JPH01280706A - Multiplexing and demultiplexing element - Google Patents

Multiplexing and demultiplexing element

Info

Publication number
JPH01280706A
JPH01280706A JP16711188A JP16711188A JPH01280706A JP H01280706 A JPH01280706 A JP H01280706A JP 16711188 A JP16711188 A JP 16711188A JP 16711188 A JP16711188 A JP 16711188A JP H01280706 A JPH01280706 A JP H01280706A
Authority
JP
Japan
Prior art keywords
light
diffraction
diffraction grating
multiplexing
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16711188A
Other languages
Japanese (ja)
Inventor
Hideo Maeda
英男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16711188A priority Critical patent/JPH01280706A/en
Publication of JPH01280706A publication Critical patent/JPH01280706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To excellently demultiplex or multiplex light rays in a small spot diameter even to wide band light rays, such as the light of an LED, in a state where both of a high efficiency and low-angle dispersing property are maintained by providing at least two diffraction gratings on an optical path on which multiplexing or demultiplexing the light rays is performed. CONSTITUTION:This multiplexing and demultiplexing element 1 is successively provided with, from an input fiber 2 side, a collimate lens 4, diffraction grating 5, condenser lens 6, and output optical fibers 3a and 3b. The diffraction grating 5 is constituted of a transmissive type double diffraction grating provided with two diffraction gratings 5a and 5b on both sides of its base plate. While the grating surfaces and grating directions of the gratings 5a and 5b are respectively made parallel with each other so that the grating characteristics of the gratings 5a and 5b can be different relatively from each other, the grating pitches of the gratings 5a and 5b are different from each other. When such double diffraction grating 5 is used, the deflection angle DELTAtheta between input light and output light becomes smaller against its large diffracting efficiency and even light rays, such as the light of an LED, having a wide band range can be demultiplexed efficiently without considerably spreading the spot diameter.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、波長多重通信等の光通信ないしは光情報記録
再生装置などにおいて用いられる合分波素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multiplexing/demultiplexing element used in optical communications such as wavelength division multiplexing communications or optical information recording/reproducing devices.

従来の技術 近年、光通信の重要性が増しているが、まだ普及してい
るとはいい難い状況にある。これは、光部品が電子部品
と比較できる程度にまで安価となっていないからである
。例えば、L E Dが波長多重通信に使用できるよう
になればコスト安で普及度が高まるものと考えられるが
、現実には優れた合分波素子がなくLEDを波長多重通
信に使用できない状況にある。
BACKGROUND TECHNOLOGY Although optical communication has become increasingly important in recent years, it is still difficult to say that it has become widespread. This is because optical components are not cheap enough to be compared with electronic components. For example, if LEDs can be used for wavelength division multiplexing communications, it is thought that their cost will be lower and their popularity will increase, but in reality, there is no superior multiplexing/demultiplexing element and LEDs cannot be used for wavelength division multiplexing communications. be.

即ち、合分波素子の例としては特開昭54−5454号
公報に示されるような透過型回折格子を用いたものがあ
る。より具体的には、2つの発散光の干渉縞を記録した
透過型のホログラムと、そのホログラムの一方の側に端
部が設置された1本の光ファイバと、ホログラムの他方
の側に設置された2つ以上の光入出力素子とからなるも
のである。この場合、1枚の回折格子が用いられている
That is, as an example of a multiplexing/demultiplexing element, there is one using a transmission type diffraction grating as shown in Japanese Patent Application Laid-Open No. 54-5454. More specifically, it consists of a transmission-type hologram that records the interference fringes of two diverging lights, an optical fiber whose end is installed on one side of the hologram, and an optical fiber whose end is installed on the other side of the hologram. and two or more optical input/output elements. In this case, one diffraction grating is used.

発明が解決しようとする問題点 このような構成において、回折効率を大きくとるために
は、格子ピッチを小さくしてブラッグ回折とし、深さも
ピッチと同等とすることが必要なものである。すると、
L E D光のような広帯域光を分波するとなると、ピ
ッチが大きいため、スポット径が光フアイバ径よりも大
きくなってしまう。
Problems to be Solved by the Invention In such a configuration, in order to increase the diffraction efficiency, it is necessary to make the grating pitch small to achieve Bragg diffraction, and to make the depth equal to the pitch. Then,
When splitting broadband light such as LED light, the spot diameter becomes larger than the optical fiber diameter because the pitch is large.

この結果、結合損が大きくなり、回折格子の回折効率を
大きくする意味がなくなってしまうものである。かとい
って、格子ピッチを小さくすると結合損は小さくなるも
のの、回折効率が小さいので、結局、分波素子全体とし
ての挿入損が大きくなってしまう。このような事情は、
上記公報記載の回折格子がレンズ機能をも備えてなると
しても、木質的に変わるものではない。
As a result, the coupling loss increases, and there is no point in increasing the diffraction efficiency of the diffraction grating. On the other hand, if the grating pitch is made smaller, the coupling loss becomes smaller, but since the diffraction efficiency becomes smaller, the insertion loss of the entire demultiplexing element ends up becoming larger. Such circumstances are
Even if the diffraction grating described in the above-mentioned publication also has a lens function, there is no difference in the quality of the wood.

即ち、従来のものでは、高効率性と低角度分散機能とが
両立しておらず、L E D光等の広帯域光の場合には
その合波ないしは分波ができない。
That is, the conventional devices do not have both high efficiency and low angular dispersion function, and cannot combine or demultiplex broadband light such as LED light.

問題点を解決するための手段 基本的には、光の合波又は分波を行う光路上に少なくと
も2つの回折格子を配設する。
Means for Solving the Problem Basically, at least two diffraction gratings are arranged on the optical path where light is multiplexed or demultiplexed.

この場合、これらの回折格子は相対的に回折特性が同一
のものとする。
In this case, these diffraction gratings have relatively the same diffraction characteristics.

又は、相対的に回折特性が異なるものとする。Alternatively, it is assumed that the diffraction characteristics are relatively different.

これは、他の回折格子に比べ、少なくとも1つ以上の回
折格子のピッチを異ならせ、又は、他の回折格子の格子
面に対し、少なくとも1つ以」二の回折格子の格子面を
非平行に配置させることによる。
This means that the pitch of at least one diffraction grating is different from that of other diffraction gratings, or that the grating plane of at least one or more diffraction gratings is made non-parallel to the grating plane of other diffraction gratings. By placing it in

さらには、入力光をコリメートするコリメートレンズと
、分波光を集光する集光レンズとを設け、又は、入力光
を集光する集光レンズを設ける。
Furthermore, a collimating lens that collimates the input light and a condensing lens that condenses the demultiplexed light are provided, or a condensing lens that condenses the input light is provided.

また、回折格子自体にレンズ機能を持たせる。Furthermore, the diffraction grating itself has a lens function.

或いは、レンズにはシリンドリカル集光機能を持たせる
Alternatively, the lens is provided with a cylindrical light condensing function.

さらには、回折格子ないしは回折格子とレンズとをと同
一基板上に配置する。
Furthermore, the diffraction grating or the diffraction grating and the lens are arranged on the same substrate.

作用 少なくとも2つの回折格子による2重回折格子等によれ
ば、1枚のみの透過型回折格子では相反して実現できな
い機能である、大きな回折効率にして入力光−出力光間
の偏向角が小さくなる機能を持たせることができる。よ
って、このような2重回折格子等を経ることにより高効
率性と低角度分散機能とが両立した合波又は分波が可能
となり、LED光等の広帯域光に対しても用い得る。こ
の際、合波光を2重回折格子等により少なくと−t、1
2回回折させ得る波長光と、少なくとも2回透過又−6
= は反射させ得る波長光とに分波させれば、−層、分波帯
域を拡大できる。この場合、2重回折格子等を、相対的
に回折特性を異ならせた少なくとも2つの回折格子とし
、入・出力側に各々レンズを設けてもよいが、2重回折
格子を相対的な回折特性が同一な少なくとも2つの回折
格子とすれば、入ツJ側又は出力側の少なくとも一方に
集光レンズを配設させればよく、−・方のレンズを省略
し得る。
Function: A double diffraction grating made of at least two diffraction gratings can achieve high diffraction efficiency and the deflection angle between input light and output light, which is a function that cannot be achieved with only one transmission type diffraction grating. It can have the function of becoming smaller. Therefore, by passing through such a double diffraction grating or the like, multiplexing or demultiplexing with both high efficiency and low angular dispersion function is possible, and it can also be used for broadband light such as LED light. At this time, the combined light is at least -t, 1 by a double diffraction grating etc.
Wavelength light that can be diffracted twice and transmitted at least twice or -6
If = is split into wavelength light that can be reflected, the -layer and splitting band can be expanded. In this case, the double diffraction grating may be made of at least two diffraction gratings with relatively different diffraction characteristics, and lenses may be provided on the input and output sides, respectively. If at least two diffraction gratings have the same diffraction characteristics, a condensing lens may be disposed on at least one of the input side and the output side, and the lens on the side can be omitted.

また、回折格子を同一基板上に配置させ、或いはレンズ
をシリンドリカルレンズ構成として回折格子と同一基板
上に配置することにより、複製等が容易となる。
Further, by arranging the diffraction grating on the same substrate, or by arranging the lens in a cylindrical lens configuration on the same substrate as the diffraction grating, duplication etc. can be facilitated.

実施例 本発明の第一の実施例を第1図ないし第3図に基づいて
説明する。本実施例の合分波素子1は例えば異なる波長
λ1.λ2の入力光を射出する入力ファイバ2と分波さ
れた各々の波長λ1.λ2の光が入射される出ノJファ
イバ3a、3bとの間に配置される。この合分波素子1
は入力ファイバ2側から順にコリメートレンズ4、回折
格子5及び集光レンズ6を配置させてなるものであり、
特に回折格子5に特徴がある。
Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 3. For example, the multiplexing/demultiplexing element 1 of this embodiment has different wavelengths λ1. The input fiber 2 emits the input light of λ2 and each of the demultiplexed wavelengths λ1. It is arranged between the output J fibers 3a and 3b into which the light of λ2 is incident. This multiplexing/demultiplexing element 1
is formed by arranging a collimating lens 4, a diffraction grating 5, and a condensing lens 6 in order from the input fiber 2 side,
The diffraction grating 5 is particularly distinctive.

この回折格子5は基板両面に2つの回折格子5a、5b
を備えてなる透過型2重回折格子として構成されている
。これらの回折格子5a、5bはその回折特性が相対的
に異なるように、格子面及び格子方向が両者で互いに平
行であるが、そのピッチΔ1.Δ2は異なるように形成
されている。このような回折格子5a、5bの入力角&
i  −出力角Oo特性は第2図及び第3図のように示
される。
This diffraction grating 5 has two diffraction gratings 5a and 5b on both sides of the substrate.
It is configured as a transmission type double diffraction grating comprising: These diffraction gratings 5a and 5b have their grating planes and grating directions parallel to each other so that their diffraction characteristics are relatively different, but their pitches Δ1. Δ2 is configured differently. The input angle of such diffraction gratings 5a, 5b &
The i-output angle Oo characteristics are shown in FIGS. 2 and 3.

ここに、これらの回折格子5a、5bの格子ベクトルを
各々に、(−2π/A、)、に2(=2π/A2)とし
、回折格子の中心屈折率をn。とすると、2πn。 、
    2πn0゜ r 51ne i −〒−51nOo = K、 −に
2−−(1)となる関係が成立する。
Here, the grating vectors of these diffraction gratings 5a and 5b are respectively (-2π/A,) and 2 (=2π/A2), and the central refractive index of the diffraction grating is n. Then, 2πn. ,
2πn0°r 51ne i −〒−51nOo=K, the relationship 2−−(1) holds true for −.

このような2重回折格子5によれば、つぎのような利点
がある。即ち、回折効率が大きいにも拘らず、入ツノ光
−出力光間の偏向角へ〇が小さいものとなる。これは、
従来の如き1枚のみの回折格子では実現できない機能で
ある。なぜならば、透過型回折格子の場合、回折効率を
大きくするためにはブラッグ領域の回折とする必要があ
るが、このようなブラッグ領域条件下では回折角が大き
いために偏向角も大きくなってしまうからである。
Such a double diffraction grating 5 has the following advantages. That is, although the diffraction efficiency is high, the deflection angle between the incoming horn light and the output light is small. this is,
This is a function that cannot be achieved with a single diffraction grating as in the past. This is because, in the case of a transmission type diffraction grating, diffraction must occur in the Bragg region in order to increase the diffraction efficiency, but under such Bragg region conditions, the diffraction angle is large, so the deflection angle also becomes large. It is from.

しかるに、2つの回折格子5a、5bを有する2重回折
格子5の場合には、各々1枚では回折角が大きい(θi
やOoに近い)のでブラッグ領域にあり、回折効率が高
く、かつ、2枚組合せによりこのような高効率を維持し
たまま低偏向角化を実現できるのである。
However, in the case of the double diffraction grating 5 having two diffraction gratings 5a and 5b, each one has a large diffraction angle (θi
Since it is in the Bragg region, the diffraction efficiency is high, and by combining two lenses, it is possible to achieve a low deflection angle while maintaining such high efficiency.

本実施例ではこのような高効率、低偏向角の合分波素子
1を用いているので、LED光のような広帯域光であっ
ても効率的に分波することができ、広帯域によるスポッ
ト径の大幅な拡がりを生じないものである。
In this embodiment, since such a multiplexing/demultiplexing element 1 with high efficiency and a low deflection angle is used, even broadband light such as LED light can be efficiently demultiplexed, and the spot diameter due to the wide band can be reduced. This will not cause a significant spread.

ところで、実際、数値的にどの程度効果的であるかにつ
いて説明する。いま、人力ファイバ2の径は無視し、1
枚のみの回折格子と本実施例方式の2枚回折格子とを想
定し、各値を第1表に示すように設定したとする。
By the way, we will explain how effective it actually is numerically. Now, ignoring the diameter of human fiber 2, 1
It is assumed that a diffraction grating with only one sheet and a two-sheet diffraction grating according to the present embodiment are used, and each value is set as shown in Table 1.

即ち、1μmピッチ、1.2μmピッチの回折格子5a
、5bからなる2重回折格子5を使用した場合と、1μ
mピッチのみの1枚回折格子を用いた場合との対比であ
る。この結果、第2表に示すような結果が得られたもの
である。
That is, the diffraction grating 5a has a pitch of 1 μm and a pitch of 1.2 μm.
, 5b and 1μ
This is a comparison with the case where a single diffraction grating with only m pitches is used. As a result, the results shown in Table 2 were obtained.

第2表 ここに、分波率とは各々の波長の光が1次光として回折
する効率であり、偏光依存性が殆ど少ないとしてS偏光
で計算により求めたものである。
Table 2 Here, the splitting efficiency is the efficiency with which light of each wavelength is diffracted as primary light, and is calculated using S-polarized light, assuming that there is almost no polarization dependence.

スポット径とは10mmの焦点距離を持つ集光レンズ6
によりLED光を集光させた場合の径である。
The spot diameter is a condenser lens 6 with a focal length of 10 mm.
This is the diameter when the LED light is focused.

上記結果において、注目すべき点はスポット径の違いで
ある。いま、仮に入ノJファイバ2の径を200μmと
すると、出力側では本実施例の2重回折格子5の場合に
は270μm、従来の1枚のみのものでは640μmの
径を持つことになる。よって、出力ファイバ3の径を2
00μmとしたとすると、結合効率を単純に面積比で比
較すると本実施例方式のものは6倍程度もよいものとな
る。これは、分波率が多少劣る点を考慮しても余りある
効果といえる。
In the above results, the noteworthy point is the difference in spot diameter. Now, assuming that the diameter of the input J fiber 2 is 200 μm, on the output side, the double diffraction grating 5 of this embodiment has a diameter of 270 μm, and the conventional single grating has a diameter of 640 μm. . Therefore, the diameter of the output fiber 3 is set to 2
If the coupling efficiency is simply compared in terms of area ratio, the coupling efficiency of the method of this embodiment is about 6 times better. This can be said to be an advantageous effect even if the fact that the demultiplexing factor is somewhat inferior is taken into account.

つづいて、本発明の第二の実施例を第4図及び第5図に
より説明する。ここでは、2重回折格子7のみを示す。
Next, a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. Here, only the double diffraction grating 7 is shown.

前記実施例の2重回折格子5との対比では、2つの回折
格子7a、7bのピッチは同じとするが、平行状の基板
に代えてくさび状の基板使用により回折格子7a、7b
の格子面を互いに非平行状態に傾けることにより、2つ
の回折格子7a、7bの回折特性を相対的に異ならせた
ものである。この場合の格子ベクトルに、、 K2等の
ベクトル関係は第5図に示すようになる。即ち、前記実
施例の場合と同様な効果が得られることが判る。
In comparison with the double diffraction grating 5 of the above embodiment, the pitches of the two diffraction gratings 7a and 7b are the same, but by using a wedge-shaped substrate instead of a parallel substrate, the diffraction gratings 7a and 7b are
The diffraction characteristics of the two diffraction gratings 7a and 7b are made relatively different by tilting the grating planes of the diffraction gratings so as not to be parallel to each other. In this case, the relationship between the lattice vectors, K2, etc. is as shown in FIG. That is, it can be seen that the same effects as in the above embodiment can be obtained.

本実施例構造において、ある波長の光の回折格子内の入
力角θjと出ツJ角(回折角)θ0との関係は、次式に
より表わされる。
In the structure of this embodiment, the relationship between the input angle θj of light of a certain wavelength within the diffraction grating and the output J angle (diffraction angle) θ0 is expressed by the following equation.

k、5inOi +kllsinθi’ = K、  
    −(2)k、5in(θi′十八〇へ)+に、
5in(Oo−ΔQ’)= K2−−(3)そこで、角
度θi′は1次回折角、k。は回折格子内の伝搬定数と
すると、角度ΔO′は2つの回折格子7a、7b面の傾
きに相当することになる。
k, 5inOi + kllsinθi' = K,
−(2)k, 5in (to θi′180)+,
5in(Oo-ΔQ')=K2--(3) Therefore, the angle θi' is the first-order diffraction angle, k. Assuming that is a propagation constant within the diffraction grating, the angle ΔO' corresponds to the inclination of the two diffraction gratings 7a and 7b planes.

つぎに、本発明の第三の実施例を第6図により説明する
。本実施例は、回折格子8a、8bを備えた2重回折格
子8自体にレンズ機能(収束性能)をも持たせ、コリメ
ートレンズ及び集光レンズを兼用させることにより、コ
リメートレンズ4及び集光レンズ6なる光学部品を別個
には不要としたものである。即ち、本実施例の合分波素
子1は回折格子8a、8bを備えた2重回折格子8なる
1個の光学部品からなる。
Next, a third embodiment of the present invention will be explained with reference to FIG. In this embodiment, the double diffraction grating 8 itself, which includes the diffraction gratings 8a and 8b, also has a lens function (convergence performance), and by making it serve both as a collimating lens and a condensing lens, the collimating lens 4 and the condensing lens are combined. This eliminates the need for a separate optical component called the lens 6. That is, the multiplexing/demultiplexing element 1 of this embodiment is composed of one optical component, which is a double diffraction grating 8 including diffraction gratings 8a and 8b.

さらに、本発明の第四の実施例を第7図により説明する
。本実施例は、厚膜導波路型構造により、同一基板9上
に回折格子10とコリメートレンズ11と集光レンズ1
2とを一体的に構成したものである。即ち、コリメート
レンズ11は導波路型のシリンドリカルレンズ構成、つ
まり2段の導波路型コリメートレンズ]、1a、llb
からなり、集光レンズ12も同様にシリンドリカルレン
ズ構成、つまり2段の導波路型コリメートレンズ12a
、12bからなる。そして、導波路型コリメートレンズ
llb、12aの対向端面に各々透過型の回折格子10
 a、  10 bを形成して2重回折格子10として
なる。ここに、回折格子10a、10bは回折格子5a
、5b型のものでも、回折格子7a、7b型のものでも
よい。このような導波路構成により、光を基板9面に垂
直な方向に閉じ込めつつ前述した実施例の場合と同様に
分波させるものである。
Furthermore, a fourth embodiment of the present invention will be explained with reference to FIG. In this embodiment, a diffraction grating 10, a collimating lens 11, and a condensing lens 1 are placed on the same substrate 9 using a thick film waveguide structure.
This is an integral structure of 2 and 2. That is, the collimating lens 11 has a waveguide type cylindrical lens configuration, that is, a two-stage waveguide type collimating lens], 1a, llb
Similarly, the condenser lens 12 has a cylindrical lens configuration, that is, a two-stage waveguide type collimating lens 12a.
, 12b. Transmission type diffraction gratings 10 are provided on opposing end surfaces of the waveguide type collimating lenses llb and 12a, respectively.
a and 10 b to form a double diffraction grating 10. Here, the diffraction gratings 10a and 10b are the diffraction gratings 5a
, 5b type, or diffraction gratings 7a, 7b type. With such a waveguide configuration, light is confined in a direction perpendicular to the surface of the substrate 9 and is demultiplexed in the same manner as in the embodiment described above.

本実施例によれば、合分波素子1の構成光学要素を同一
の基板9上に一体的に作製しているので、複製する場合
であれば金型を作り熱硬化性樹脂、電磁波硬化性樹脂な
どを用いて簡単に複製できるものとなる。
According to this embodiment, the optical elements constituting the multiplexing/demultiplexing element 1 are integrally manufactured on the same substrate 9, so if it is to be duplicated, a mold is made and thermosetting resin and electromagnetic wave hardening material are used. It can be easily reproduced using resin or the like.

なお、2重回折格子を構成する2つの回折格子について
は、前述した組合せに限らず、格子ピッチが異なってい
る場合であっても、格子面同士が平行でなくてもよい。
Note that the two diffraction gratings constituting the double diffraction grating are not limited to the above-mentioned combination, and even if the grating pitches are different, the grating planes may not be parallel to each other.

要は、実際の合分波素子構成によって臨機応変に対応し
て回折特性を相対的に異ならせればよい。
The point is that the diffraction characteristics may be made relatively different depending on the actual configuration of the multiplexing/demultiplexing element.

また、本発明の第五の実施例を第8図により説明する。Further, a fifth embodiment of the present invention will be explained with reference to FIG.

前述した実施例では2重回折格子を透過型のものとして
説明したが、本実施例では2つの反射型の回折格子13
 a、  13 bからなる2重回折格子]3を用いる
ようにしたものである。
In the embodiment described above, the double diffraction grating was explained as a transmission type, but in this embodiment, two reflection type diffraction gratings 13 are used.
A double diffraction grating consisting of a and 13 b] 3 is used.

なお、このような反射型構成にあっても、構造、動作等
は透過型構成のものに準するものである。
Note that even in such a reflective configuration, the structure, operation, etc. are similar to those of the transmissive configuration.

また、これらの実施例において、入・出力側の向きを入
れ替えれば合波機能が発揮される。
Furthermore, in these embodiments, the multiplexing function can be achieved by switching the directions of the input and output sides.

つづいて、本発明の第六の実施例を第9図ないし第11
図により説明する。本実施例の合分波素子14も人ノJ
ファイバ2・出力ファイバ3a、3b間に配設されるが
、本例では入ツJ側に位置する集光レンズ]5と回折格
子16とからなる。ここに、この回折格子16は基板両
面に2つの回折格子16a、16bを備えた透過型2重
回折格子として構成されている。
Next, the sixth embodiment of the present invention will be described in FIGS. 9 to 11.
This will be explained using figures. The multiplexing/demultiplexing element 14 of this embodiment is also
It is arranged between the fiber 2 and the output fibers 3a and 3b, but in this example it consists of a condensing lens 5 located on the input side J and a diffraction grating 16. Here, this diffraction grating 16 is constructed as a transmission type double diffraction grating having two diffraction gratings 16a and 16b on both sides of the substrate.

前述した(2)(3)式によれば、この偏向角をOにす
ることも可能である。この場合には、波長毎に出力角が
同じになるが、第11図に示すように、各光束は波長毎
に平行移動しており、この場合も分波可能となる。即ち
、この時には、広帯域性は無視できることになる。
According to equations (2) and (3) described above, it is also possible to set this deflection angle to O. In this case, the output angle is the same for each wavelength, but as shown in FIG. 11, each light beam is moved in parallel for each wavelength, and in this case as well, it is possible to separate the beams. That is, at this time, the broadband property can be ignored.

このように、本実施例によっても、分波対象の波長の数
が多くなり、波長多重通信の多重度を大きくすることが
できる。特に、LED等の広帯域光も対象となるので、
安価な多重通信システムの構築の一層となる。さらには
、前述した第一〜五の実施例方式との対比では、原理的
に光の波長の広帯域性が非常にわずかな影響しか及ぼさ
ないので、効率を一層向上させることができ、光学レン
ズ部品も入力側の集光レンズ15のみとしく出力側のみ
としてもよい)、レンズ4,6のように2個設ける必要
もなくなる。よって、小型ともなり、合分波素子14と
しても安定度を増し、かつ、組伺は調整も容易化できる
In this way, also in this embodiment, the number of wavelengths to be demultiplexed increases, and the degree of multiplexing of wavelength division multiplexing communication can be increased. In particular, since broadband light such as LEDs is also targeted,
This will further contribute to the construction of an inexpensive multiplex communication system. Furthermore, in comparison with the first to fifth embodiment methods described above, in principle, the broadband nature of the wavelength of light has only a very slight influence, so efficiency can be further improved, and optical lens components (The condenser lens 15 may be provided only on the input side and only on the output side), and there is no need to provide two lenses like the lenses 4 and 6. Therefore, it can be made smaller, the stability of the multiplexing/demultiplexing element 14 can be increased, and the arrangement can be easily adjusted.

さらに、本発明の第七の実施例を第12図により説明す
る。本実施例は、第四の実施例の場合と同様に、厚膜導
波路型構造により、同一基板17]二に回折格子18と
集光レンズ19とを一体的に構成したものである。即ち
、集光レンズ19は導波路型のシリンドリカルレンズ構
成、つまり2段の導波路型コリメートレンズ19 a、
  19 bからなる。そして、導波路型コリメートレ
ンズ19bと導波路20との対向端面に各々透過型の回
折格子18a、18bを形成して2重回折格子18とし
てなる。ここに、回折格子18a、18bは回折格子1
6a、1.6b型のものでよい。このような導波路構成
により、光を基板17面に垂直な方向に閉じ込めつつ前
記第六の実施例の場合と同様に分波させるものである。
Furthermore, a seventh embodiment of the present invention will be explained with reference to FIG. In this embodiment, as in the case of the fourth embodiment, a diffraction grating 18 and a condensing lens 19 are integrally constructed on the same substrate 17 using a thick film waveguide type structure. That is, the condensing lens 19 has a waveguide type cylindrical lens configuration, that is, a two-stage waveguide type collimating lens 19a,
Consisting of 19 b. Then, transmission type diffraction gratings 18a and 18b are formed on opposing end faces of the waveguide type collimating lens 19b and the waveguide 20, respectively, to form a double diffraction grating 18. Here, the diffraction gratings 18a and 18b are the diffraction grating 1.
6a or 1.6b type may be used. With such a waveguide configuration, light is confined in a direction perpendicular to the surface of the substrate 17 and is demultiplexed as in the sixth embodiment.

本実施例によれば、合分波素子14の構成光学要素を同
一の基板17上に一体的に作製しているので、複製する
場合であれば金型を作り熱硬化性樹脂、電磁波硬化性樹
脂などを用いて簡単に複製できるものとなる。
According to this embodiment, the optical elements constituting the multiplexing/demultiplexing element 14 are integrally manufactured on the same substrate 17. Therefore, in case of duplication, a mold is made and thermosetting resin and electromagnetic wave hardening material are used. It can be easily reproduced using resin or the like.

ついで、本発明の第への実施例を第13図ないし第18
図により説明する。本実施例は、前述した第一ないし第
五の実施例をさらに工夫したものである。まず、前述し
た実施例によれば、LED等の広帯域対応の合分波素子
とし得る。しかし、何れも2回回折した回折光をとるた
め、分波対象とする光は、ある程度波長の近い光とする
必要があり、分波帯域が制約を受ける。このような点に
着目し、本実施例では第13図に示すような相対的に回
折特性を異ならせた2つの回折格子21a。
Next, a fourth embodiment of the present invention is shown in FIGS. 13 to 18.
This will be explained using figures. This embodiment is a further modification of the first to fifth embodiments described above. First, according to the embodiments described above, it is possible to use a wideband multiplexing/demultiplexing element such as an LED. However, since both methods take diffracted light that has been diffracted twice, the light to be demultiplexed needs to have a somewhat similar wavelength, which limits the demultiplexing band. Focusing on this point, this embodiment uses two diffraction gratings 21a with relatively different diffraction characteristics as shown in FIG.

21bを有する2重回折格子21、即ち、構造的には第
一の実施例ないし第五の実施例で示したものに準する回
折格子(例えば、第1図や第4図に示したもの)を用い
、入射される合波光につき、2回回折させることができ
る波長の光と、2回透過させることが可能な波長の光と
に分波させる(可逆的であり、逆向きで合波させる)も
のである。このような2重回折格子21を主体として例
えば第1図の場合と同様に合分波素子22が構成される
21b, that is, a diffraction grating structurally similar to that shown in the first to fifth embodiments (for example, the one shown in FIG. 1 or FIG. 4). ), the incident multiplexed light is split into light with a wavelength that can be diffracted twice and light with a wavelength that can be transmitted twice (reversible, multiplexing in the opposite direction) ). A multiplexing/demultiplexing element 22 is constructed using such a double diffraction grating 21 as a main body, for example, in the same manner as in the case of FIG.

例えば、第13図に示すように短波長光λSと長波長光
λLとを分波させる場合、短波長光λSは回折格子2]
を経て回折格子21a、21bにより2回回折させてλ
5(1−1)とし、長波長光λI。
For example, when separating short wavelength light λS and long wavelength light λL as shown in FIG. 13, the short wavelength light λS is separated by the diffraction grating 2
is diffracted twice by the diffraction gratings 21a and 21b.
5(1-1), and long wavelength light λI.

は回折格子21を経て回折格子21a、21bにより2
回透過させてλt、(0−0)として分波させるもので
ある。
passes through the diffraction grating 21 and is converted into 2 by the diffraction gratings 21a and 21b.
The signal is transmitted twice and demultiplexed as λt, (0-0).

これは、2重回折格子の持つ利点である回折角の分散が
小さい点に、微小ピッチ構造の回折格子の利点である長
波長光は殆ど透過するという点を集約させる二とにより
、達成したものである。即ち、両者を集約すると、分波
帯域が広くてLED光等の広帯域光を分波する際の回折
角度が小さいという特徴を持つ。
This was achieved by combining the advantage of a double diffraction grating, which has small dispersion of diffraction angles, and the advantage of a diffraction grating with a fine pitch structure, that almost all long wavelength light is transmitted. It is something. That is, when the two are combined, it has a feature that the demultiplexing band is wide and the diffraction angle when demultiplexing broadband light such as LED light is small.

いま、本実施例の回折格子21の回折ダイアダラムを第
14図に示す。まず、前述した実施例で示したようにあ
る光、即ち、第14図に伝搬定数kAで示す光は回折格
子21 a、  2 l bにより2回回折する。一方
、他方の光、即ち伝搬定数kBで示す光については回折
不能とさせる。つまり、伝搬定数1(Bの光は最初の回
折格子21aにより回折されない。このためには、第1
4図に示すように Δ=に、−kB−sinOl−に■3≧Oなる関係が成
立すれば、伝搬定数kBの光は完全に回折不可能となる
。ここに、前述の場合と同様、K、は最初の回折格子2
1aの格子定数、Ojは入力角である。
Now, FIG. 14 shows a diffraction diaphragm of the diffraction grating 21 of this embodiment. First, as shown in the above embodiment, a certain light, that is, the light indicated by the propagation constant kA in FIG. 14, is diffracted twice by the diffraction gratings 21a and 21b. On the other hand, the other light, that is, the light indicated by the propagation constant kB, is made non-diffractive. In other words, the light with a propagation constant of 1 (B) is not diffracted by the first diffraction grating 21a.
As shown in FIG. 4, if the relationship ∆= and −kB−sinOl− holds: ■3≧O, then light with a propagation constant kB becomes completely impossible to diffract. Here, as in the previous case, K is the initial grating 2
The lattice constant of 1a and Oj are the input angles.

このような関係を満たすように構成すれば、ある波長の
光は回折格子21により2回回折し、他方のある波長の
光は2回透過するので、第13図に示したように、出力
光は分波されることになる。
If such a relationship is satisfied, light of a certain wavelength will be diffracted twice by the diffraction grating 21, and light of a certain wavelength will be transmitted twice, so that the output light will be as shown in FIG. will be demultiplexed.

これは、例えば第16図に示すように、短波長の光λS
++  λS21〜.λsnなる1群と、長波長光λI
、とからなる合波光を分波させる場合も同様であり、1
群の短波長光λS++  λS21〜.λsnは回折格
子21を経て回折格子21a、2]、bにより2回回折
(1−1)されて分波され、長波長光λLは回折格子2
1を経て回折格子21 a、  2 l bにより2回
透過させてλL(0−0)として回折出力光群から分波
される。
For example, as shown in FIG. 16, the short wavelength light λS
++ λS21~. One group λsn and long wavelength light λI
The same is true when demultiplexing the combined light consisting of , 1
Group of short wavelength light λS++ λS21~. λsn passes through the diffraction grating 21, is diffracted twice (1-1) and demultiplexed by the diffraction gratings 21a, 2], b, and the long wavelength light λL is separated by the diffraction grating 21a, 2], b.
1, the light beam passes through the diffraction gratings 21a and 2lb twice, and is separated from the diffraction output light group as λL(0-0).

また、上式を満たすように構成しなくとも、伝搬定数k
Bなる光が、ブラッグ条件から大幅に離れたものとすれ
ば、同様の分波効果が得られる。
In addition, even if the structure is not configured to satisfy the above formula, the propagation constant k
If the light B is significantly separated from the Bragg condition, a similar demultiplexing effect can be obtained.

=21− また、上式の条件を満たす光が複数存在すれば、それら
の1群の光は何れも回折格子2コを2回透過した後、同
方向に進行する。そこで、回折格子21を透過出力した
これらの1群の合波光に対しては、別個の分波素子を用
いて新たに分波すればよい。この際、本実施例の回折格
子21を用いて分波した後、さらに透過出力光に複数波
長光が混じっている時には、さらに新たに分波すればよ
い。
=21- Furthermore, if there are a plurality of lights that satisfy the above condition, each of the lights in one group travels in the same direction after passing through the two diffraction gratings twice. Therefore, these one group of multiplexed lights transmitted through the diffraction grating 21 may be newly demultiplexed using a separate demultiplexing element. At this time, after demultiplexing using the diffraction grating 21 of this embodiment, if the transmitted output light is mixed with light of multiple wavelengths, it is sufficient to perform further demultiplexing.

即ち、このような分波工程を複数の分波素子を用いて必
要回数分繰返せばよいものである。
That is, such a demultiplexing step may be repeated as many times as necessary using a plurality of demultiplexing elements.

例えば、第16図に示すように短波長の光λS++λS
21〜.λS□なる1群と、長波長光λL++  λL
z+〜、λLnなる1群とからなる多重合波光を分波さ
せる場合であれば、回折格子21と同等の2個の回折格
子23.24を用いればよい。即ち、1群の短波長光λ
S++  λ821〜.λsnは回折格子23を経てそ
の回折格子23a、23bにより2回回折(1−1)さ
せることにより分波させる一方、長波長兄λL++  
λエフ2.〜.λLnなる1群は(0−0)で示すよう
に全て透過させ、短波長側のものと分波させる。この後
、第1の回折格子23を透過した1群の長波長光λL+
+  λI、2.〜.λLnは第2の回折格子24を経
てその回折格子24a、24bにより2回回折させるこ
とにより、分波させればよい。
For example, as shown in FIG. 16, short wavelength light λS++λS
21~. One group of λS□ and long wavelength light λL++ λL
If multiplexed light consisting of a group of z+ to λLn is to be demultiplexed, two diffraction gratings 23 and 24 equivalent to the diffraction grating 21 may be used. That is, a group of short wavelength lights λ
S++ λ821~. λsn passes through the diffraction grating 23 and is demultiplexed by being diffracted twice (1-1) by the diffraction gratings 23a and 23b, while the longer wavelength brother λL++
λf2. ~. One group, λLn, transmits all light as shown by (0-0), and separates it from light on the short wavelength side. After that, a group of long wavelength lights λL+ transmitted through the first diffraction grating 23
+λI, 2. ~. λLn may be separated by passing through the second diffraction grating 24 and being diffracted twice by the diffraction gratings 24a and 24b.

いま、具体例として、入力側の回折格子23aのピッチ
が0.6μm、出力側の回折格子23bのピッチが0.
62μ■の第1の回折格子23に対し、入ノJ角30’
 にて、0.5μm、0. 6μm、0.7pm、  
1.、 3(un、  1.4μm、  1. 5pm
なる6種類の波長光による多重合波光が入力する場合を
考える。
Now, as a specific example, the pitch of the diffraction grating 23a on the input side is 0.6 μm, and the pitch of the diffraction grating 23b on the output side is 0.6 μm.
For the first diffraction grating 23 of 62μ■, the entrance J angle is 30'
0.5μm, 0. 6μm, 0.7pm,
1. , 3(un, 1.4μm, 1.5pm
Consider the case where multiplexed light of six different wavelengths is input.

この場合、回折不可能なる上式を満たす光は、長波長側
の1.3μm、1.4μm、1.5μmなる3種類の光
であり、これらの波長光は回折格子23を透過し、他の
波長0.5μm、0.6μm、0.7μmの光は2回回
折するので、前者と分波される。そして、透過光につい
て再度分波する必要があるが、この分波に際しては入力
端の回折格子24aのピッチが1.4μm、出)J側の
回折格子24bのピッチが1,45μmなる第2の回折
格子24を用いれは、1.3μm、1..4μm、1.
5μmなる3種類の光は前述した実施例の場合のように
各々2回回折されて分波されることになる。このように
して、分波帯域が拡がり、光通信等の多重度を飛躍的に
向上させ得ることになる。
In this case, the light that satisfies the above equation and cannot be diffracted is three types of light on the long wavelength side, 1.3 μm, 1.4 μm, and 1.5 μm, and these wavelength lights are transmitted through the diffraction grating 23 and are Since the light with wavelengths of 0.5 μm, 0.6 μm, and 0.7 μm is diffracted twice, it is separated from the former. Then, it is necessary to demultiplex the transmitted light again, but for this demultiplexing, the pitch of the diffraction grating 24a on the input end is 1.4 μm, and the pitch of the diffraction grating 24b on the output side J is 1.45 μm. When using the diffraction grating 24, the diameter is 1.3 μm. .. 4 μm, 1.
The three types of light of 5 μm are each diffracted twice and separated as in the above-described embodiment. In this way, the demultiplexing band is expanded and the multiplicity of optical communications etc. can be dramatically improved.

ここに、本実施例を一般化して考えれば、光の波長群が
さらに多数ある場合には、第16図に準じて第17図の
ように構成すればよい。即ち、第2の回折格子24の透
過光群出力側に必要数の回折格子24A〜24Nを設け
ればよい。
If this embodiment is generalized, if there are many more wavelength groups of light, the configuration shown in FIG. 17 may be adopted in accordance with FIG. 16. That is, a required number of diffraction gratings 24A to 24N may be provided on the transmitted light group output side of the second diffraction grating 24.

また、第16図の機能を第7図に準じて厚膜導波路型一
体化構造とする場合、第17図に示すように構成すれば
よい。即ち、第7図の構成において、導波路型コリメー
トレンズ1.2 aの一部を回折格子10を透過する光
の光路側にも延設し、その透過出力側に集光レンズ25
を導波路型のシリンドリカルレンズ構成、つまり2段の
導波路型コリメートレンズ25 a、  25 bによ
り一体的に構成し、導波路型コリメートレンズ]、2a
、25aの対向端面に各々透過型の回折格子26a、2
6bを形成して2重回折格子26としてなる。即ち、こ
の回折格子26が回折格子24に相当し、回折格子10
が回折格子23に相当する。
If the function shown in FIG. 16 is to be implemented as a thick film waveguide type integrated structure according to FIG. 7, the structure may be configured as shown in FIG. 17. That is, in the configuration shown in FIG. 7, a part of the waveguide type collimating lens 1.2a is also extended to the optical path side of the light transmitted through the diffraction grating 10, and the condenser lens 25 is installed on the transmitted output side.
is configured as a waveguide-type cylindrical lens, that is, integrally configured with two-stage waveguide-type collimating lenses 25 a and 25 b.
, 25a are respectively provided with transmission type diffraction gratings 26a, 2.
6b to form a double diffraction grating 26. That is, this diffraction grating 26 corresponds to the diffraction grating 24, and the diffraction grating 10
corresponds to the diffraction grating 23.

つづいて、本発明の第九の実施例を第19図及び第20
図により説明する。本実施例は、第六又は第七の実施例
に、前記第への実施例の思想を用いたものである。基本
的動作は同様であるが、例えば第17図に準じて構成す
る場合、回折格子23.24に相当する2つの回折格子
27.28を用いるが、本実施例では回折格子27の回
折格子27a、27bの回折特性を第9図の場合と同じ
く相対的に同一とし、回折格子28の回折格子28a、
28bの回折特性も相対的に同一としたものである。こ
れにより、入力側に1つの集光レンズ11を設けるだけ
の構成とし、出力側のレンズを省略したものである。
Next, the ninth embodiment of the present invention is shown in FIGS. 19 and 20.
This will be explained using figures. This embodiment uses the idea of the above-mentioned embodiment in the sixth or seventh embodiment. Although the basic operation is the same, for example, when configured according to FIG. 17, two diffraction gratings 27 and 28 corresponding to the diffraction gratings 23 and 24 are used. , 27b are relatively the same as in the case of FIG. 9, and the diffraction gratings 28a of the diffraction grating 28,
The diffraction characteristics of 28b are also relatively the same. As a result, only one condensing lens 11 is provided on the input side, and the lens on the output side is omitted.

本実施例の場合も、この機能を第13図に準じて厚膜導
波路型一体化構造とする場合、第20図に示すように構
成すればよい。即ち、第13図の構成において、導波路
20を回折側と透過側とに分離し、透過側については導
波路20a、20bに分離してその対向端面に各々透過
型の回折格子29a、29bを形成して2重回折格子2
9としてなる。即ち、この回折格子29が回折格子28
に相当し、回折格子18が回折格子27に相当する。
In the case of this embodiment as well, if this function is to be implemented in a thick film waveguide type integrated structure according to FIG. 13, it may be constructed as shown in FIG. 20. That is, in the configuration shown in FIG. 13, the waveguide 20 is separated into a diffraction side and a transmission side, and the transmission side is separated into waveguides 20a and 20b, and transmission type diffraction gratings 29a and 29b are respectively installed on the opposing end faces of the waveguides 20a and 20b. Forming a double diffraction grating 2
It becomes 9. That is, this diffraction grating 29 is the diffraction grating 28
The diffraction grating 18 corresponds to the diffraction grating 27.

また、本発明の策士の実施例を第21図ないし第23図
により説明する。本実施例は、より小型化を図るため、
2段の回折格子27.28 (又は23.24)を接近
配設し、最初の回折格子27により分波された光が次の
回折格子28を透通するようにしたものである。前記実
施例の回折格子27.28による場合であれば、第22
図に示すように入力端に集光レンズ11を設ければよい
Further, an embodiment of the tactician of the present invention will be explained with reference to FIGS. 21 to 23. In this example, in order to achieve further miniaturization,
Two stages of diffraction gratings 27, 28 (or 23, 24) are arranged close to each other so that the light split by the first diffraction grating 27 passes through the next diffraction grating 28. In the case of using the diffraction gratings 27 and 28 of the above embodiment, the 22nd
As shown in the figure, a condenser lens 11 may be provided at the input end.

この場合も、本実施例を一般化して考えれば、光の波長
群がさらに多数ある場合には、第21図に準じて第23
図のように構成すればよい。即ち、第2の回折格子28
の出力側に必要数の回折格子28A〜28N (28N
のみ図示)を設ければよい。
In this case as well, if we generalize this example, if there are many more wavelength groups of light, the 23rd wavelength group according to FIG.
It can be configured as shown in the figure. That is, the second diffraction grating 28
The required number of diffraction gratings 28A to 28N (28N
(Only shown in the figure) may be provided.

さらに、本発明の策士−の実施例を第24図により説明
する。本実施例は、第七ないし策士の実施例の2重回折
格子構造を第8図の場合に準じて2つの回折格子29a
、29bからなる反射型2重回折格子29として構成し
たものである。構造自体は、第8図のままでもよく、或
いは第への実施例の思想によるものでよい。何れにして
も、合波光のあるものは、第8図の場合と同様に回折格
子29a、29bにより2回回折されて出力されるが、
他のある光は回折格子29a、29bにより2回反射〈
前述した透過に相当する)して出力され、前者と分波さ
れる。
Furthermore, an embodiment of the strategist of the present invention will be explained with reference to FIG. In this embodiment, the double diffraction grating structure of the seventh or strategist embodiment is replaced with two diffraction gratings 29a according to the case of FIG.
, 29b is constructed as a reflective double diffraction grating 29. The structure itself may remain as shown in FIG. 8, or may be based on the idea of the second embodiment. In any case, some of the combined light is diffracted twice by the diffraction gratings 29a and 29b and output, as in the case of FIG.
Some other light is reflected twice by the diffraction gratings 29a and 29b.
(corresponding to the above-mentioned transmission), and is output and separated from the former.

なお、何れの実施例においても、分波機能と合波機能と
は相対的なものであり、合波させる場合であれば、入・
出力側を入れ替えればよいものである。
Note that in any of the embodiments, the demultiplexing function and the multiplexing function are relative, and if multiplexing is required, input and
All you have to do is replace the output side.

効果 本発明は、十述したように少なくとも2つの回折格子を
設けたので、1つの回折格子のみでは不可能な高効率化
と低角度分散性とを両立させることができ、よって、L
ED光のような広帯域の光を扱う場合でもスポット径が
拡がるようなことなく良好に分波又は合波させることが
でき、この際、少なくと−t12つの回折格子によりあ
る波長光は少なくとも2回回折させ、ある光は少なくと
も2回透過又は反射させることにより、容易に分波又は
合波帯域を拡大することもでき、また、相対的に回折特
性を異ならせた少なくとも2つの回折格子の組合せによ
り構成してもよいが、相対的な回折特性を同一とじた少
なくとも2つの回折格子を組合せることにより、入力側
又は出力側の−・方のレンズを省略させることもでき、
さらには、回折格子自体を同一基板−1−に配置させる
のは勿論、レンズを例えばシリンドリカルレンズとして
回折格子と同一基板上に導波路型で−・体形成すること
により、複製等も容易となる。
Effect Since the present invention includes at least two diffraction gratings as described above, it is possible to achieve both high efficiency and low angular dispersion, which are impossible with only one diffraction grating.
Even when dealing with broadband light such as ED light, it is possible to perform good demultiplexing or multiplexing without expanding the spot diameter. By diffracting and having a certain light transmitted or reflected at least twice, it is possible to easily expand the demultiplexing or multiplexing band, and by combining at least two diffraction gratings with relatively different diffraction characteristics. However, by combining at least two diffraction gratings with the same relative diffraction characteristics, it is also possible to omit the lens on the input side or the output side.
Furthermore, not only can the diffraction grating itself be placed on the same substrate, but also duplication can be facilitated by forming a lens, such as a cylindrical lens, in a waveguide type on the same substrate as the diffraction grating. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例を示す概略正面図、第2
図は回折格子の一部を拡大して示す概略正面図、第3図
は入ノJ角−出力角の特性を示すベク)・ル図、第4図
は本発明の第二の実施例を示す概略正面図、第5図はそ
の入力角−出力角の特性を示すベクトル図、第6図は本
発明の第三の実施例を示す概略正面図、第7図は本発明
の第四の実施例を示す概略斜視図、第8図は本発明の第
五の実施例を示す概略正面図、第9図は本発明の第六の
実施例を示す概略正面図、第10図は回折格子の概略正
面図、第11図は偏向角0時の概略正面図、第12図は
本発明の第七の実施例を示す一体化構成例の概略斜視図
、第13図は本発明の第への実施例を示す概略正面図、
第14図はベクトル図、第15図及び第16図は多重化
例を示す概略正面図、第17図はより一般化して示す概
略正面図、第18図は一体化構成例を示す概略斜視図、
第19図は本発明の第九の実施例を示す概略正面図、第
20図は一体化構成例を示す概略斜視図、第21図は本
発明の策士の実施例を示す概略正面図、第22図は概略
正面図、第23図は一般化して示す概略正面図、第24
図は本発明の策士−の実施例を示す概略正面図である。 4 ・コリメートレンズ、5a、5b・・・回折格子、
6・・・集光レンズ、7a、7b・・・回折格子、8・
・コー30=
FIG. 1 is a schematic front view showing a first embodiment of the present invention, and FIG.
The figure is a schematic front view showing an enlarged part of the diffraction grating, Figure 3 is a vector diagram showing the characteristics of input angle - output angle, and Figure 4 shows the second embodiment of the present invention. FIG. 5 is a vector diagram showing the input angle-output angle characteristics, FIG. 6 is a schematic front view showing the third embodiment of the present invention, and FIG. 7 is a fourth embodiment of the present invention. FIG. 8 is a schematic front view showing a fifth embodiment of the present invention; FIG. 9 is a schematic front view showing a sixth embodiment of the present invention; FIG. 10 is a diffraction grating. 11 is a schematic front view when the deflection angle is 0, FIG. 12 is a schematic perspective view of an integrated configuration example showing the seventh embodiment of the present invention, and FIG. 13 is a schematic front view of the seventh embodiment of the present invention. A schematic front view showing an example of
Fig. 14 is a vector diagram, Figs. 15 and 16 are a schematic front view showing a multiplexed example, Fig. 17 is a general front view showing a more generalized example, and Fig. 18 is a schematic perspective view showing an example of an integrated configuration. ,
FIG. 19 is a schematic front view showing a ninth embodiment of the present invention, FIG. 20 is a schematic perspective view showing an example of an integrated configuration, and FIG. 21 is a schematic front view showing an embodiment of the schemer of the present invention. Figure 22 is a schematic front view, Figure 23 is a generalized front view, and Figure 24 is a generalized front view.
The figure is a schematic front view showing an embodiment of the strategist of the present invention. 4 ・Collimating lens, 5a, 5b...diffraction grating,
6... Condenser lens, 7a, 7b... Diffraction grating, 8.
・Co 30=

Claims (1)

【特許請求の範囲】 1、光の合波又は分波を行う光路上に配設した少なくと
も2つの回折格子からなることを特徴とする合分波素子
。 2、相対的に回折特性が同一の少なくとも2つの回折格
子を光の合波又は分波を行う光路上に配設したことを特
徴とする合分波素子。 3、相対的に回折特性が異なる少なくとも2つの回折格
子を光の合波又は分波を行う光路上に配設したことを特
徴とする合分波素子。 4、他の回折格子に比べ、少なくとも1つ以上の回折格
子のピッチが異なることを特徴とする請求項3記載の合
分波素子。 5、他の回折格子の格子面に対し、少なくとも1つ以上
の回折格子の格子面を非平行に配置したことを特徴とす
る請求項3記載の合分波素子。 6、入力光をコリメートするコリメートレンズと、分波
光を集光する集光レンズとを備えたことを特徴とする請
求項1、3、4又は5記載の合分波素子。 7、入力光を集光する集光レンズを備えたことを特徴と
する請求項1、2、3、4又は5記載の合分波素子。 8、回折格子自体にレンズ機能を持たせたことを特徴と
する請求項1、2、3、4又は5記載の合分波素子。 9、レンズにシリンドリカル集光機能を持たせたことを
特徴とする請求項6、7又は8記載の合分波素子。 10、回折格子を同一基板上に配置させたことを特徴と
する請求項1、2、3、4又は5記載の合分波素子。 11、回折格子とレンズとを同一基板上に配置させたこ
とを特徴とする請求項6、7、8又は9記載の合分波素
子。
[Scope of Claims] 1. A multiplexing/demultiplexing element comprising at least two diffraction gratings disposed on an optical path for multiplexing or demultiplexing light. 2. A multiplexing/demultiplexing element characterized in that at least two diffraction gratings having relatively the same diffraction characteristics are arranged on an optical path for multiplexing or demultiplexing light. 3. A multiplexing/demultiplexing element characterized in that at least two diffraction gratings having relatively different diffraction characteristics are arranged on an optical path for multiplexing or demultiplexing light. 4. The multiplexing/demultiplexing element according to claim 3, wherein the pitch of at least one diffraction grating is different from that of the other diffraction gratings. 5. The multiplexing/demultiplexing element according to claim 3, wherein the grating plane of at least one diffraction grating is arranged non-parallel to the grating plane of other diffraction gratings. 6. The multiplexing/demultiplexing element according to claim 1, 3, 4, or 5, further comprising a collimating lens for collimating the input light and a condensing lens for condensing the demultiplexed light. 7. The multiplexing/demultiplexing element according to claim 1, 2, 3, 4, or 5, further comprising a condensing lens for condensing input light. 8. The multiplexing/demultiplexing element according to claim 1, 2, 3, 4, or 5, wherein the diffraction grating itself has a lens function. 9. The multiplexing/demultiplexing element according to claim 6, 7 or 8, wherein the lens has a cylindrical light focusing function. 10. The multiplexing/demultiplexing device according to claim 1, 2, 3, 4, or 5, characterized in that the diffraction gratings are arranged on the same substrate. 11. The multiplexing/demultiplexing device according to claim 6, 7, 8 or 9, wherein the diffraction grating and the lens are arranged on the same substrate.
JP16711188A 1988-01-13 1988-07-05 Multiplexing and demultiplexing element Pending JPH01280706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16711188A JPH01280706A (en) 1988-01-13 1988-07-05 Multiplexing and demultiplexing element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-5577 1988-01-13
JP557788 1988-01-13
JP16711188A JPH01280706A (en) 1988-01-13 1988-07-05 Multiplexing and demultiplexing element

Publications (1)

Publication Number Publication Date
JPH01280706A true JPH01280706A (en) 1989-11-10

Family

ID=26339542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16711188A Pending JPH01280706A (en) 1988-01-13 1988-07-05 Multiplexing and demultiplexing element

Country Status (1)

Country Link
JP (1) JPH01280706A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973838A (en) * 1995-07-26 1999-10-26 Fujitsu Limited Apparatus which includes a virtually imaged phased array (VIPA) in combination with a wavelength splitter to demultiplex wavelength division multiplexed (WDM) light
US6028706A (en) * 1995-07-26 2000-02-22 Fujitsu Limited Virtually imaged phased array (VIPA) having a varying reflectivity surface to improve beam profile
US6717731B2 (en) 1999-12-14 2004-04-06 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US6786611B2 (en) 2000-05-23 2004-09-07 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973838A (en) * 1995-07-26 1999-10-26 Fujitsu Limited Apparatus which includes a virtually imaged phased array (VIPA) in combination with a wavelength splitter to demultiplex wavelength division multiplexed (WDM) light
US6028706A (en) * 1995-07-26 2000-02-22 Fujitsu Limited Virtually imaged phased array (VIPA) having a varying reflectivity surface to improve beam profile
US6304382B1 (en) 1995-07-26 2001-10-16 Fujitsu Ltd Virtually imaged phased array (VIPA) having a varying reflectivity surface to improve beam profile
US6717731B2 (en) 1999-12-14 2004-04-06 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US6947216B2 (en) 1999-12-14 2005-09-20 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US7075723B2 (en) 1999-12-14 2006-07-11 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US7158304B2 (en) 1999-12-14 2007-01-02 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US6786611B2 (en) 2000-05-23 2004-09-07 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US7193778B2 (en) 2000-05-23 2007-03-20 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion

Similar Documents

Publication Publication Date Title
US8811823B2 (en) Dynamic optical devices
US6449066B1 (en) Polarization insensitive, high dispersion optical element
KR101226346B1 (en) Optical element, optical apparatus, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, and optical apparatus system
US6441934B1 (en) Multiplexer and demultiplexer for single mode optical fiber communication links
JPS63173006A (en) Multiplexer/demultiplexer manufactured in the form of integrated optical element using oval concave grating
JPH02143203A (en) Optical multiplexer/demultiplexer element
JP2008530613A (en) High-dispersion diffraction grating including multiple holographic optical elements
JP2002503837A (en) Multiplexer and demultiplexer for single mode fiber optic communication links
US6415073B1 (en) Wavelength division multiplexing/demultiplexing devices employing patterned optical components
US6343170B1 (en) Optical spectrum analyzer
KR20140082853A (en) Optical connections
US6606197B2 (en) Dual grating filtering system
JPH01280706A (en) Multiplexing and demultiplexing element
US6810176B2 (en) Integrated transparent substrate and diffractive optical element
US7589895B2 (en) Polarizing element and optical system including polarizing element
WO1999049339A1 (en) Hologram polarized light separator
AU7982600A (en) Dual grating light filtering system
JP2922527B2 (en) Multiplexing / demultiplexing element
JPS61223711A (en) Demultiplexer for optical communication
KR20220081779A (en) Micro lens array with one side aspherical surfaces
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
TW486580B (en) Planar optical waveguide type dense wavelength division multiplexer
JPH06317705A (en) Diffraction element and optical multiplxing/ demultiplxing device using the same
JP2010164752A (en) Optical element, optical pickup, optical information processing device, optical attenuator, polarization conversion element, projector optical system, and optical equipment
CN220019930U (en) Wavelength division multiplexer