JPH01280315A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01280315A
JPH01280315A JP11122888A JP11122888A JPH01280315A JP H01280315 A JPH01280315 A JP H01280315A JP 11122888 A JP11122888 A JP 11122888A JP 11122888 A JP11122888 A JP 11122888A JP H01280315 A JPH01280315 A JP H01280315A
Authority
JP
Japan
Prior art keywords
photoresist
spacer film
photolithography
patterned
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11122888A
Other languages
Japanese (ja)
Inventor
Kazuo Hayashi
一夫 林
Takuji Sonoda
琢二 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11122888A priority Critical patent/JPH01280315A/en
Publication of JPH01280315A publication Critical patent/JPH01280315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To realize full step coverage of photoresist of irregularities and to form a fine pattern easily even in an area near an electrode, etc., by separating a fully thick photoresist to flatten an irregular substrate from a fully thin photoresist of high resolution for photolithography. CONSTITUTION:A first photoresist 3a which is thicker than the rough step differential of irregular substrates 1, 2 is formed to flatten the substrates 1, 2 and a spacer film 4 whereto full selectivity is provided at photoresist and dryetching is formed thereon. A fully thin second photoresist 3b of high resolution is formed on the spacer film 4. The photoresist 3b is patterned by photolithography and then the spacer film 4 is anisotropy-dryetching using the photoresist 3b as a mask. The first photoresist 3a is anisotropy-dryetched using the spacer film 4 as a mask, and then patterned. A dielectric film such as Ti, SiO2, SiN are suitable as the spacer film 4.

Description

【発明の詳細な説明】 〔並業上の利用分野〕 この究明は、半導体装置の製造方法、更に詳しくは凹凸
のある基板上への写真製版による微細パターンの形成方
法である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application in the Ordinary Industry] This research relates to a method for manufacturing a semiconductor device, and more specifically, a method for forming a fine pattern on a substrate having irregularities by photolithography.

〔従来の技術〕[Conventional technology]

第2図は半導体装置の従来方法による凹凸のある基板上
への写真製版について説明する断面図である。
FIG. 2 is a cross-sectional view illustrating photolithography of a semiconductor device onto an uneven substrate by a conventional method.

基板(1)上に、電極等による凸部(2)があり、その
上に写真製版用のフォトレジスト(3a)が形成されて
いる。この後、紫外線露光装置やEBB光等により、所
望のパターンをパターニングする。
On the substrate (1), there is a protrusion (2) made of an electrode or the like, and a photoresist (3a) for photolithography is formed on the protrusion (2). Thereafter, a desired pattern is patterned using an ultraviolet exposure device, EBB light, or the like.

次に前作について説明する。Next, I will explain the previous work.

上記の様な写真製版において、解像度を決定する重要な
パラメータとして、フォトレジスト(3a)c以下PR
と略す)のhgがある。一般にpR(sa)の厚さが薄
いほど解像度は向上する。しかし第2図のような凹凸の
ある基板上でのPR(3a)の厚さは、次の2点で制約
をうける。
In photolithography as mentioned above, photoresist (3a) c or lower PR is an important parameter that determines resolution.
There is a hg (abbreviated as ). Generally, the thinner the pR(sa), the better the resolution. However, the thickness of the PR (3a) on an uneven substrate as shown in FIG. 2 is limited by the following two points.

すなわち、1)、 PR(3a)の厚キ′fI:薄くす
ると基板(1)上の凸部(2)のエッチ(第2図A部)
SでPR(3a)が薄くなり過ぎ、A部のPR(3a)
によるマスキング効果がなくなる。2)、 1に極間隔
が奴μmlで近くなったような所(第2図B部)では近
接した電極等による凸部(2)の影響によ’) 、PR
(3a)の厚さd2は平坦な所のPR(3a)の厚さd
lより厚くなってしまう。(d2>dt) したがって、例えばGaAs E’ETのゲート形成の
ための写真製版のように、近接した電極(ソースとドレ
イン)の間にサブミクロンの写真製版(ゲート)を行う
場合、PR(3a)の厚さd2を十分薄くすることは、
上記1)、2)から不可能であシ、微細化パターン形成
王制FJを与えていた。
That is, 1) Thickness of PR (3a): If it is thinned, the etch of the convex part (2) on the substrate (1) (Part A in Figure 2)
PR (3a) becomes too thin in S, PR (3a) in A part
The masking effect of 2), In places where the pole spacing is close to 1 μm (section B in Figure 2), due to the influence of the protrusion (2) caused by the adjacent electrodes, etc.'), PR
The thickness d2 of (3a) is the thickness d of PR (3a) at a flat place.
It becomes thicker than l. (d2>dt) Therefore, when performing submicron photolithography (gate) between adjacent electrodes (source and drain), such as photolithography for forming the gate of GaAs E'ET, PR(3a ) to make the thickness d2 sufficiently thin,
This is impossible because of the above 1) and 2), and FJ is given as a miniaturized pattern formation system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように、従来までの方法による凹凸のある基板上
での写真製版では、凹凸部のPRのカバーレッジの問題
及び′dL極等の近接効果によるPRの厚膜化の問題に
よシ、 PRの厚さを薄くすることに限界があシ、ひい
ては、解像度にも制約を与えていたので、その対策が課
題であった。
As mentioned above, in photolithography on a substrate with unevenness using conventional methods, there are problems of PR coverage on uneven parts and thickening of PR due to proximity effects such as 'dL poles. There was a limit to reducing the thickness of the PR, which in turn placed constraints on the resolution, so countermeasures were an issue.

この発明は、上記のような課題を解決するためになされ
たもので、凹凸部の7オトレジストのステップカバーレ
ッジを十分に行い、しかもit極等が近接した所にも容
易に微細パターンが形成でさる半導体装置の製造方法を
提供するものである。
This invention was made in order to solve the above-mentioned problems, and it provides sufficient step coverage of the 7-to-resist on uneven parts, and also allows the formation of fine patterns easily even in places where IT poles etc. are close. The present invention provides a method for manufacturing a semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、基板の凹凸部を平坦化するためのPR上に
、PRとドライエツチングにおいて選択性のあるスペー
サ膜を形成し、そのスペーサ膜上に解像度の優れた十分
に薄い第2のPRを形成した後、第2のPRを従来の写
真製版でパターニングした後、これをマスクにしてスペ
ーサ膜及び第1のPRをリアクティブイオンエツチング
(EXE)等の異方性エツチングにより、パターニング
したものである。
In this invention, a spacer film that is selective in PR and dry etching is formed on a PR for flattening uneven parts of a substrate, and a sufficiently thin second PR with excellent resolution is formed on the spacer film. After forming, the second PR is patterned by conventional photolithography, and then the spacer film and the first PR are patterned by anisotropic etching such as reactive ion etching (EXE) using this as a mask. be.

〔作用〕[Effect]

この発明は、凹凸部をおおうPRと、パターニングを行
うPRを分けたため、凹凸のある基板上でも、ステップ
カバーレッジの問題を解決し、しかも−容易に微細加工
を可能とする。
In this invention, since the PR for covering the uneven portion and the PR for patterning are separated, the problem of step coverage can be solved even on an uneven substrate, and moreover, microfabrication can be easily performed.

〔実施例〕〔Example〕

以下、この発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は半導体装置の製造方法のプロセスを説明する断
面図である。図において、(1) * (2) 、 (
3a)。
FIG. 1 is a cross-sectional view illustrating a process for manufacturing a semiconductor device. In the figure, (1) * (2) , (
3a).

(4)は第2図の従来例に示したものと同等である。(4) is equivalent to that shown in the conventional example of FIG.

凹凸のある基板上に平坦化するための第1のPR(3a
)を形成する。第1のPR(3a)の厚では、基板(1
)の段差の大きさ以上であることが、基板(1)平坦化
の点から好ましい。次にPR上にドライエツチングの際
、十分な選択性のあるスペーサ膜(4)を形成する。ス
ペーサ膜(4)は、例えば、T1(スパッタ法や蒸着法
で形成)や5102やSiN等の騎匡体膜(スパッタや
CVD 、スピンコード等で形成)等カ適当である。次
にスペーサ膜(4)上に第2のPR(3b)を形成する
。第2のPR(3b)の厚ざはスペーサ膜(4)をドラ
イエツチングする際、十分なマスクとなる厚さであれば
、できる限り薄い方が好ましい。
The first PR (3a
) to form. With the thickness of the first PR (3a), the substrate (1
) is preferably equal to or larger than the step size of the substrate (1) from the viewpoint of flattening the substrate (1). Next, a spacer film (4) with sufficient selectivity is formed on the PR during dry etching. The spacer film (4) is suitably made of, for example, T1 (formed by sputtering or vapor deposition), a matrix film of 5102, SiN, etc. (formed by sputtering, CVD, spin code, etc.). Next, a second PR (3b) is formed on the spacer film (4). The thickness of the second PR (3b) is preferably as thin as possible so long as it can serve as a sufficient mask when dry etching the spacer film (4).

次に従来の写真製版によシ、第2のPR(3b)をパタ
ーニングしc以上第1図a))、次に第2のPR(3b
)をマスクにして、スペーサ膜(41−R工E等によシ
異カ性選択エツチングしく以上第1図b))、その彼、
スペーサ膜(4)をマスクにして第1のPR(3a)を
パターニングする(以上13g1図c))。
Next, the second PR (3b) is patterned using conventional photolithography, and then the second PR (3b) is patterned.
) as a mask, remove the spacer film (see Figure 1b) for selective etching using 41-R engineering etc.
The first PR (3a) is patterned using the spacer film (4) as a mask (Fig. 13g1c).

次に作用を説明する。Next, the effect will be explained.

この発明によれば、従来方法では問題となっていた凹凸
部のステップカバーレッジの問題は、写真製版とは無関
係に十分に厚くできる第1のPR(sa)tcよりカバ
ーされるため問題がなくなる。
According to this invention, the problem of step coverage of uneven parts, which was a problem with conventional methods, is eliminated because it is covered by the first PR(sa)tc, which can be made sufficiently thick regardless of photolithography. .

また第1のPR(3a)によシ基板(1)表面は十分に
平坦化されるため、凸部(2)が数μm程度に近接して
いる所でも、第2のPR(3b)は平坦部並に十分に薄
くできる。またスペーサ膜(4)は第1,2のPR(3
a)、(3b) 十分離し、かつilのPR(3a) 
fドライエツチングするマスクとしての役割をする。
In addition, since the surface of the substrate (1) is sufficiently flattened by the first PR (3a), the second PR (3b) is It can be made thin enough to be as thin as a flat part. Further, the spacer film (4) is attached to the first and second PRs (3).
a), (3b) Sufficient distance and PR of il (3a)
f It serves as a mask for dry etching.

例えば、第1のPR(3a)としてポジ型レジスト(例
えばAZ−4370)を1μm形成し、スペーサ膜(4
)としてTiil000人、第2のPR(3b)として
はポジレジスト(例えV!、AZ−1350) f 2
00OA形成した場合、第2のPR(3b)を写A製版
恢、CF4をガスとしてR工Eによりスペーサl5(4
)’riをエツチングする。この際、第1のPR(3a
)とスペーサ膜(4)Tiとの選択比を少なくとも4以
上はとれるので、スペーサ膜(4)Ti除除波後、第2
のPR(3b)は1500Å以上残っている。またスペ
ーサ膜(4)Tiが1000人と薄いため、エツチング
時間が短く、サイドエツチングによるパターンの広がり
の心配がなく、第2のPR(:sb)のパターンを忠犬
にスペーサ膜(4)Tiにパターニングできる。次に第
1のPR(3a)を02を反応性ガスとしてRIEによ
υ選択エツチングする。この際、第2のPR(3b)の
パターンを忠犬に第1のPR(3a)にパターニングす
るためには、この第1のPR(3a)のドライエツチン
グが十分異方性に優れている必要がある。T1をスペー
サ膜(4)とした場合、異方性を向上させるため、RI
EのDCバイアスを上げ、すなわちRE’の入力パワー
を上げてもスペーサ膜(4) Tiと第1のPR(3a
)との選択比は十分大きく保てる。例えばRUEのRF
パワーを5 (、IOW程度にしても、スペーサ膜(4
1Tiと第1のPR(3a)とは20以上の選択比があ
り、かつ垂直なパターン断面形状(すなわちPR2(3
b)のパターンに忠実なパターニング)が実現できる。
For example, a positive resist (for example, AZ-4370) is formed to a thickness of 1 μm as the first PR (3a), and a spacer film (4
) as Tiil000 people, second PR (3b) as positive resist (e.g. V!, AZ-1350) f 2
When forming 00OA, spacer l5 (4
) 'ri etching. At this time, the first PR (3a
) and the spacer film (4) Ti can be at least 4 or more, so after the spacer film (4) Ti wave removal, the second
The PR (3b) of 1500 Å or more remains. In addition, since the spacer film (4) Ti is 1,000 times thinner, the etching time is short and there is no need to worry about the pattern spreading due to side etching. can be patterned. Next, the first PR (3a) is selectively etched by RIE using 02 as a reactive gas. At this time, in order to faithfully pattern the second PR (3b) into the first PR (3a), the dry etching of the first PR (3a) must have sufficient anisotropy. There is a need. When T1 is a spacer film (4), in order to improve the anisotropy, RI
Even if the DC bias of E is increased, that is, the input power of RE' is increased, the spacer film (4) Ti and the first PR (3a
) can be kept sufficiently large. For example, RUE's RF
Even if the power is set to about 5 (, IOW), the spacer film (4
1Ti and the first PR (3a) have a selectivity of 20 or more, and have a vertical pattern cross-sectional shape (i.e., PR2 (3a)).
Patterning that is faithful to the pattern b) can be realized.

スペーサ膜(4)として5i02を用いた場合も、上記
Tiとほぼ同様の条件が適応できる。またスペーサ膜(
4)をSiHにしてもほぼ同様であるが、SiHのエツ
チングに際しては、CF4に02をO〜10%添力aす
ることが好ましす。
When 5i02 is used as the spacer film (4), almost the same conditions as those for Ti described above can be applied. In addition, the spacer film (
It is almost the same even if 4) is replaced with SiH, but when etching SiH, it is preferable to add 02 to 10% a to CF4.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば凹凸のある基板を平坦
化する十分に厚いフォトレジストと、写真製版を行う解
像度の高く十分に薄いフォトレジストを分けることによ
シ、凹凸のある基板上でも容易に微細パターンを形成で
きる効果がある。
As described above, according to the present invention, by separating a sufficiently thick photoresist for flattening an uneven substrate and a sufficiently thin photoresist with high resolution for photolithography, it is possible to flatten an uneven substrate. This has the effect of easily forming fine patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る半導体装置の製造方法のプロセ
スフローを説明する断面図である。第2図は半導体装置
の従来の製造方法を説明する断面図である。 図において、(1)は基板、(2)は凸部、(3a)、
(3b)はフォトレジスト、(4)はスペーサ膜を示す
。 なお、区中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view illustrating a process flow of a method for manufacturing a semiconductor device according to the present invention. FIG. 2 is a cross-sectional view illustrating a conventional manufacturing method of a semiconductor device. In the figure, (1) is the substrate, (2) is the convex part, (3a),
(3b) shows a photoresist, and (4) shows a spacer film. In addition, the same numerals in the area indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  凹凸のある基板を平坦化させる厚さが基板の段差程度
以上厚い第1のフォトレジストと、その上にフォトレジ
ストとドライエッチングにおいて十分な選択性がとれる
スペーサ膜を形成し、そのスペーサ膜上に解像度の優れ
た十分に薄い第2のフォトレジストを形成した後、第2
のフォトレジストを写真製版によりパターニングし、そ
の後、スペーサ膜を第2のフォトレジストをマスクに、
異方性ドライエッチングし、その後、スペーサ膜をマス
クに、第1のフォトレジストを異方性ドライエッチング
し、パターニングすることを特徴とする半導体装置の製
造方法。
A first photoresist whose thickness is at least as thick as the level difference in the substrate to flatten an uneven substrate, and a spacer film that has sufficient selectivity in dry etching with the photoresist are formed on the first photoresist, and a spacer film is formed on the spacer film. After forming a sufficiently thin second photoresist with excellent resolution, a second
The second photoresist is patterned by photolithography, and then the spacer film is patterned using the second photoresist as a mask.
1. A method of manufacturing a semiconductor device, comprising performing anisotropic dry etching, and then performing anisotropic dry etching and patterning a first photoresist using a spacer film as a mask.
JP11122888A 1988-05-06 1988-05-06 Manufacture of semiconductor device Pending JPH01280315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11122888A JPH01280315A (en) 1988-05-06 1988-05-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11122888A JPH01280315A (en) 1988-05-06 1988-05-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01280315A true JPH01280315A (en) 1989-11-10

Family

ID=14555797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11122888A Pending JPH01280315A (en) 1988-05-06 1988-05-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01280315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD956037S1 (en) 2010-04-19 2022-06-28 Apple Inc. Electronic device
USD987624S1 (en) 2010-01-06 2023-05-30 Apple Inc. Portable display device
USD1033379S1 (en) 2008-04-07 2024-07-02 Apple Inc. Electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1033379S1 (en) 2008-04-07 2024-07-02 Apple Inc. Electronic device
USD987624S1 (en) 2010-01-06 2023-05-30 Apple Inc. Portable display device
USD956037S1 (en) 2010-04-19 2022-06-28 Apple Inc. Electronic device

Similar Documents

Publication Publication Date Title
KR0130963B1 (en) Method for manufacturing field effect transistor
JPH02266517A (en) Manufacture of semiconductor device
JPH01280315A (en) Manufacture of semiconductor device
JPH09148269A (en) T-type gate electrode superimposing method and t-type low-resistance metal superimposing method
JPH04188733A (en) Manufacture of semiconductor device
JP3409057B2 (en) Field effect transistor
JP3116369B2 (en) Multilayer resist dry etching method
JPH11162845A (en) Formation of mask for semiconductor device
JP2798041B2 (en) Method for manufacturing semiconductor device
JPH03257825A (en) Manufacture of semiconductor device
JPS60254733A (en) Pattern forming method
JPH09293736A (en) Manufacture of semiconductor transistor
JPS63211740A (en) Method for forming wiring pattern of semiconductor element
JP2600839B2 (en) Etching method of silicon nitride film
JPH0228333A (en) Manufacture of semiconductor device
JPH05129253A (en) Production of semiconductor device
JPH0677254A (en) Formation of electrode
JPH0350837A (en) Manufacture of semiconductor element
KR100257081B1 (en) Method of forming wiring in semiconductor device using oxidation of polysilicon
JPH0453131A (en) Manufacture of semiconductor device
JPS6336546A (en) Wiring structure of semiconductor device and manufacture thereof
JPS62213171A (en) Manufacture of electrostatic induction thin-film transistor
JPS61296722A (en) Manufacture of semiconductor device
JPH02230710A (en) Micropattern forming method
JPH0294439A (en) Manufacture of semiconductor device