JPH01280823A - Coordinate input device - Google Patents

Coordinate input device

Info

Publication number
JPH01280823A
JPH01280823A JP63046466A JP4646688A JPH01280823A JP H01280823 A JPH01280823 A JP H01280823A JP 63046466 A JP63046466 A JP 63046466A JP 4646688 A JP4646688 A JP 4646688A JP H01280823 A JPH01280823 A JP H01280823A
Authority
JP
Japan
Prior art keywords
pulse
electrostatic induction
coordinate
value
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046466A
Other languages
Japanese (ja)
Inventor
Shinichi Ikegaya
池ケ谷 進一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP63046466A priority Critical patent/JPH01280823A/en
Publication of JPH01280823A publication Critical patent/JPH01280823A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve dynamic detecting ability by subtracting the potential of a detecting electrode set right before or after application of a scan pulse from the value of an electrostatic induction pulse produced at that time point. CONSTITUTION:Electrode lines (x) and (y) are arranged at prescribed intervals in the X and Y directions orthogonal to each other on a coordinate input panel 1. The potentials of a detecting electrode 5 are detected right before and after the scan pulses are successively applied to the lines (x) and (y). Then said potential value is subtracted from the value of an electrostatic induction pulse produced with application of the scan pulse. The result of this subtraction is defined as the original value of electrostatic induction. Then the pointed coordinates are calculated based on the value of said electrostatic induction. Thus it is possible to eliminate the influence of a noise voltage produced in accordance with the shift of a coordinate input means and to decrease the errors. Then the dynamic detecting ability is improved.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は座標入力装置に関し、詳しくは静電結合方式座
標入力装置に於ける座標指示手段移動時の座標算出回数
の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coordinate input device, and more particularly, to an improvement in the number of coordinate calculations when moving a coordinate indicating means in a capacitively coupled coordinate input device.

「従来の技術」 静電結合方式の座標入力装置では、座標入力盤上に直交
する二方向に所定の間隔をおいて電極線が配置されてお
り、また前記座標入力盤上の所望の位置に当接して座標
入力を行なう入力ペン、カーソル等の座標指示手段には
検出電極が設けられている。そして前記電極線に順次走
査パルスを印加し、この際静電誘導によって前記検出電
極に生起する誘導パルスを増幅しデジタル変換してマイ
クロコンピュータから成る算出手段に供給し、該算出手
段はそのときの誘導パルスの大きさに基いてそのときの
座標指示手段の当接位置を算出する。
"Prior Art" In a capacitive coupling type coordinate input device, electrode wires are arranged at a predetermined interval in two orthogonal directions on a coordinate input board, and electrode wires are placed at a desired position on the coordinate input board. A detection electrode is provided on a coordinate indicating means such as an input pen or a cursor that is brought into contact to input coordinates. Then, scanning pulses are sequentially applied to the electrode wires, and at this time, the induced pulses generated on the detection electrodes by electrostatic induction are amplified, digitally converted, and supplied to calculation means consisting of a microcomputer, which calculates the Based on the magnitude of the induced pulse, the contact position of the coordinate indicating means at that time is calculated.

(算出手順については例えば特公昭53−19380、
特顕昭59−37679等参照。) 「発明が解決しようとする問題点」 ところで近年図形処理に関する種々のシステムやプログ
ラムの開発が進み、これに関連して例えば手書入力やサ
イン入力の際の座標指示手段の軌跡をより詳細に検出す
るべく、座標入力装置に関しても座標入力盤上で座標指
示手段を移動(摺動)した際、秒あたり座標検出を何回
行なえるかが問題にされて来ている。(以下、この能力
を「ダイナミック検出能力」と称す。) このダイナミック検出能力に関し、出願人会社に於て自
社の静電結合方式座標入力装置を評価して見たところ、
例えば座標指示手段(以下「入力ペン」を以ってその代
表とする。)を座標入力盤上の適宜の位置に静止させて
いるときは秒あたりの検出回数を指数100とすれば、
秒速 1.75mで入力ペンを円運動させているときは
、検出回数が秒あたり指数2〜3程度まで低下すること
が判明した。
(For the calculation procedure, see Japanese Patent Publication No. 53-19380,
See Tokuken Sho 59-37679, etc. ) ``Problem to be solved by the invention'' By the way, in recent years, various systems and programs related to graphic processing have been developed, and in connection with this, for example, the trajectory of the coordinate indicating means when inputting handwriting or signature is more detailed. Regarding coordinate input devices, the number of times coordinate detection can be performed per second when moving (sliding) the coordinate indicating means on the coordinate input panel has become an issue. (Hereinafter, this ability will be referred to as "dynamic detection ability.") Regarding this dynamic detection ability, the applicant company evaluated its capacitive coupling type coordinate input device and found that:
For example, when the coordinate indicating means (hereinafter referred to as "input pen") is stationary at an appropriate position on the coordinate input board, and the number of detections per second is set as an index of 100,
It was found that when the input pen was moved in a circular motion at a speed of 1.75 m/s, the number of detections decreased to an index of 2 to 3 per second.

そこでこの原因について種々検討を加えた結果、入力ペ
ン摺動時は、入力ペン検出電極に生起する誘導パルスに
数百〜数キロHzぐらいの雑音電圧が重畳していること
を発見した。そしてこれがためデータチエツクの際、即
ち、同一の位置について複数回信号検出を行って夫々に
基いて座標データを算出し、これが同一であることを確
認する際に、本来は一致する筈の各回の座標データが、
−Mせず、エラーとして処理されてしまい、この結果ダ
イナミック検出能力が低下していることが判明した。
As a result of various studies on the cause of this, it was discovered that when the input pen slides, a noise voltage of about several hundred to several kilohertz is superimposed on the induced pulse generated in the input pen detection electrode. For this reason, when performing a data check, that is, when detecting signals at the same position multiple times and calculating coordinate data based on each, and confirming that they are the same, each time that should originally match, The coordinate data is
-M was not performed, and it was treated as an error, and as a result, it was found that the dynamic detection ability was degraded.

入力ペンを摺動させるとき何故雑音電圧が大きくなるか
は明確でないが、主な原因として(1)入力盤上に微妙
な凹凸があり、摺動時に入力ペンの検出電極が上下に振
動する。この結果、検出電極と座標入力盤の電極線との
間の静電容量が111間的に変動し、この際、回路のイ
ンピーダンスが高く’y’l瓶線及び検出電極に貯えら
れた電荷が変動しないので、これに代って該変化に相当
する周波数の雑音が発生すると考えられること。(2)
検出電極の上下動に伴なってこれを付勢しているスプリ
ング等が伸縮し圧電現象による電圧が発生すると考えら
れること、が挙げられる。
It is not clear why the noise voltage increases when the input pen is slid, but the main causes are (1) There are slight irregularities on the input panel, and the detection electrodes of the input pen vibrate up and down when sliding. As a result, the capacitance between the detection electrode and the electrode wire of the coordinate input panel fluctuates, and at this time, the impedance of the circuit is high and the charge stored in the 'y'l bottle wire and the detection electrode is Since there is no change, it is thought that noise with a frequency corresponding to the change is generated instead. (2)
One possible reason is that as the detection electrode moves up and down, a spring or the like that biases the detection electrode expands and contracts, and a voltage is generated due to a piezoelectric phenomenon.

「問題点を解決するための手段」 そこで本発明では上記解析結果に基き、電極線に走査パ
ルスを印加する直前及び又は直後の検出?l1if−1
の電位を検出し、走査パルス印加により生起した静電誘
導パルスの大きさからこの電位分を差引き、差引後の大
きさを以って本来の静電誘導の大きさであるとして、こ
れを基に当該指示された座標を算出することとする。
"Means for Solving the Problems" Therefore, in the present invention, based on the above analysis results, detection is performed immediately before and/or after applying a scanning pulse to the electrode wire. l1if-1
Detect the potential of , subtract this potential from the magnitude of the electrostatic induction pulse generated by applying the scanning pulse, and assume that the magnitude after subtraction is the original magnitude of electrostatic induction. The designated coordinates will be calculated based on the specified coordinates.

「作 用」 即ち走査パルスを印加しないときの検出電極の電位は、
入力ペン移動に伴なって生ずる雑音電圧そのものであり
、従って走査パルス印加直前及び又は直後の検出?lの
電位をそのとき生起した静電誘導パルスの大きさから差
し引けば、該差引後の静電誘導パルスの大ぎさは、その
ときの座標指示手段の位置に関する本来の値を表わし、
これを用いれば正しい座標データを得ることが出来る。
``Effect'' In other words, the potential of the detection electrode when no scanning pulse is applied is:
Is it the noise voltage itself that occurs as the input pen moves, and therefore is it detected immediately before and/or after the scanning pulse is applied? If the potential of l is subtracted from the magnitude of the electrostatic induction pulse generated at that time, the magnitude of the electrostatic induction pulse after the subtraction represents the original value regarding the position of the coordinate indicating means at that time,
Using this, you can obtain correct coordinate data.

「実施例」 以下本発明の詳細を図示実施例に基いて説明する。第1
図はブロック構成を示す。図に於て1は座標入力盤であ
り、直行する二方向(X方向、Y方向)に所定の間隔で
電極線X(第1図に於いて上下方向に延伸した細線で表
わされる。)及び電極線y(同、左右方向)が配置され
ている。2はデコーダドライバで、中央処理装置3から
供給されるアドレス信号ADに従い前述のT′Fi極線
Xおよびyに順次走査パルスを印加する。なお中央処理
装置3は以下rcPUJと称し、また以下の説明におい
て他の部分についても名称の後に括弧書きで帖称を示し
た場合は、それ以後当該略称を使用する。
``Example'' The details of the present invention will be explained below based on the illustrated example. 1st
The figure shows the block configuration. In the figure, 1 is a coordinate input board, which has electrode lines X (represented by thin lines extending vertically in FIG. 1) at predetermined intervals in two orthogonal directions (X direction, Y direction). Electrode wires y (same, horizontal direction) are arranged. 2 is a decoder driver which sequentially applies scanning pulses to the T'Fi polar lines X and y mentioned above in accordance with an address signal AD supplied from the central processing unit 3; The central processing unit 3 will be hereinafter referred to as rcPUJ, and in the following description, where a nickname is given in parentheses after the name, the abbreviation will be used hereinafter.

4は座標指示手段たる入力ペン、5はその先端に慴動自
在に保持された検出電極である。6はスイッチで、前記
検出電極5の摺動に応じて開閉する。7は重置増幅器で
、前記検出電極5に生起する静電誘導パルスを増幅する
。9はサンプルホールド回路で、入出力ポート10を介
してCPU3から供給されるリードパルスRPに応動し
て、その時点の入力電圧(静電誘導パルス電圧)を暫く
の間保持する。′11はアナログデジタル変換器(AD
変換器)で、同じリードパルスRPに応動して前記サン
プルホールド回路9の出力電圧をデジタル変換する。な
お前記サンプルホールド回路9は、このAD変換器11
がデジタル変換に要する間、静電誘導パルス電圧を保持
させておくために用いられている。
Reference numeral 4 represents an input pen serving as a coordinate indicating means, and reference numeral 5 represents a detection electrode movably held at the tip of the input pen. Reference numeral 6 denotes a switch, which opens and closes according to the sliding movement of the detection electrode 5. Reference numeral 7 denotes a superimposed amplifier that amplifies the electrostatic induction pulse generated at the detection electrode 5. Reference numeral 9 denotes a sample and hold circuit, which responds to the read pulse RP supplied from the CPU 3 via the input/output port 10 and holds the input voltage (electrostatic induction pulse voltage) at that point in time for a while. '11 is an analog-to-digital converter (AD
converter) converts the output voltage of the sample and hold circuit 9 into digital in response to the same read pulse RP. Note that the sample hold circuit 9 is connected to this AD converter 11.
is used to hold the electrostatically induced pulsed voltage for the time required for digital conversion.

CPU3は実績回路化された所謂マイクロコンピユータ
であり、リードオンリーメモリ (■り○N・1)12
に格納されたプログラムに従い、ランダムアクセスメモ
リ(RAM)13を使用しながら所定の処理を実行する
The CPU 3 is a so-called microcomputer with a proven circuit, and has a read-only memory (■RI○N・1)12
A predetermined process is executed using a random access memory (RAM) 13 according to a program stored in the memory.

第2図に座標入力盤1の詳細を示す。FIG. 2 shows details of the coordinate input panel 1.

この第2図は座標入力盤1をY方向に電極線yiを含む
垂直面で切断し部分的に取出して示すもので、X方向に
電極線xi=xi+4が拉んでいる。
FIG. 2 shows the coordinate input panel 1 cut along a vertical plane including the electrode wires yi in the Y direction and partially taken out, with the electrode wires xi=xi+4 extending in the X direction.

これら電極線xi”xi+4及びyiは絶縁シート21
の上、下面に夫々導電インクを用いたシルク印刷の手法
で形成されており、その上に、保護用樹脂層22及び2
3が形成されている。
These electrode wires xi"xi+4 and yi are connected to the insulating sheet 21
The upper and lower surfaces are formed by silk printing using conductive ink, and on top of these, protective resin layers 22 and 2 are formed.
3 is formed.

入力ペン4の検出電極5を第2図に示す位置に当接し静
止させておいて各電極線 xi=xi+4に順次走査パ
ルスを印加した際、検出電極5に生起する静電誘導パル
スの例を第3図に示す。なお図に於て、パルス5xi−
Sxi+4は電極線X1=xi+4  に夫々走査パル
スを印加したとき生起する静電誘導パルスである。
An example of an electrostatic induction pulse generated in the detection electrode 5 when the detection electrode 5 of the input pen 4 is brought into contact with the position shown in FIG. It is shown in Figure 3. In the figure, pulse 5xi-
Sxi+4 is an electrostatic induction pulse generated when a scanning pulse is applied to each electrode line X1=xi+4.

また、入力ペン4の検出電極5を樹脂層22に当接して
所望の方向に移動しており、検出電極5が同じく第2図
に示す位置にある時点で各電極線xi=xi+4  に
走査パルスを印加した場合の静電誘導パルスDxi−D
xi+4  を第4図に示す。
Furthermore, the detection electrode 5 of the input pen 4 is brought into contact with the resin layer 22 and moved in a desired direction, and when the detection electrode 5 is at the position shown in FIG. 2, a scanning pulse is applied to each electrode line xi=xi+4. Electrostatic induction pulse Dxi-D when applying
xi+4 is shown in FIG.

なお、電極線xi=xi+4  に順次走査パルスを印
加するには、何がしかの時間はかかる。その間、検出電
極5は樹脂層22上を移動しているから厳密に言えば、
電極線xi+4  を走査したときの検出電極5の位置
は第2図に示す位置にはない。しかし、マイクロコンピ
ュータにより各電極線xi〜xi+4  に走査パルス
を印加する時間は僅かであり、その間に検出電極5が移
動する距離も微少である。従って、実際上はこの時点に
おいて検出電極5と各電極axi−xj+4  の距離
は変わらず、検出電極5に生起する各静電誘導パルスD
xi=  Dxi+4  の高さ HDi−HDi+4
は。
Note that it takes some time to sequentially apply scanning pulses to the electrode lines xi=xi+4. During that time, the detection electrode 5 is moving on the resin layer 22, so strictly speaking,
The position of the detection electrode 5 when scanning the electrode line xi+4 is not at the position shown in FIG. However, the time during which the microcomputer applies the scanning pulse to each of the electrode lines xi to xi+4 is short, and the distance that the detection electrode 5 moves during that time is also very short. Therefore, in practice, the distance between the detection electrode 5 and each electrode axi-xj+4 does not change at this point, and each electrostatic induction pulse D generated in the detection electrode 5
xi= Height of Dxi+4 HDi-HDi+4
teeth.

検出電極5に生起する雑音NWの各時点の瞬時値をHN
i−HNi+4  に第3図の各パルスHSi〜H3i
+4  を夫々重畳したものとなる。
The instantaneous value of the noise NW occurring at the detection electrode 5 at each point in time is expressed as HN
Each pulse HSi to H3i in Fig. 3 is applied to i-HNi+4.
+4 are superimposed on each other.

而して本発明では雑音も含めた形で得られる夫々の静電
誘導パルスHDi=HDi+4  からy1該雑音分H
Niを取除いて本来の静電誘導パルス分HS i ”H
S i+4  を得ようとするものである。
Therefore, in the present invention, each electrostatic induction pulse HDi=HDi+4 obtained including noise is y1 the noise H
After removing Ni, the original electrostatic induction pulse HS i ”H
The purpose is to obtain S i+4.

即ち、CPU3は入力ペン4の検出@極5が樹脂M22
に当接され、スイッチ信号S Wが到来すると、先ずサ
ンプルホールド9及びAD変換器11にリードパルスR
Pを送り、そのときの雑音NWの瞬時値、例えばHNi
を示すデジタル値をRAM13に格納する。
That is, the CPU 3 detects the input pen 4 @ the pole 5 is made of resin M22.
When the switch signal SW arrives, a read pulse R is first applied to the sample hold 9 and the AD converter 11.
P, and the instantaneous value of the noise NW at that time, for example, HNi
A digital value indicating this is stored in the RAM 13.

次いでCPU3はデコーダドライバ2にアドレスデータ
ADを供給し、該アドレスに対応する電極線X又はyに
走査パルスを印加させると同時にサンプルホールド回路
9及びAD変換器11にリードパルスRPを供給する。
Next, the CPU 3 supplies address data AD to the decoder driver 2 to apply a scan pulse to the electrode line X or y corresponding to the address, and at the same time supplies a read pulse RP to the sample hold circuit 9 and the AD converter 11.

そしてこのとき得られた静電誘導パルス、例えばHDi
を示すデジタル値を所定のレジスタに格納する。
The electrostatic induction pulse obtained at this time, for example, HDi
A digital value indicating the value is stored in a predetermined register.

次いでCPU3はRAM13から前述の瞬時値HNiを
読出し、前記レジスタの静電誘導パルスHDiの値から
該値HNiを差引いて本来の静電誘導パルスH5iを表
わすデジタル値を得、これをRAM13に格納する。
Next, the CPU 3 reads the aforementioned instantaneous value HNi from the RAM 13, subtracts the value HNi from the value of the electrostatic induction pulse HDi in the register to obtain a digital value representing the original electrostatic induction pulse H5i, and stores this in the RAM 13. .

そしてCPU3はこのような操作を必要な範囲の電極線
Xについて実行して、例えばHDi〜HDi+4  を
得、これを基にして、例えば特公昭53−19380に
開示されているような手法で、その瞬間の検出電極5の
X座標を特定する。
Then, the CPU 3 executes such operations for the necessary range of electrode wires X to obtain, for example, HDi to HDi+4. Specify the instantaneous X coordinate of the detection electrode 5.

次いでCPU3はY座標を求めるべくY方向各電極線に
ついても同様の処理を行なってY座標を得、もう−度X
方向、Y方向について座標データをとって先の座標デー
タと比較し、一致すれば正しく検出ができたものとして
、その値を不図示コンピュータ本体等へ送出する。
Next, the CPU 3 performs the same process for each electrode line in the Y direction to obtain the Y coordinate, and then
The coordinate data for the direction and the Y direction is taken and compared with the previous coordinate data, and if they match, it is assumed that the detection was successful and the value is sent to a computer main body (not shown) or the like.

なお、このデータ比較の動作についても通常は極めて短
時間であり、その間検出電極5の位置は不変として差支
えないが、当該座標入力装置の分解能が高いと、その間
の検出電極5の移動量が座標データの相違となって現れ
てくることも考えら゛れる。この場合は、同一の位置で
とったデータを比較するという処理の趣旨が、雑音によ
ってそのときの指示位置とはかけ離れた為の座標データ
を出力するのを防止する、ということにあることを勘案
し、座標データの差が所定値以内ならば正しい座標デー
タであるとして例えば2回11の座+1?!データを出
力するようにすれば良い。
Note that this data comparison operation is usually extremely short, and the position of the detection electrode 5 can be assumed to remain unchanged during that time. However, if the resolution of the coordinate input device is high, the amount of movement of the detection electrode 5 during that time is It is also conceivable that this may appear as a difference in data. In this case, consider that the purpose of the process of comparing data taken at the same location is to prevent the output of coordinate data that is far from the indicated location due to noise. However, if the difference in the coordinate data is within a predetermined value, it is assumed that the coordinate data is correct, for example, 2 times 11 + 1? ! All you have to do is output the data.

尤も、本発明によれば、検出ペン4の移動に伴って生ず
る雑音だけでな(、外来の雑音についてもその影響を排
除できるので、データ比較を止め、そのまますべて送出
するようにすればより−Mダイナミック検出能力を向」
−させろことができる。
However, according to the present invention, it is possible to eliminate not only the noise caused by the movement of the detection pen 4 (but also the influence of external noise), so it is better to stop the data comparison and just send out all the noise. Improved dynamic detection ability
- I can do things.

「他の実施例」 他の実施例を第5図に示す。この実施例では走査パルス
印加直前と直後の雑音電圧の平均(16を走査パルス印
加時の静電誘導パルスの大きさから差引いて片押検出の
基礎とする。なお前述の実施例と同一の部分には同一の
符号を付し説明を略す。
"Other Examples" Another example is shown in FIG. In this embodiment, the average of the noise voltages immediately before and after the application of the scanning pulse (16) is subtracted from the magnitude of the electrostatic induction pulse when the scanning pulse is applied, and this is used as the basis for single-press detection. are given the same reference numerals and their explanations will be omitted.

図に於いて31.32は9と同じサンプルホールド回路
であり、リードパルスRPに応動してその時点の前置増
幅器7の出力の瞬時値を保持する。
In the figure, 31 and 32 are the same sample and hold circuits as 9, which hold the instantaneous value of the output of the preamplifier 7 at that time in response to the read pulse RP.

33は演算増幅器で、入力端子間には抵抗34(抵抗値
R)が接続され、また入力端子には抵抗34.35 (
夫々抵抗値2R)を介してサンプルホールド回路31.
32の出力が供給されている。
33 is an operational amplifier, a resistor 34 (resistance value R) is connected between the input terminals, and a resistor 34.35 (resistance value R) is connected to the input terminal.
sample and hold circuits 31 .
32 outputs are provided.

37は差動増幅器で、演算増幅器33の出力が反転側入
力端子(−)に、またサンプルホールド回路9の出力が
非反転側入力端子(+)に供給されており、その出力は
前述の実施例と同じアナログデジタル変換器11に供給
されている。
37 is a differential amplifier, the output of the operational amplifier 33 is supplied to the inverting side input terminal (-), and the output of the sample hold circuit 9 is supplied to the non-inverting side input terminal (+), and the output is supplied to the inverting side input terminal (+). It is supplied to the same analog-to-digital converter 11 as in the example.

この実施例では各電極X又はyを走査するに当たり、C
PU3はまずサンプルホールド回路31にリードパルス
RPを供給してそのときの前置増幅器7の出力を該回路
31に保持させる。ここに保持された瞬時値は走査パル
ス印加直前の雑音の大きさ、例えば第4回のHN i 
+ 3を表わす。
In this embodiment, when scanning each electrode X or y, C
The PU 3 first supplies a read pulse RP to the sample hold circuit 31 to cause the circuit 31 to hold the output of the preamplifier 7 at that time. The instantaneous value held here is the magnitude of the noise just before the scanning pulse is applied, for example, the 4th HN i
Represents +3.

次いでCPU3はデコーダドライバ2にアドレス信号A
Dを供給し所定の電極1例えばxi+3に走査パルスを
印加させると同時に、サンプルホールド回路9にリード
パルスRPを供給してそのときの静電誘導パルスの大き
さ1例えば第4図のHD i + 3を保持させろ。
Next, the CPU 3 sends the address signal A to the decoder driver 2.
At the same time, a read pulse RP is supplied to the sample and hold circuit 9, and the magnitude of the electrostatic induction pulse at that time is 1, for example, HD i + in FIG. 4. Let me hold 3.

次にCPU3はサンプルホールド回路32にRPを供給
しそのときの前置増幅器7の出力を該回路32に保持さ
せる。ここに保持された瞬時値は走査パルス印加直後の
雑音の大きさ、例えば第4図HNi+3bを表わす。
Next, the CPU 3 supplies RP to the sample and hold circuit 32 and causes the circuit 32 to hold the output of the preamplifier 7 at that time. The instantaneous value held here represents the magnitude of the noise immediately after the application of the scanning pulse, for example HNi+3b in FIG. 4.

而して演算増幅器33、抵抗34〜36は相加平均回路
を構成し、演算増幅器33の出力はサンプルホールド回
路31および32に保持されている走査パルス印加直前
及び直後の雑音電圧の瞬時値の平均値を示す。例えば雑
H@圧の瞬時値が前述のHNi+3及びHNi+3bで
あったとすれば、このときの演算増幅器33の出力はそ
の平均値HNi+3a(第4図参照)となる。
The operational amplifier 33 and the resistors 34 to 36 constitute an arithmetic averaging circuit, and the output of the operational amplifier 33 is the instantaneous value of the noise voltage held in the sample and hold circuits 31 and 32 immediately before and after the application of the scanning pulse. Shows average value. For example, if the instantaneous values of the miscellaneous H@pressure are the aforementioned HNi+3 and HNi+3b, the output of the operational amplifier 33 at this time will be the average value HNi+3a (see FIG. 4).

そして差動増幅器37において、サンプルホールド回路
9に保持されているその時の静電誘導パルスの高さ、例
えばHDi+3からこの平均値HNi+3aが減殺され
、本来の静電誘導パルスの大きさ、即ち、前述の例に従
えば第3図のH’Si+3に相当する値が該増幅器37
の出力として現われる。
Then, in the differential amplifier 37, this average value HNi+3a is subtracted from the height of the electrostatic induction pulse at that time held in the sample and hold circuit 9, for example HDi+3, and the original electrostatic induction pulse size is reduced, that is, the height of the electrostatic induction pulse mentioned above. According to the example, the value corresponding to H'Si+3 in FIG.
appears as the output of

以後の流れは前述の実施例と同様であり、CPU3はこ
のようにして求めた本来の静電誘導パルスの大きさに基
いてそのときの座標を算出する。
The subsequent flow is the same as in the previous embodiment, and the CPU 3 calculates the coordinates at that time based on the magnitude of the original electrostatic induction pulse obtained in this manner.

ここに説明した実施例は、前述のものに比べ回路阻止が
多くなっているが、直接雑音成分を除去しているので座
標検出回数を増やすことができる。
Although the embodiment described here has more circuit blocking than the above-mentioned embodiment, since noise components are directly removed, the number of coordinate detections can be increased.

「発明の効果」 以上説明したように本発明によれば、座標入力手段の移
動に伴なって発生する雑音電圧の影響を打消すことがで
き、エラー発生を少なくしてダイナミック検出能力を向
上させることができる。
"Effects of the Invention" As explained above, according to the present invention, it is possible to cancel the influence of noise voltage generated due to movement of the coordinate input means, reduce error occurrence, and improve dynamic detection ability. be able to.

また外来雑音の影響も受けなくなるので、チエツク動作
をなくし、よりmmダイナミック検出能力を向上させる
こともできる。
Furthermore, since it is no longer affected by external noise, the check operation can be eliminated and the mm dynamic detection ability can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図はブロック図、第
2図は座標入力盤の一部を示す断面図、第3図は入力ペ
ン静止状態での静電誘導パルスの例を示す波形図、第4
図は入力ペン移動中のある時点における静電誘導パルス
の例を示す波形図、第5図は他の実施例を示すブロック
図である。 ]・・・・・座標入力盤、 3 、12.13・・・座標算出手段、4・・・・・・
座標指示手段、  5・・・・・・検出電極、HD・・
・・・・雑音を含む静電誘導パルス、HN・・・・・・
座標指示手段移動による雑音電位、T−(S・・・・・
・差引後の静電誘導パルスX、y・・・電極線。 特許出願人  ぺんてる株式会社 第2図 AH業入力信断面
The figures show one embodiment of the present invention; Fig. 1 is a block diagram, Fig. 2 is a sectional view showing a part of the coordinate input panel, and Fig. 3 is an example of electrostatic induction pulses when the input pen is stationary. Waveform diagram shown, 4th
The figure is a waveform diagram showing an example of electrostatic induction pulses at a certain point during movement of the input pen, and FIG. 5 is a block diagram showing another embodiment. ]... Coordinate input panel, 3, 12.13... Coordinate calculation means, 4...
Coordinate indicating means, 5...detection electrode, HD...
...Electrostatic induction pulse including noise, HN...
Noise potential due to movement of coordinate indicating means, T-(S...
・Electrostatic induction pulse X, y after subtraction...electrode wire. Patent applicant Pentel Co., Ltd. Figure 2 AH industry input signal section

Claims (1)

【特許請求の範囲】[Claims] 直交する二方向に電極線が配置された座標入力盤と、検
出電極が設けられ前記入力盤上の所望の位置に当接され
る座標指示手段と、前記電極線に走査パルスが印加され
た際、前記検出電極に生起する静電誘導パルスの大きさ
から前記走査パルス印加直前及び又は直後の前記検出電
極の電位を差引き、該差引き後の静電誘導パルスの大き
さに基いて前記当接位置座標を算出する座標算出手段を
備えたことを特徴とする座標入力装置。
a coordinate input board on which electrode wires are arranged in two orthogonal directions; a coordinate indicating means provided with detection electrodes and brought into contact with desired positions on the input board; and when a scanning pulse is applied to the electrode wires. , subtract the potential of the detection electrode immediately before and/or immediately after applying the scanning pulse from the magnitude of the electrostatic induction pulse generated in the detection electrode, and calculate the appropriate potential based on the magnitude of the electrostatic induction pulse after the subtraction. A coordinate input device characterized by comprising a coordinate calculation means for calculating contact position coordinates.
JP63046466A 1988-01-29 1988-02-29 Coordinate input device Pending JPH01280823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046466A JPH01280823A (en) 1988-01-29 1988-02-29 Coordinate input device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1871888 1988-01-29
JP63-18718 1988-01-29
JP63046466A JPH01280823A (en) 1988-01-29 1988-02-29 Coordinate input device

Publications (1)

Publication Number Publication Date
JPH01280823A true JPH01280823A (en) 1989-11-13

Family

ID=26355440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046466A Pending JPH01280823A (en) 1988-01-29 1988-02-29 Coordinate input device

Country Status (1)

Country Link
JP (1) JPH01280823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843278A2 (en) * 1992-05-22 1998-05-20 Sharp Kabushiki Kaisha Display-integrated type tablet device
JP2017076383A (en) * 2016-10-06 2017-04-20 Nltテクノロジー株式会社 Electronic device, capacitive sensor, and touch panel
US10330766B2 (en) 2011-08-30 2019-06-25 Nlt Technologies, Ltd. Electronic device, electrostatic capacitance sensor and touch panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843278A2 (en) * 1992-05-22 1998-05-20 Sharp Kabushiki Kaisha Display-integrated type tablet device
EP0843278A3 (en) * 1992-05-22 1998-08-26 Sharp Kabushiki Kaisha Display-integrated type tablet device
US10330766B2 (en) 2011-08-30 2019-06-25 Nlt Technologies, Ltd. Electronic device, electrostatic capacitance sensor and touch panel
JP2017076383A (en) * 2016-10-06 2017-04-20 Nltテクノロジー株式会社 Electronic device, capacitive sensor, and touch panel

Similar Documents

Publication Publication Date Title
US9182862B2 (en) High noise immunity sensing methods and apparatus for a capacitive touch device
US20130257797A1 (en) High noise immunity sensing methods and apparatus for a capacitive touch device
US20100033437A1 (en) Position detecting device and position detecting method
JPS62222328A (en) Decision of touch position and touch panel apparatus
JPH0434778B2 (en)
US20200026409A1 (en) Input device, element data configuration method, and program
CN108762653B (en) Touch positioning method and device and electronic equipment
JPH0442686B2 (en)
JPH01280823A (en) Coordinate input device
KR20110039849A (en) Digital apparatus for touch screen and method for compensating its distorted coordinate therefore
JPH0239314A (en) Coordinate input device
JP3762804B2 (en) Coordinate position input device
JPH01194018A (en) Coordinate input device
JPH0441385Y2 (en)
JPH0441387Y2 (en)
JP3988569B2 (en) Calligraphy input device
KR100350539B1 (en) Perception device of position coordinates and perception method thereof
US20220283691A1 (en) Display device and control method thereof
JP3360607B2 (en) Writing instrument type coordinate input device
JPS62236023A (en) Position detecting method for touch input device
JP2000502480A (en) Method for determining pen speed along a graphic tablet and a graphic tablet suitable for implementing the method
JPH0637468Y2 (en) Information input device
GB2603118A (en) Touch-sensitive apparatus and method
JPS63108423A (en) Finger touch type coordinate output device
EP3731071A1 (en) Electrostatic sensor