the mold during blow molding must be approximately 140°C or higher, and the temperature of the mold during cooling must be lower than 100°C. It turned out to be favorable. Functions and Effects of the Invention According to the present invention, the injection-molded bottomed parison is preheated to the stretching temperature without being cooled. Therefore, the heat during injection molding can be used efficiently. In addition, after the temperature of the parison reaches the stretching temperature, blow molding is performed by biaxial stretching in a mold whose surface temperature is 140°C or higher, further heat setting is performed, and then the mold temperature is rapidly cooled and taken out. I have to. Therefore, only one blow molding process is required. Furthermore, the container can be molded using one mold without using separate heat-setting molds and cooling molds. Furthermore, there is no need to re-blow, and residual stress caused by stretch-blowing is completely removed at the time of heat-setting, so the container will not shrink during use, especially during high-temperature filling. Furthermore, since there is no need to transfer the container to another mold during manufacturing, there is no need to consider shrinkage during heat setting, and it is possible to obtain a container molded with high precision. According to the invention, therefore:
It becomes possible to obtain a container with excellent heat resistance under stretch blow molding conditions with efficient use of a heat source and high production efficiency. The equipment will also be downsized. K Example Example 1 A bottomed parison 10 as shown in FIG. 1 was molded from amorphous polyethylene terephthalate resin (IV=0.9) by injection molding. This parison 10 was blow-molded using a mold 18 as shown in FIG. 4 to form a bottle-shaped container 13 as shown in FIGS. 2 and 3. The bottomed parison 10 is provided with seven flange 11 on the upper end side, and the upper part of the seven flange 11 is a mouth part 12 to which a cap can be attached. Further, as shown in FIGS. 2 and 3, the bottle-shaped container 13 made from this parison 10 has a protrusion 14 formed in the longitudinal direction on the outer peripheral surface of the body part, and a protrusion 14 The gap is a recess 15 as shown in FIG. Next, the mold for molding the container 13 from the parison 10 will be explained. As shown in FIG. 4, the blow molding mold 18 has a hollow interior, and the mouthpiece 19 is attached to and detached from the opening at the upper end. In addition, the blow vibe 2 is inserted into the mold 18 through the base 19.
0 is inserted. Further, the opening on the lower end side of the mold 18 is closed by a bottom plate 21. Furthermore, a plurality of passages 22 are formed vertically penetrating inside the mold 18, and these passages 2
2 is connected to a steam pipe 23 and a cooling water pipe 24 shown in FIG. Manually operated valves 27 and 28 and a relief valve 29 are connected to the steam pipe 23, and further downstream there is a manually operated valve 3.
0, one-way valve 31, and solenoid valve 32 are connected in that order. Also, a manually operated valve 3 is connected in parallel to the relief valve 29.
3 is connected, and a pressure gauge 34 is connected to the tip side thereof. On the other hand, manually operated valves 35, 36 and a one-way valve 37 are connected to the cooling water pipe 24. Furthermore, a solenoid valve 38 is connected to the tip side of the one-way valve 37. Further, another electromagnetic valve 39 is connected to the cooling water pipe 24, and the cooling water flows into the tank through this electromagnetic valve 39. Further, the outlet side of the passage 22 of the mold 18 is connected to a manifold 40, and the downstream side of the manifold 40 is connected to a discharge port. The parison 10 shown in FIG. 1 was preheated to 100°C before being completely cooled after injection molding, and the surface temperature reached 1.
It was inserted into a mold 18 shown in FIG. 4 which was heated to 60°C. The parison 10 was placed in the recess of the mold 18 while being held by the blow vibe 20, and was stretched in the axial direction by moving the blow vibe 20 downward. Then, by supplying compressed air through the blow vibrator 20, the parison 10 expanded in the radial direction and was brought into close contact with the surface of the recessed portion of the mold 18, thereby performing blow molding. Mold 1 pressurized to a surface temperature of 160°C in this way
After the parison 10 is biaxially stretch-blow molded in the mold 8 and heat-set for another 7 seconds, the solenoid valve 32 is closed and the solenoid valve 38 is opened to coat the surface of the mold 18 with high-pressure water (9 kg/c/). for 10 seconds, then the container 13
I took it out. Note that the surface temperature of the mold 18 when taken out was 100° C. as shown in Table 1. Further, the crystallinity of the body portion of the container 13 was 50%. Further, the molding cycle time at this time was 36 seconds. The heat resistance of such a bottle-shaped container 13 was measured by the following method. That is, the internal volume of the preformed container 13 was measured by filling it with 20° C. water. Next, the container 13 was filled with water at 95°C or 85°C, allowed to cool to room temperature, and then discharged. Then, water at 20° C. was filled again, and the internal volume of the container 13 was measured. Then, the heat shrinkage rate was calculated from the measured values. That is, assuming that the initial volume of the container 13 is A and the volume after filling is B, the heat shrinkage rate is calculated by the following equation. Heat shrinkage rate - (A-8)/A It was found that the material had sufficient heat resistance. Example 2 The surface temperature of the blow molding mold was set at 140° C., and the other conditions were the same as in the first example above.
3 was manufactured. The crystallinity of the body portion of the obtained container 13 was 40%. When the heat shrinkage rate of such containers was measured in the same manner as above, when filled with hot water at 85°C, the shrinkage rate of the containers in Table 1 Example and Comparative Example was 0.9%. was. Comparative Example 1 A container was manufactured under the same conditions as in Example 1 except that the surface temperature of the blow molding die was set at 120°C. As shown in Table 1, the thermal shrinkage rate of this container is 2.5% when the temperature of the hot water to be filled is 85°C, and 8.5% when the temperature of the hot water to be filled is 95°C.
1%, and shrinkage was obvious from the appearance, making it impractical. Comparative Example 2 A container was manufactured under the same conditions as in Example 1 except that the surface temperature of the blow molding die was set to room temperature. At this time, the crystallinity of the body of the container was 28%. The heat shrinkage rate of such a container is 15.0% when filled with water at 85°C and 28.5% when filled with water at 95°C.
It contracted and deformed to the extent that it could no longer retain its original shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る製造方法に用いられる
パリソンの縦断面図、第2図はこのパリソンをブロー成
形して得られたボトル状容器の正面図、第3図は第2図
における■〜■線断面図、第4図はブロー成形用金型の
縦断面図、第5図は同配管図である。 また図面中の主要な部分の名称はつぎの通りである。 10・・・有底パリソン 13・・・ボトル状容器 18・・・金型 20・・・ブローバイブ 22・・・パッセージ 23・・・蒸気配管 24・・・冷却水配管
FIG. 1 is a longitudinal cross-sectional view of a parison used in a manufacturing method according to an embodiment of the present invention, FIG. 2 is a front view of a bottle-shaped container obtained by blow-molding this parison, and FIG. 4 is a longitudinal sectional view of the blow molding die, and FIG. 5 is a piping diagram thereof. The names of the main parts in the drawings are as follows. 10... Bottomed parison 13... Bottle-shaped container 18... Mold 20... Blow vibe 22... Passage 23... Steam piping 24... Cooling water piping

Claims (1)

【特許請求の範囲】 1、非晶性ポリエチレンテレフタレートを用いて射出成
形によってパリソンを作り、ついでブロー成形によつて
前記パリソンから容器を製造する方法において、延伸可
能な温度まで前記パリソンを予熱するとともに、加熱さ
れた金型内に前記パリソンを配してブロー成形を行なう
と同時に熱固定を行ない、ついで加圧状態で保持しなが
ら前記金型を所定の温度以下になるまで急冷し、その後
に前記金型から前記容器を取出すようにしたことを特徴
とする合成樹脂製容器の製造方法。 2、前記ブロー成形および熱固定を行なうときの金型の
表面温度を140℃以上とすることを特徴とする請求項
第1項記載の合成樹脂製容器の製造方法。 3、前記金型の急冷の際にその表面温度を100℃以下
まで下げることを特徴とする請求項第1項または第2項
記載の合成樹脂製容器の製造方法。 4、製造された容器の結晶化度が胴部において40%以
上であることを特徴とする請求項第1項、第2項、また
は第3項記載の製造方法。
[Claims] 1. A method for producing a parison by injection molding using amorphous polyethylene terephthalate, and then manufacturing a container from the parison by blow molding, which comprises preheating the parison to a temperature at which it can be stretched; , the parison is placed in a heated mold, blow molding is performed, and heat setting is performed at the same time, and then the mold is rapidly cooled down to a predetermined temperature or less while being kept under pressure; A method for manufacturing a synthetic resin container, characterized in that the container is removed from a mold. 2. The method for manufacturing a synthetic resin container according to claim 1, wherein the surface temperature of the mold is 140° C. or higher during the blow molding and heat fixing. 3. The method for manufacturing a synthetic resin container according to claim 1 or 2, characterized in that the surface temperature of the mold is lowered to 100° C. or less during the rapid cooling of the mold. 4. The manufacturing method according to claim 1, 2, or 3, wherein the crystallinity of the manufactured container is 40% or more in the body.
JP63140858A 1988-06-08 1988-06-08 Preparation of container made of synthetic resin Pending JPH01310933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140858A JPH01310933A (en) 1988-06-08 1988-06-08 Preparation of container made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140858A JPH01310933A (en) 1988-06-08 1988-06-08 Preparation of container made of synthetic resin

Publications (1)

Publication Number Publication Date
JPH01310933A true JPH01310933A (en) 1989-12-15

Family

ID=15278378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140858A Pending JPH01310933A (en) 1988-06-08 1988-06-08 Preparation of container made of synthetic resin

Country Status (1)

Country Link
JP (1) JPH01310933A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281387A (en) * 1992-07-07 1994-01-25 Continental Pet Technologies, Inc. Method of forming a container having a low crystallinity
US5474735A (en) * 1993-09-24 1995-12-12 Continental Pet Technologies, Inc. Pulse blow method for forming container with enhanced thermal stability
US5829614A (en) * 1992-07-07 1998-11-03 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
WO2001062471A1 (en) * 2000-02-25 2001-08-30 Tjandra Limanjaya Hot fill container
WO2002002295A1 (en) * 2000-06-30 2002-01-10 Schmalbach-Lubeca Ag Method for producing plastic containers having high crystallinity bases
WO2004096525A1 (en) * 2003-04-25 2004-11-11 Jinhuo Yuan Method of manufacturing heat-resisting polyester bottles and the products therefrom

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281387A (en) * 1992-07-07 1994-01-25 Continental Pet Technologies, Inc. Method of forming a container having a low crystallinity
US5520877A (en) * 1992-07-07 1996-05-28 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US5829614A (en) * 1992-07-07 1998-11-03 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US6372318B1 (en) 1992-07-07 2002-04-16 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US6926859B2 (en) 1992-07-07 2005-08-09 Graham Packaging Pet Technologies Inc. Method of forming container with high-crystallinity sidewall and low-crystallinity base
US7445826B2 (en) 1992-07-07 2008-11-04 Graham Packaging Pet Technologies Inc. Container with high-crystallinity sidewall and low-crystallinity base
US5474735A (en) * 1993-09-24 1995-12-12 Continental Pet Technologies, Inc. Pulse blow method for forming container with enhanced thermal stability
WO2001062471A1 (en) * 2000-02-25 2001-08-30 Tjandra Limanjaya Hot fill container
US6875396B1 (en) 2000-02-25 2005-04-05 Tjandra Limanjaya Hot fill container
WO2002002295A1 (en) * 2000-06-30 2002-01-10 Schmalbach-Lubeca Ag Method for producing plastic containers having high crystallinity bases
WO2004096525A1 (en) * 2003-04-25 2004-11-11 Jinhuo Yuan Method of manufacturing heat-resisting polyester bottles and the products therefrom

Similar Documents

Publication Publication Date Title
US6767197B2 (en) Blow molding machine for producing pasteurizable containers
KR100474784B1 (en) Manufacturing method of molded plastic container
US6749415B2 (en) Blow molding machine for producing pasteurizable containers
US11267184B2 (en) Method of delivering a liquid volume and associated apparatus
AU631897B2 (en) Process for the manufacture of containers made of polyethyleneterephthalate intended to be filled with a hot liquid
JPS6158288B2 (en)
JP2000508593A (en) Method and apparatus for manufacturing parison made of thermoplastic resin
JPH01310933A (en) Preparation of container made of synthetic resin
JPH0546300B2 (en)
WO2015052278A1 (en) Method of delivering a liquid volume and associated apparatus
WO2003011569A1 (en) Method of manufacturing bottle formed mainly of polyethylene terephthalate resin
JPH06297552A (en) Manufacture of resin blow molding container and molding die
JPH01127313A (en) Manufacturing device for thermofixing plastic hollow vessel
JP3054233B2 (en) Blow molding bottle manufacturing method
WO2004096525A1 (en) Method of manufacturing heat-resisting polyester bottles and the products therefrom
JP2003103607A (en) Bottom structure of heat-resistant bottle
JPH05261799A (en) Method for molding resin hollow container
JPH07156259A (en) Manufacture of resin hollow vessel
JPS63280615A (en) Manufacture of synthetic resin container
JPH039831A (en) Manufacture of blow molded container
JPH0760825A (en) Manufacture of resin hollow vessel
JPH0428214B2 (en)
JPH05329918A (en) Manufacture of resin hollow container
JPS631173B2 (en)
JPS6357220A (en) Manufacture of polyester bottle for hot filling