JPH01307811A - Constant voltage circuit - Google Patents

Constant voltage circuit

Info

Publication number
JPH01307811A
JPH01307811A JP13868488A JP13868488A JPH01307811A JP H01307811 A JPH01307811 A JP H01307811A JP 13868488 A JP13868488 A JP 13868488A JP 13868488 A JP13868488 A JP 13868488A JP H01307811 A JPH01307811 A JP H01307811A
Authority
JP
Japan
Prior art keywords
current
circuit
voltage
load
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13868488A
Other languages
Japanese (ja)
Inventor
Terutaka Obuka
大深 輝孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13868488A priority Critical patent/JPH01307811A/en
Publication of JPH01307811A publication Critical patent/JPH01307811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To flow a current to a load without reducing the output voltage of a power source by providing a rush current by-pass circuit, which consists of a transistor TR for shunt circuit and a load current measuring resistance, and a power supply part. CONSTITUTION:When a large current like a rush current does not flow, the voltage drop of a load current measuring resistance 23 is set to a value lower than the voltage between the base and the emitter of a TR 22 for shunt circuit, and therefore, the base current does not flow. Consequently, the circuit between the emitter and the collector is turned off, and a rush current by-pass circuit 24 consisting of the TR 22 and the resistance 23 has not an influence on a power supply part 21 at all. However, when the load current is increased and the voltage drop of the resistance 23 exceeds a prescribed voltage, the base current flows by its excess voltage, and the current amplified approximately in proportion to this current flows through the emitter and the collector to form the circuit 24. That is, the current exceeding the prescribed value does not pass the power supply part 21 at all but passes the circuit 24, and thus, the current flows to the load without reducing the output voltage of the power source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、制御部と同一電源にて付加回路をオン・オ
フ制御する場合の定電圧回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a constant voltage circuit for controlling the on/off of an additional circuit using the same power source as the control unit.

〔従来の技術〕[Conventional technology]

第4図は従来の直流定電圧電源に用いられる定電圧回路
の一例を示す回路図であり、図において、1は出力電圧
制御用のトランジスタ、2は誤差増幅回路、3はツヱナ
ーダイオード3aにより基準電圧を出力するリファレン
ス回路である。
FIG. 4 is a circuit diagram showing an example of a constant voltage circuit used in a conventional DC constant voltage power supply. In the figure, 1 is a transistor for output voltage control, 2 is an error amplifier circuit, and 3 is a Zener diode 3a. This is a reference circuit that outputs a reference voltage.

次に動作について説明する。出力側端子VBに負荷(図
は省略)を接続すると、負荷電流が入力側端子V、から
トランジスタ1を通って流れ、電源出力電圧■2は、入
力電圧■1からトランジスタ1の電圧降下を引いた値と
なる。誤差増幅回路2はリファレンス回路3の出力電圧
と、電源出力電圧■2とを比較増幅し、トランジスタ1
のベース電流を制御して適当な値を設定し、負荷電流に
対応する所定の電源出力電圧V2を得る。
Next, the operation will be explained. When a load (not shown) is connected to the output terminal VB, the load current flows from the input terminal V through transistor 1, and the power supply output voltage 2 is equal to the input voltage 1 minus the voltage drop across transistor 1. will be the value. The error amplification circuit 2 compares and amplifies the output voltage of the reference circuit 3 and the power supply output voltage 2, and
The base current is controlled to set an appropriate value to obtain a predetermined power supply output voltage V2 corresponding to the load current.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の定電圧回路は以上のように構成されているので、
負荷接続時の初期突入電流、あるいは不測の異常過大電
流が流れてトランジスタ1の電圧制御能力を越えると、
瞬時的に電源出力電圧■2が規定値より低下するという
問題点があった。
Since the conventional constant voltage circuit is configured as described above,
If the initial inrush current when a load is connected or an unexpected abnormal overcurrent flows and exceeds the voltage control capability of transistor 1,
There was a problem that the power supply output voltage (2) instantaneously dropped below the specified value.

この発明は、上記のような問題点を解消するためになさ
れたもので、電源出力電圧を低下させることなく、負荷
に電流を流すことができる定電圧回路を得ることを目的
とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a constant voltage circuit that can allow current to flow through a load without reducing the power supply output voltage.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る定電圧回路は負荷電流に対応して出力電
圧を所定の範囲に制御する電源部と、入力側から出力側
に流れる負荷電流を上記電源部に対して分流する突入電
流バイパス回路とを備えたものである。
The constant voltage circuit according to the present invention includes a power supply section that controls the output voltage within a predetermined range in response to the load current, and an inrush current bypass circuit that shunts the load current flowing from the input side to the output side to the power supply section. It is equipped with the following.

〔作用〕[Effect]

この発明における定電圧回路は、負荷接続時の突入電流
や不測の異常過大電流は、突入電流バイパス回路に流れ
て、出力電圧制御用のトランジスタには流れないため、
常に所定の回路特性を維持することができる。
In the constant voltage circuit according to the present invention, inrush current or unexpected abnormal overcurrent when a load is connected flows to the inrush current bypass circuit and does not flow to the output voltage control transistor.
Predetermined circuit characteristics can always be maintained.

〔実施例〕〔Example〕

以下この発明の一実施例を図面について説明する。第1
図はこの発明の一実施例を示す回路図で、同図において
、21は第4図に示す出力電圧制御用のトランジスタ1
、誤差増幅回路2およびリファレンス回路3により構成
される電源部、22は分流回路用トランジスタ、23は
この分流回路用トランジスタ22のベース電流を制御す
るための負荷電流測定用抵抗で、この負荷電流測定用抵
抗23に流れる負荷電流による電圧降下で分流回路用ト
ランジスタ22を制御する。そして、上記分流回路用ト
ランジスタ22と、負荷電流測定用抵抗23とによって
、突入電流バイパス回路24を構成する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a circuit diagram showing an embodiment of the present invention. In the figure, 21 is a transistor 1 for controlling the output voltage shown in FIG.
, a power supply section consisting of an error amplifying circuit 2 and a reference circuit 3, 22 a transistor for a shunt circuit, and 23 a resistor for measuring a load current to control the base current of the transistor 22 for a shunt circuit. The shunt circuit transistor 22 is controlled by the voltage drop caused by the load current flowing through the resistor 23. The shunt circuit transistor 22 and the load current measuring resistor 23 constitute an inrush current bypass circuit 24.

次に動作について説明する。突入電流等の大電流が流れ
ないときは、負荷電流測定用抵抗23の電圧降下は、分
流回路用トランジスタ22のベース、エミッタ間の電圧
より低い状態に設定されているため、ベース電流は流れ
ないので、エミッタ。
Next, the operation will be explained. When a large current such as an inrush current does not flow, the voltage drop across the load current measuring resistor 23 is set to be lower than the voltage between the base and emitter of the shunt circuit transistor 22, so no base current flows. So the emitter.

コレクタ間はオフ状態にあり、この突入電流バイパス回
路24は電源部21には何の影響も与えない。しかし負
荷電流が増大して、負荷電流測定用抵抗23の電圧降下
が所定電圧を越えると、その超過電圧によってベース電
流が流れ、これにほぼ比例して増幅された電流がエミッ
タ、コレクタを通して流れ、突入電流バイパス回路24
が形成される。すなわち所定の値を越える電流は、全て
電源部21を通らず、突入電流バイパス回路24を通る
ことになる。
The collector-to-collector circuit is in an off state, and the rush current bypass circuit 24 has no effect on the power supply section 21. However, when the load current increases and the voltage drop across the load current measuring resistor 23 exceeds a predetermined voltage, the excess voltage causes a base current to flow, and an amplified current approximately proportional to this flows through the emitter and collector. Inrush current bypass circuit 24
is formed. That is, all current exceeding a predetermined value does not pass through the power supply section 21 but passes through the inrush current bypass circuit 24.

なお、このバイパス機能は、突入電流が瞬間的なもので
も、また継続する状態のものであっても、常にほとんど
遅れを伴わずリアルタイムに形成されて所定の電流値を
分流する。
Note that this bypass function is always formed in real time with almost no delay and shunts a predetermined current value, regardless of whether the inrush current is instantaneous or continuous.

第2図はこの発明の他の実施例を示す構成図で、上記実
施例の負荷電流測定用抵抗の代りに正特性サーミスタ2
5を使用したものである。この正特性サーミスタ25は
それ自身の温度がある値以下の場合は、普通の抵抗材料
とほとんど同様であるが、所定の温度を越えると、その
抵抗値が急速に増大する性質をもつ、非線形抵抗素子で
ある。したがってこの場合、正特性サーミスタ25の温
度の上昇によってその両端の電位差は増大し、分流回路
用トランジスタ22を導通させることになる。
FIG. 2 is a configuration diagram showing another embodiment of the present invention, in which a positive characteristic thermistor 2 is used instead of the load current measuring resistor in the above embodiment.
5 was used. This positive temperature coefficient thermistor 25 is a nonlinear resistor that is almost the same as a normal resistance material when its temperature is below a certain value, but when the temperature exceeds a predetermined temperature, its resistance value increases rapidly. It is element. Therefore, in this case, as the temperature of the positive temperature coefficient thermistor 25 increases, the potential difference between its both ends increases, causing the shunt circuit transistor 22 to conduct.

したがって、この正特性サーミスタ25を電源部21の
入力側に設けておけば、取り付は点の過熱を感知して、
負荷電流を突入電流バイパス回路24に分流させること
ができる。
Therefore, if this positive temperature coefficient thermistor 25 is installed on the input side of the power supply section 21, it can be installed to sense overheating at the point.
The load current can be shunted to the inrush current bypass circuit 24.

第3図はこの発明のさらに別の他の実施例を示す構成図
で、上記実施例の負荷電流測定用抵抗や正特性サーミス
タの代りにコイル26Lと接点26゜を有するリレー2
6を設けたものである。このリレー26のコイル26L
を電源部21と直列に接続し、分流回路用トランジスタ
22のベース抵抗27に接点26cを接続したものであ
る。この場合、負荷電流が増加しである所定値を越える
と、接点26cが閉路してベース電流が流れ、所定の突
入電流バイパス回路24が形成される。
FIG. 3 is a configuration diagram showing yet another embodiment of the present invention, in which a relay 2 having a coil 26L and a contact point 26° is used instead of the load current measuring resistor and positive temperature coefficient thermistor of the above embodiment.
6. Coil 26L of this relay 26
is connected in series with the power supply unit 21, and a contact 26c is connected to the base resistor 27 of the shunt circuit transistor 22. In this case, when the load current increases and exceeds a certain predetermined value, the contact 26c closes and the base current flows, forming a predetermined inrush current bypass circuit 24.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、電源部に対して電源投
入時や負荷接続時における突入電流および不測の過大電
流を、機能的に分流させる突入電流バイパス回路を設け
た構成であるので、電源出力電圧の低下を防止し得ると
いう効果がある。
As described above, according to the present invention, since the structure includes an inrush current bypass circuit that functionally shunts inrush current and unexpected overcurrent to the power supply unit when the power is turned on or when a load is connected, the inrush current bypass circuit is provided. This has the effect of preventing a drop in output voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による一実施例の構成図である。第2
図は非線形抵抗素子を利用したこの発明に係る他の実施
例を示す構成図である。第3図はリレーを利用したこの
発明に係る他の実施例を示す構成図である。第4図は従
来の定電圧回路を示す回路図である。 図において21は電源部、22は分流回路用トランジス
タ、24は突入電流バイパス回路。 なお、各図中同一符号は同一または相当部分を示す。 24:突入1rtノ(僧V、tO* 、、24 .2
FIG. 1 is a block diagram of an embodiment according to the present invention. Second
The figure is a configuration diagram showing another embodiment of the present invention using a nonlinear resistance element. FIG. 3 is a block diagram showing another embodiment of the present invention using a relay. FIG. 4 is a circuit diagram showing a conventional constant voltage circuit. In the figure, 21 is a power supply section, 22 is a shunt circuit transistor, and 24 is an inrush current bypass circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. 24: Rush 1rtno (Monk V, tO*,, 24.2

Claims (1)

【特許請求の範囲】[Claims] 負荷電流に対応して出力電圧を所定の範囲に制御する電
源部と、入力側から出力側に流れる負荷電流を上記電源
部に対して分流する突入電流バイパス回路とを備えた定
電圧回路。
A constant voltage circuit comprising a power supply section that controls an output voltage within a predetermined range in response to a load current, and an inrush current bypass circuit that shunts a load current flowing from an input side to an output side to the power supply section.
JP13868488A 1988-06-06 1988-06-06 Constant voltage circuit Pending JPH01307811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13868488A JPH01307811A (en) 1988-06-06 1988-06-06 Constant voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13868488A JPH01307811A (en) 1988-06-06 1988-06-06 Constant voltage circuit

Publications (1)

Publication Number Publication Date
JPH01307811A true JPH01307811A (en) 1989-12-12

Family

ID=15227690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13868488A Pending JPH01307811A (en) 1988-06-06 1988-06-06 Constant voltage circuit

Country Status (1)

Country Link
JP (1) JPH01307811A (en)

Similar Documents

Publication Publication Date Title
US4546238A (en) Circuit arrangement for temperature control of an electric heating element
US5453904A (en) Power control unit protection apparatus
US4393431A (en) Overcurrent relay circuit
US5331291A (en) Circuit and method for adjusting the bias of an amplifier based upon load current and operating temperature
US5544032A (en) Switching power supply
US4035692A (en) Resistor protection systems
CA1063228A (en) Circuit breaker including undervoltage release mechanism and control circuit
US3211989A (en) Voltage regulator employing a nonlinear impedance and negative temperature coefficient impedance to prevent leakage current
KR950020034A (en) Stabilized power supply circuit
US3684172A (en) Thermocouple temperature control system
JPH01307811A (en) Constant voltage circuit
US5631794A (en) Differential shunt-type protection circuit
US4994651A (en) Solid state temperature dependent direct voltage interrupter for a heater circuit
JPH0674981A (en) Current value detecting circuit and overcurrent cutout circuit
US4731691A (en) Safety circuit for detecting asymmetry in thyristor load currents
US3178617A (en) Circuit breaker with bistable circuit for overcurrent protection
JPS60191320A (en) Current threshold detector
US3611115A (en) Three-point regulator comprising operational amplifiers with common input
US3536962A (en) Direct current amplifier,particularly for control application
US3047776A (en) Over voltage relay
JPH03164027A (en) Overcurrent protective circuit
JPS60207294A (en) Firing device
JPH0620170Y2 (en) Voltage detector protection device such as stabilized power supply
SU594494A1 (en) Continuous-operation dc voltage stabilizer
JPS6179310A (en) Output limiter of power amplifier