JPH01276681A - Superconducting transistor - Google Patents

Superconducting transistor

Info

Publication number
JPH01276681A
JPH01276681A JP63105132A JP10513288A JPH01276681A JP H01276681 A JPH01276681 A JP H01276681A JP 63105132 A JP63105132 A JP 63105132A JP 10513288 A JP10513288 A JP 10513288A JP H01276681 A JPH01276681 A JP H01276681A
Authority
JP
Japan
Prior art keywords
transition temperature
superconducting
superconductor
stress
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63105132A
Other languages
Japanese (ja)
Inventor
Yoshifumi Mori
森 芳文
Masayuki Suzuki
真之 鈴木
Takao Miyajima
孝夫 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63105132A priority Critical patent/JPH01276681A/en
Publication of JPH01276681A publication Critical patent/JPH01276681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To facilitate switching operation between a superconducting state and a normal conducting state by a method wherein a stress in a superconducting channel part is varied to vary the superconduction transition temperature. CONSTITUTION:If a strain induced by the piezoelectric effect of a piezoelectric element 4 is given to the piezoelectric element 4 by applying a voltage to a gate electrode 5, a stress is induced in a superconductor 1 jointed with the piezoelectric element 4 and a superconduction transition temperature Tc is varied. With this constitution, if, for instance, the specific resistivity characteristics of a channel part are as shown by a curve 21, in a superconducting state which shows a higher transition temperature Tco than the transition temperature Tc under a predetermined ambient temperature T, the superconducting state is switched to the normal conducting state by lowering the transition temperature Tco to the transition temperature Tc1 lower than the temperature Tc as shown by a curve 22 by the change of the stress, so that the state between the first and second electrodes (source and drain) 2 and 3 can be switched from for instance, ON to OFF.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超伝導トランジスタ特に圧電型超伝導トラン
ジスタに係わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to superconducting transistors, particularly piezoelectric superconducting transistors.

〔発明の概要〕[Summary of the invention]

本発明は、超伝導チャンネル部の1.6カ変化によって
その転移温度Tcを変化させて超伝導及び當伝導の各状
態間の切換えによる例えばスイッチング動作を行わしめ
る。
In the present invention, the transition temperature Tc is changed by changing the superconducting channel portion by 1.6 degrees to perform, for example, a switching operation by switching between superconducting and non-conducting states.

〔従来の技術〕[Conventional technology]

従来、超伝導材料を用いた電子能動素子には、ジャセフ
ソン効果を用いた2端子素子及び電子対の近接効果を利
用した各種電界効果型超伝導トランジスタ、更に超伝導
体をベースに応用したバイポーラトランジスタ素子など
の提案がある。このうち、半導体への近接効果を利用し
た電界効果型トランジスタは回路構成上の利点も多く期
待が大きい。この場合の素子構成は、超伝導体をソース
及びドレインとし、ゲートに相当する部分を半導体にし
て、そこへの超伝導体からの電子対の浸み出し率を!@
3電挽(ゲート電極)によって制御するものである。従
って、この場合、ソース及びドレイン間の間隔は超伝導
体からの電子対の波動関数の浸み出しの長さ程度にする
必要があり、極めて微細な構造となる。その目安の1つ
はコヒーレント長である。ところが、コヒーレント長と
超伝導体の超伝導転移温度1’cとは逆相関にあり、高
温超伝導体程、コヒーレント長は短くなるため、超微細
加工を必要としてくるという課題がある。
Conventionally, electronic active devices using superconducting materials include two-terminal devices using the Jasefson effect, various field-effect superconducting transistors using the proximity effect of electron pairs, and bipolar transistors based on superconductors. There are proposals for elements, etc. Among these, field-effect transistors that utilize the proximity effect to semiconductors have many advantages in terms of circuit configuration and have high expectations. In this case, the device configuration is such that the superconductor is used as the source and drain, and the part corresponding to the gate is made into a semiconductor. @
It is controlled by three electric wires (gate electrodes). Therefore, in this case, the distance between the source and drain needs to be approximately the length of the wave function of electron pairs seeping out from the superconductor, resulting in an extremely fine structure. One of the criteria is the coherence length. However, there is an inverse correlation between the coherence length and the superconducting transition temperature 1'c of the superconductor, and the higher the temperature of the superconductor, the shorter the coherence length, which poses the problem of requiring ultrafine processing.

一方、近年、高温超伝導体の開発、特性研究が急速に進
められている。例えばジャパニーズ ジャーナル オフ
 アプライド フィジフクス(Japanese Jo
urnal of Applied Physics 
) Vol。
On the other hand, in recent years, the development and property research of high-temperature superconductors has progressed rapidly. For example, Japanese Journal Off Applied Physics (Japanese Jo
urnal of Applied Physics
) Vol.

27、 No、1. 1月、 198Bには、層状ペロ
ブスカイト構造の高温超伝導体Nd1+x Ba2−*
 Cu30 ?−6の特性についての報告がなされてい
る。
27. No. 1. In January, 198B, a high-temperature superconductor with a layered perovskite structure, Nd1+x Ba2-*
Cu30? -6 characteristics have been reported.

La系、Y糸+Bi系及びそれらの置換型材料の超伝導
転移温度”l’ cと構造の関係からもうかがえるよう
に、電子対の通路(例えばCu−02次元面)の囲りの
環境の変化(主にイオン結合距離)の微妙な変化によっ
て転移温度Tcが影響を受ける。
As can be seen from the relationship between the superconducting transition temperature "l'c" and the structure of La-based, Y-thread + Bi-based, and their substitutional materials, the environment surrounding the electron pair path (for example, the Cu-0 two-dimensional surface) Subtle changes in changes (mainly ionic bond distances) affect the transition temperature Tc.

そして、実際、静水圧印加による′1゛cの変化も報告
されている。
In fact, changes in '1゛c due to the application of hydrostatic pressure have also been reported.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上述の構造敏感な高温超伝導体の特性を利用
して、圧電型構成によるトランジスタを提供し、前述の
超微細加工の課題の解決をはかる。
The present invention utilizes the properties of the structure-sensitive high-temperature superconductor described above to provide a transistor with a piezoelectric configuration, thereby solving the problems of ultrafine processing described above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1図に示すように、例えばCuOを含んだ
層状ペロブスカイト構造の酸化物系超伝導物質の例えば
Ndi+x Ba2−x Cll30 %Jより成る超
伝導体(1)と、この超伝導体(1)に所要の間隔を保
持して配された第1及び第2の電極部(2)及び(3)
すなわちソース及びドレイン?I電極と超伝導体(11
の第1及び!!82の電極部(2)及び(3)間に相当
する部分に配された圧電体(4)とこの圧電体(4)に
被着されたゲート電極(5)とを有する圧電ゲート部(
6)とが設けられて成り、ゲート′M!i極(5)への
印加電圧によって超伝導体filの第1及び第2の電極
部(3)及び(4)間のチャンネルの応力を変化させて
超伝導の転移温度゛l″Cを変調させてこのチャンネル
部の超伝導及び常伝導の各状態間の切換えを行う。
As shown in FIG. 1, the present invention relates to a superconductor (1) made of, for example, Ndi+x Ba2-x Cll30%J, which is an oxide-based superconducting material with a layered perovskite structure containing, for example, CuO, and this superconductor. First and second electrode parts (2) and (3) arranged at a required interval in (1)
i.e. source and drain? I electrode and superconductor (11
The first and! ! A piezoelectric gate portion (having a piezoelectric body (4) disposed in a portion corresponding to between the electrode portions (2) and (3) of 82 and a gate electrode (5) adhered to this piezoelectric body (4)
6) is provided, and the gate 'M! The stress in the channel between the first and second electrode portions (3) and (4) of the superconductor fil is changed by applying a voltage to the i-pole (5) to modulate the superconducting transition temperature ゛l''C. The channel section is then switched between superconducting and normal conducting states.

〔作用) 上述の本発明によれば、ゲート電極(5)への電圧印加
によって、圧電体(4)にその圧電効果による歪を与え
れば、これと接合する超伝導体(11に応力が生じ、超
伝導転移温度Tcが変化する。したがって例えば設定さ
れた外囲温度r下でチャンネル部の比抵抗特性が第2図
中曲線(21)に示すように温度゛l″Cより高い転移
温度’rcoを示す超伝導状態であるとき、応力の変化
によって第2図中曲線(22)に示すように転移温度′
1゛cの′l″c1への低下によって常伝導状態に切換
えられ、第1及び第2の電極部(ソース及びドレイン)
(21及び(3)間を例えばオフ状態に切換えることが
できる。
[Function] According to the present invention described above, when a voltage is applied to the gate electrode (5) and strain is applied to the piezoelectric body (4) due to its piezoelectric effect, stress is generated in the superconductor (11) that is bonded to the piezoelectric body (4). , the superconducting transition temperature Tc changes.Therefore, for example, under a set ambient temperature r, the resistivity characteristic of the channel section becomes a transition temperature higher than the temperature ゛l''C, as shown by curve (21) in Fig. 2. When the superconducting state exhibits rco, the transition temperature ' increases as shown by curve (22) in Figure 2 due to changes in stress.
1゛c decreases to 'l''c1, the state is switched to the normal conduction state, and the first and second electrode parts (source and drain)
(21 and (3) can be switched to the off state, for example.

〔実施例〕〔Example〕

第1図に示すように、例えば、CuOを含んだ層状ペロ
ブスカイト構造の酸化物系超伝導体の例えば、Nd1+
x Ba2−x Cll30 >δ、或いは例えばNd
の一部をYで置換したもの、Baの一部をStで置換し
たもの、Oの一部をFもしくはSで置換したもの等によ
って構成される薄模状超伝導体(11を設ける。そして
、その1主面(1a)に所要の間隔を保持して、例えば
Ag等の金属を被着して第1及び第2の電極部(2)及
び(3)を配置する。そして、1の主面(1a)または
これとは反対側の主面(lb)、第1及び第2の電極部
(2)及び(3)間に位置して、できるだけこれら電極
部(2)及び(3)間の電流通路の全域に亘ってZnO
等の圧電体(4)を蒸着、スパッタ等によって被着し、
例えばこの圧電体(4)の上面にゲート電極(5)例え
ば金属電極を被着して圧電ゲート部(6)を構成する。
As shown in FIG. 1, for example, an oxide superconductor with a layered perovskite structure containing CuO, for example, Nd
x Ba2-x Cll30 > δ, or for example Nd
A thin model superconductor (11 is provided) formed of a material in which a part of is replaced with Y, a part of Ba is replaced with St, a part of O is replaced with F or S, etc. , the first and second electrode parts (2) and (3) are arranged on the first main surface (1a) by depositing a metal such as Ag while maintaining the required spacing. Located between the main surface (1a) or the main surface (lb) opposite to this, the first and second electrode parts (2) and (3), and as far as possible between these electrode parts (2) and (3). ZnO over the entire current path between
A piezoelectric material (4) such as the following is deposited by vapor deposition, sputtering, etc.
For example, a gate electrode (5) such as a metal electrode is deposited on the upper surface of the piezoelectric body (4) to form a piezoelectric gate portion (6).

そして、ゲート電極(5)と、第1及び第2の電極部(
2)及び(3)との間に所要の電圧を印加することによ
って超伝導体(11のゲート部(6)下に前述した転移
温度’r cの変化を得る。
Then, the gate electrode (5) and the first and second electrode parts (
2) and (3), the above-mentioned change in the transition temperature 'r c is obtained under the gate part (6) of the superconductor (11).

面、図示の例では第1及び第2の電極部(3)及び(4
)と、圧電ゲート部(6)とを、超伝導体(1)の同一
主面(la)に配した場合であるが、圧電ゲート部(6
)を、第1及び第2の電極部(2)及び(3)の配置主
面(la)とは反対側の主面(1b)に被着することも
できる。
In the illustrated example, the first and second electrode parts (3) and (4)
) and the piezoelectric gate part (6) are arranged on the same main surface (la) of the superconductor (1).
) can also be deposited on the main surface (1b) of the first and second electrode parts (2) and (3) opposite to the arrangement main surface (la).

また、図示の例では、圧電体(4)の表面に全面的にゲ
ート電極(5)を被着した場合であるが、圧電体(4)
の相対向する端面に対の電極を設けて、この対の電極間
に所要の電圧を印加して圧電体(4)に歪を発生させ、
超伝導体+11に応力が生じるようにすることもできる
。また、超伝導体(11の両主面(la)及び(1b)
に対向して対の圧電ゲート部(6)を設けて、一方に収
縮応力、他方に引伸応力を生じるように電圧印加を行う
こともできるなど種々の態様を採り得るものであり、圧
電ゲート(6)によって超伝導体(1)に、その膜厚方
向、膜面方向の主として一軸性の応力を与えるようにす
る。
In addition, in the illustrated example, the gate electrode (5) is entirely deposited on the surface of the piezoelectric body (4), but the piezoelectric body (4)
A pair of electrodes is provided on opposite end surfaces of the piezoelectric body (4), and a required voltage is applied between the pair of electrodes to generate strain in the piezoelectric body (4).
It is also possible to cause stress to occur in the superconductor +11. In addition, superconductors (both principal surfaces (la) and (1b) of 11)
Various embodiments are possible, such as a pair of piezoelectric gate parts (6) being provided opposite to each other, and a voltage applied to one to produce contraction stress and the other to produce tension stress. 6) applies uniaxial stress to the superconductor (1) mainly in the film thickness direction and the film surface direction.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、ゲート電極(3)への
印加電圧によって、第1及び第2の電極(2)及び(3
)間のチャンネル部の応力を変調させて所定の温度′T
” s下で、チャンネル部の超伝導転移温度を温度′I
″Sより高い温度T coと低い濃度T cx間に移行
させるようにしたので、伝導度の顕著な変調を行うこと
ができ、また、簡単な構造で、またコヒーレント長オー
ダの微細加工を必要としないことから工業的に大きな利
益がある。
As described above, according to the present invention, the first and second electrodes (2) and (3) are controlled by the voltage applied to the gate electrode (3).
) to a predetermined temperature 'T' by modulating the stress in the channel part between
” s, the superconducting transition temperature of the channel part is set to temperature ′I
Since the transition is made between a temperature T co that is higher than S and a concentration T cx lower than S, significant modulation of the conductivity can be performed, and the structure is simple and does not require microfabrication on the order of coherent length. There are great industrial benefits from not doing so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるトランジスタの一例の路線的断面
図、第2図は比抵抗の温度特性曲線図である。 (1)は超伝導体、(2)及び(3)は第1及び第2の
電極部、(4)は圧電体、(5)はゲート電極、(6)
は圧電ゲート部である。
FIG. 1 is a cross-sectional view of an example of a transistor according to the present invention, and FIG. 2 is a diagram showing a temperature characteristic curve of resistivity. (1) is a superconductor, (2) and (3) are first and second electrode parts, (4) is a piezoelectric material, (5) is a gate electrode, (6)
is the piezoelectric gate part.

Claims (1)

【特許請求の範囲】  超伝導体と、 この超伝導体に所要の間隔を保持して配された第1及び
第2の電極部と、 上記超伝導体の上記第1及び第2の電極部間に相当する
部分に配された圧電体とこの圧電体に被着されたゲート
電極とを有する圧電ゲート部とを有し、 上記ゲート電極への印加電圧によって上記超伝導体の上
記第1及び第2の電極部間のチャンネルにおける応力を
変化させて超伝導の転移温度を変調させて該チャンネル
部の超伝導及び常伝導の各状態間の切換えを行うことを
特徴とする超伝導トランジスタ。
[Scope of Claims] A superconductor, first and second electrode parts arranged at a required interval on the superconductor, and the first and second electrode parts of the superconductor. a piezoelectric gate portion having a piezoelectric body disposed in a corresponding portion between the piezoelectric bodies and a gate electrode attached to the piezoelectric body; A superconducting transistor characterized in that the channel portion is switched between superconducting and normal conducting states by changing the stress in the channel between the second electrode portions and modulating the superconducting transition temperature.
JP63105132A 1988-04-27 1988-04-27 Superconducting transistor Pending JPH01276681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105132A JPH01276681A (en) 1988-04-27 1988-04-27 Superconducting transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105132A JPH01276681A (en) 1988-04-27 1988-04-27 Superconducting transistor

Publications (1)

Publication Number Publication Date
JPH01276681A true JPH01276681A (en) 1989-11-07

Family

ID=14399235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105132A Pending JPH01276681A (en) 1988-04-27 1988-04-27 Superconducting transistor

Country Status (1)

Country Link
JP (1) JPH01276681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169592A (en) * 2011-01-28 2012-09-06 Kyushu Institute Of Technology Spin device driven by elastic operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414980A (en) * 1987-07-09 1989-01-19 Seiko Epson Corp Superconducting transistor
JPH01204484A (en) * 1988-02-09 1989-08-17 Nec Corp Superconductor electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414980A (en) * 1987-07-09 1989-01-19 Seiko Epson Corp Superconducting transistor
JPH01204484A (en) * 1988-02-09 1989-08-17 Nec Corp Superconductor electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169592A (en) * 2011-01-28 2012-09-06 Kyushu Institute Of Technology Spin device driven by elastic operation

Similar Documents

Publication Publication Date Title
JP3460095B2 (en) Ferroelectric memory
KR100339184B1 (en) Junction mott transition field effect transistor(jmtfet) and switch for logic and memory applications
KR920015626A (en) Superconducting Field Effect Transistor with Inverted MISFET Structure and Manufacturing Method Thereof
JPH01276681A (en) Superconducting transistor
JPH01276680A (en) Superconducting transistor
CA2084983A1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH0812935B2 (en) Superconductor electronic device
JPH01130580A (en) Superconducting electronic device
US5441926A (en) Superconducting device structure with Pr-Ba-Cu-O barrier layer
US3423654A (en) Bistable ferroelectric field effect device
JP2625803B2 (en) Superconductor device
JPS5842274A (en) Insulated gate field effect transistor
JPH065934A (en) Superconductor device
JPH0294678A (en) Superconducting device
KR0148420B1 (en) Piezoelectric device using thin metal film
JP2641978B2 (en) Superconducting element and fabrication method
JP2867956B2 (en) Superconducting transistor
JPS63308974A (en) Superconducting transistor
JP3126410B2 (en) Semiconductor device
CN118338774A (en) High-on-off ratio ferroelectric tunnel junction based on heterojunction
JPH04361576A (en) High dielectric constant oxide semiconductor device
KR20200083908A (en) Variable low resistance area based memory device and controlling thereof
JPH0260176A (en) Aharonov-bohm effect transistor
KR20200083842A (en) Variable low resistance area based memory device and controlling thereof
JPS607187A (en) Tunnel type josephson junction element