JPH0126736B2 - - Google Patents

Info

Publication number
JPH0126736B2
JPH0126736B2 JP54141880A JP14188079A JPH0126736B2 JP H0126736 B2 JPH0126736 B2 JP H0126736B2 JP 54141880 A JP54141880 A JP 54141880A JP 14188079 A JP14188079 A JP 14188079A JP H0126736 B2 JPH0126736 B2 JP H0126736B2
Authority
JP
Japan
Prior art keywords
water
resin
absorbing
mixture
tufted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54141880A
Other languages
Japanese (ja)
Other versions
JPS5665630A (en
Inventor
Migaku Suzuki
Toshihiko Watabe
Koichi Sakakibara
Fusayoshi Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unicharm Corp
Original Assignee
Unicharm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unicharm Corp filed Critical Unicharm Corp
Priority to JP14188079A priority Critical patent/JPS5665630A/en
Publication of JPS5665630A publication Critical patent/JPS5665630A/en
Publication of JPH0126736B2 publication Critical patent/JPH0126736B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は吸収(吸収および吸水を意味する。吸
水で代表させることもある。)材に関する。さら
に詳しくは、高吸水性能を有する水不溶性樹脂を
保持した繊維集合体の房状塊よりなる吸収材に関
する。 最近、高吸水性能を有する樹脂が生理用ナプキ
ンや紙おむつなどのデイスポーザブル用途に応用
され、広く普及のきざしがある。しかしながら高
吸水性樹脂は一般に粉末状なので取り扱いが難し
く、用途ならびに用い方に限方を受ける。これを
商品化する方法としてシート化または繊維状化す
る方法が開発されている。しかしながら吸水性樹
脂は吸水とするとゲル化するので、湿潤時に極端
にシート強力は低下し、シート形状を保持するこ
とがむつかしく単独で用いることは出来ない。ま
た繊維状化したものも繊維と称するには強力が弱
くもろいものである。 一方、この様な粉末状の吸水性樹脂を吸収紙や
不織布などの支持体によりサンドイツチ構造にし
て固定化させる方法があるが、この方法は吸水性
樹脂が支持体の間で圧着されているため、吸水性
樹脂の吸収膨潤力を減殺し、本来の吸収力を十分
発揮できない欠点を有する。 さらに吸水性樹脂を粉砕パルプのような繊維集
合体と単に混和する方法があるが、この方法はサ
ンドイツチ構造に比べ吸収力は向上するものの充
分ではなく、かつ被吸収液の横方向への拡散が少
ないため、吸収速度も不充分であるという欠点を
有する。 本発明者らは、かかる欠点を解消し高吸水性樹
脂の吸水機能を充分に発揮させ、かつ取り扱い容
易な高吸水性樹脂包含吸収材を提供することを目
的に種々検討した結果、意外にも粉末状の高吸水
性樹脂と粉砕パルプのような繊維集合体との混合
体のある特定の形状のものが極めて吸水力が大き
く、かつ瞬時に吸水する性質を有することを発明
して本発明に到達した。 すなわち本発明は、均一に分散された水不溶性
の吸水性樹脂()と繊雖集合体()との混合
体であつて、該混合体が1個当りの重量が0.5g
以下に分割されている、見掛け比重が0.1g/cm3
以上の房状塊からなることを特徴とする吸収材で
ある。 本発明の吸水材は房状塊からなる。本発明にお
いて房状塊とは、長さの異なるカールした繊維が
毛戻のようにからんだものを意味し、とくに繊維
を叩解するときによく見られるものである。房状
塊については「不織布要論」(三浦義人著、株式
会社高分子刊行会発行、昭和48年5月15日発行)
13頁に記載されており、これと同じものでよい。
房状塊の大きさは通常0.1〜10mm、好ましくは1
〜5mmである。また房状塊の形状はとくに限定さ
れず、たとえば球状、楕円球状、角柱状、紡錘状
があげられる。 本発明における吸水材は水不溶性の吸水性樹脂
()と繊維集合体()との混合体である。 本発明において、混合体の一成分として用いら
れる水不溶性吸水性樹脂()としては、水溶性
単量体および/または加水分解により水溶性とな
る単量体(A)と多糖類(B)および/または架橋剤(C)と
を必須成分として重合させ必要により加水分解を
行なうことにより得られる重合体があげられる。 水溶性吸水性樹脂()の製造に用いられる(A)
の水溶性単量体としては、少くとも1個の親水基
(たとえばカルボキシル基、カルボン酸無水物基、
カルボン酸塩基、スルホン酸基、スルホン酸塩
基、水酸基、エーテル基、アミド基、アミノ基、
4級アンモニウム塩基)を有するモノエチレン性
不飽和単量体があげられる。また加水分解により
水溶性となる単量体としては少くとも1個の加水
分解性基(エステル基、ニトリル基等)を有する
単量体があげられる。(A)のうち好ましいものは水
溶性単量体である。高い吸水性を与える点から好
ましい水溶性単量体はカルボキシル基、カルボン
酸無水物基、カルボン酸塩基を含有する単量体、
たとえば(メタ)アクリル酸、無水マレイン酸、
(メタ)アクリル酸ナトリウム、(メタ)アクリル
酸トリメチルアミン酸、(メタ)アクリル酸トリ
エタノールアミン塩;および4級アンモニウム塩
基含有単量体たとえばN,N,N―トリメチル―
N―(メタ)アクリロイロキシエチルアンモニウ
ムクロリドである。 水不溶性吸水性樹脂の製造に用いられる(B)の多
糖類としてはデンプン、セルロース、カラゲナ
ン、グアーガム、アルギン酸ソーダがあげられ
る。デンプンとしては天然デンプンおよび変性デ
ンプン(α化デンプン、酸化デンプン、カチオン
化デンプンなど)が、またセロルースとしては木
材、葉、茎、ジン皮、種子毛などから得られるセ
ルロースおよび変性セルロース(カルボキシメチ
ルセルロース、ヒドロキシエチルセルロース、メ
チルセルロース)があげられる。これらのうちで
好ましいものは天然デンプンおよびα化デンプン
である。 水不溶性吸水樹脂の製造に用いられる(C)の架橋
剤としては、(1)少なくとも2個の重合性二重結合
(非共役)を有する化合物、(2)単量体(A)と反応し
得る官能基少くとも1個と、重合性二重結合少く
とも1個を有する化合物、たとえばカルボキシル
基、カルボン酸無水物基、ヒドロキシル基、アミ
ノ基またはアミド基と反応しうる官能基を有する
モノオレフイン性不飽和化合物、(3)単量体(A)と反
応しうる官能基を少くとも2個有する化合物たと
えばカルボキシル基、カルボン酸無水物基、ヒド
ロキシル基、アミノ基またはアミド基と反応しう
る基を有する多官能性化合物、(4)イオン架橋を形
成しうる多価金属化合物たとえばアルカリ土金属
(カルシウム、マグネシウム等)および亜鉛の酸
化物、水酸化物および弱酸塩(炭酸塩、酢酸塩
等)があげられる。架橋剤(C)のうちで好ましいの
はアルキレン(C2〜C6)グリコール、もしくは
ポリオキシアルキレン(C2〜C4)グリコール
(分子量400以下)のジ(メタ)アクリレート、ア
ルキレンビス(メタ)アクリルアミドおよびアル
カリ土金属もしくは亜鉛の酸化物である。(A),
(B),(C)以外にこれらと共重合しうる単量体(たと
えばスチレン、エチレン、プロピレン、ブテン)
を共重合させることもできる。上記吸水性樹脂の
製造に用いられる(A),(B),(C)の詳細、重合体の製
造法、吸水性樹脂の具体例は特開昭53−149190
号、特開昭51−125468号、特開昭52−25886号お
よび特開昭52−59690号に記載されている。本発
明において用いられる吸水性樹脂としては吸水能
が少くとも60ml/g(好ましくは70ml/g以上、
とくに100〜500ml/g)のものが適している。多
糖類(B):単量体(A):架橋剤(C)の割合(重量比)は
通常100:10〜3000:0.0001〜20好ましくは100:
50〜1000:0.001〜10、さらに好ましくは100:
100〜500:0.01〜5である。上記(A)と(B)および(C)
以外の吸水性樹脂としては(A)と(B)とを重合させた
もの、たとえばデンプン―アクリロニトリルグラ
フト重合体の加水分解物、セルロース―アクリロ
ニトリルグラフト重合体の加水分解物など;(A)と
(C)との共重合体たとえばジビニル化合物(メチレ
ンビスアクリルアミドなど)で架橋されたポリア
クリルアミドおよびその部分加水分解、架橋され
たスルホン化ポリスチレン、架橋ポバール、特開
昭52−14689号および特開昭52−27455号記載の架
橋されたビニルエステル―不飽和カルボン酸共重
合体ケン化物および架橋ポリエチレンオキシドが
あげられる。これらの吸水性樹脂は2種以上併用
してもよい。吸水性樹脂は通常、粉末状〜粒状で
使用される。粒子径としては通常10〜300メツシ
ユ、好ましくは32〜150メツシユである。 本発明で用いられる繊維集合体における繊維と
しては、天然繊維たとえば綿、羊毛、ジユート、
木材パルプなど;半合成繊維たとえばビスコース
レーヨン、アセテート、トリアセテートなど;合
成繊維たとえばナイロン、アクリル、ポリエステ
ル、ポリプロピレンなど、およびこれらの繊維の
混合体があげられる。これらの中でも木材パル
プ、綿、羊毛、ビスコースレーヨンなどの親水性
繊維が本発明の吸収材料としては好ましい。また
とくに好ましいものは木材パルプ、コツトンパル
プおよびビスコースレーヨンである。繊維長はと
くに限定されないが通常0.1〜50mmであり、好ま
しくは0.5〜10mmである。また繊維集合体の形体
としては、パルプ体(軟塊状)、ステープル状も
しくはフイラメント状の形体があげられる。また
ウエブ、シート、マツト状であつてもよい。 本発明における水不溶性樹脂()と繊維集合
体()との混合体において、()と()と
の混合比率は重量基準で通常():()100:
1〜10000、好ましくは():()=100:〜
20000である。 本発明における水不溶性吸水性樹脂()と繊
維集合体()とを混合する方法は、水不溶性吸
水性樹脂が繊維集合体に均一に分散、混合する方
法であればとくに限定されない。たとえば繊維集
合体と吸水性樹脂とをミキサー、スクリユー回転
式混合機などの混合機能を有する機械を用いて混
合する方法;水または有機溶媒(メタノール、イ
ソプロピルアルコール、アセトンなど)中に繊維
集合体吸水性樹脂を分散させ、撹拌、混合後、濾
過・乾燥する方法;繊維集合体をカード機などを
用いて開繊しジエツト気流粉砕機などを用いて気
流中で吸水性樹脂と混合する方法;またウエブ
状、シート状、マツト状の繊維集合体上に吸水性
樹脂を散布し繊維集合体の下部より吸引して吸水
性樹脂を該繊維集合体中に分散せしめる方法;あ
るいはウエブ状、シート状、マツト状の繊維集合
体上に吸水性樹脂を散布した後、これを開繊する
方法などがあげられる。上記の方法で繊維集合体
()と吸水性樹脂()とを混合する場合、任
意の段階で若干量の水分を与えると、吸水性樹脂
の表面が膨潤・軟化し繊維に強く固着させること
ができ、好ましい。 本発明において吸水性樹脂()と繊維集合体
()との混合体の房状塊の製造方法はとくに限
定はない。たとえば(1)()と()との混合体
をウエブ、シートまたはマツト状にした後プレス
機により圧縮しチツプ状に切断する方法;(2)
()と()との混合体に若干の水分を与えて
ミキサーなどで高速撹拌する方法(この場合水分
で膨潤・軟化した吸水性樹脂に繊維が付着・凝集
し房状塊を生成する。);(3)()と()との混
合体を上下運転速度の異なる2個のベルトコンベ
アーの間に置いてズリ応力をかける方法;(4)
()と()との混合体を、水もしくは接着剤
(アクリルエマルシヨン、酢ビエマルシヨンなど)
をバインダーとしてシート状にした後、これを不
均一に開繊する方法などがあげられる。 本発明において、吸水性樹脂()と繊維集合
体()との混合物の房状塊は、その1個の重量
が0.5g以下、好ましくは0.001〜0.5gである。見
掛け比重は0.1g/cm3以上、好ましくは0.3〜2
g/cm3である。1個の重量が0.5gより大または
見掛け比重が0.1g/cm3未満の場合は、その吸収
力および吸収速度が大きく低下し、繊維集合体と
吸水性樹脂との単なる混合体と大差がない。房状
塊には上記1当りの重量および見掛け比重を満足
するものばかりである必要はなく、通常このもの
が主体として含まれていればよい。 本発明の吸収材は多数個の房状塊より成る。そ
の使用に際しては房状塊をそのまま従来の吸収材
料(粉砕パルプ、吸収紙など)に代えて使用して
もよく、また房状塊を成形した形状、たとえば房
状塊をさらにシート状に成形した形状、または房
状塊をさらに吸収紙、不織布などの支持体を用い
てサンドイツチ状に成形した形状として使用して
もよい。房状塊をさらにシート状に成形する方法
としては、房状塊を層状に積層しさらに房状塊が
移動しないようにニードルパンチ、プレス機など
を用いて該積層物を固定化する方法があげられ
る。また房状塊をさらにサンドイツチ状に形成す
る方法としては、吸収紙や不織布などの支持体の
上に房状塊を積層し、さらに他の支持体を重ねる
方法さらに得られた積層物をニードルパンチ、プ
レス機などにより固定化する方法があげられる。 本発明の吸収材は水性液体、たとえば水、尿、
血液、エマルシヨンなどに接触した場合、房状塊
中の繊維成分が水性液体を吸収して急速に膨潤す
ると同時に、房状塊中に吸水性樹脂もまた液体を
吸収・膨潤し、この両者間で意外な相乗効果が現
われる。すなわち吸収速度が繊維集合体または吸
水性樹脂単独より大巾に高く、かつ吸収力および
加圧保持力(一旦吸収した後、加圧した場合の保
液能)もそれぞれ単独の場合よりも著しく増大す
る。本発明の吸収材は、シート状に積層した場合
それぞれの房状塊の間に空間が存在するため、ク
ツシヨン性があり、また少量の吸収材でボリユー
ム感を出すこともできる。また本発明の吸収材は
その高に吸収力および加圧保持力のため、最終製
品にした場合吸収材が少なくてよく、したがつて
製品形態を小さくでき、原材料費の低減は勿論製
品の保管費、運送費の低減にもなり大巾なコスト
ダウンが可能である。 本発明の吸収材は紙おむつ、生理用ナプキン、
医療用パツドなどに好適である。このほか工業用
吸水・保水材(油水分離材、溶剤中の吸水材な
ど)土壌保水材など種々の用途に使用することが
できる。 以下本発明を実施例によつて説明する。実施例
において使用した吸水性樹脂(樹脂)は次の通
りである。 樹脂 特開昭54−125468号の実施例の方法に従つて、
トウモロコシデンプン、アクリル酸、アクリル酸
ナトリウム、およびN,N′―メチレンビスアク
リルアミドより製造した白色粉末状の水不溶性吸
水性樹脂。本樹脂の吸水量はイオン交換水342
ml/g,0.9%NaCl 77ml/g、吸水速度10ml/
g時1秒以下、50ml/g時18.2秒加圧保持量328
ml/gであつた。(測定法は実施例9に記載)。 実施例 1 フラツフパルプ100gおよび樹脂、30gをジ
エツト気流粉砕機を用いて混合し、これを2の
メタノールに分散させた後、1m2の水平な金網
(100メツシユ)上に均一に注いで濾過し、これを
80℃、3時間循風乾燥してウエブ状の混合体を得
た。この混合体をプレス機により5Kg/cm2にて加
圧後、カツターにより3mm×3mmの角状に裁断
し、房状塊の吸収材〔A〕を得た。房状塊の重量
は1個当り平均0.024g、見掛け比重は0.61g/
cm3であつた。 実施例 2 実施例1において、樹脂を10gにしたほかは
同様な操作により房状塊状の吸収材〔B〕を得
た。房状塊の重量は1個当り平均0.021g、見掛
け比重は0.65g/cm3であつた。 実施例 3 実施例1において樹脂を20gにしたほかは同
様な操作により房状塊状の吸収材〔C〕を得た。
房状塊の重量は1個当り平均0.023g、見掛け比
重は0.66g/cm3であつた。 実施例 4 実施例1と同様にフラツフパルプ100gおよび
樹脂、30gをジエツト気流粉砕機を用いて混合
し、これを2のメタノール/水混合溶媒(メタ
ノール/水=8/2容積比)中に分散させた後、
1m2の水平な金網(100メツシユ)上に均一に注
いて濾過し、これを80℃、3時間循風乾燥してウ
エブ状の混合体を得た。この混合体に20gの水を
均一に噴霧した後、長さ5m、巾50cmの2本のベ
ルトコンベヤーを上下に重ね、上方のベルトコン
ベヤーを1m/分、下方を5m/分の速度で運転し
て、2本のコンベヤーの間に上記の水を噴霧した
混合体を投じて、房状塊状の吸収材〔D〕を得
た。房状塊の重量は1個当り平均0.27g、見掛け
比重は0.14g/cm3であつた。 実施例 5 実施例1においてフラツフパルプの代りにビス
コースレーヨン繊維100gを使用したほかは同様
の操作により房状塊状の吸収材〔E〕を得た。房
状塊の重量は1個当り0.022g、見掛け比重は
0.61g/cm3であつた。 実施例 6 実施例1においてフラツフパルプの代りにコツ
トンリンターパルプ100gを使用したほかは同様
の操作により房状塊状の吸収材〔F〕を得た。房
状塊は1個当り0.020g、見掛け比重は0.60g/
cm3であつた。 実施例 7 実施例1においてプレス機の圧を1Kg/cm2にし
た他は同様の操作により房状塊状の吸収材〔G〕
を得た。房状塊の重量は1個当り0.008g、見掛
け比重は0.18g/cm3であつた。 実施例 8 実施例1で得らた本発明の吸収材〔A〕2.0g
を秤量は20g/m2のレーヨン不織布100cm2上に均
一に散布し、さらにもう一枚のレーヨン不織布を
重ねて囲りをミシンがけしてシート状の吸収材
〔H〕を得た。 実施例 9 実施例1〜8で得られた吸収材〔A〕〜〔H〕
について、吸水速度、イオン交換水および0.9%
NaCl 水溶性の飽和吸水量、5Kg荷重下での加
圧保持量を測定し、表−1に示すような結果を得
た。なお比較例1としてフラツフパルプ単独、比
較例2としてフラツフパルプ100gと樹脂、30
gとを実施例1と同様の操作により作成した混合
体についてもそれぞれ測定した。 吸水速度および飽和吸水量の測定は、各吸水材
1gを100メツシユ節上に乗せて水中に投与し5
秒、10秒、25秒、50秒、75秒、15分、25分後に取
り出し、濾紙上に1分間放置後、重量を測定して
吸水量(ml/g)を求め、吸水量と時間の関係を
プロツトして各吸水速度ならびに飽和吸水量を求
めることにより行なつた。また加圧保持量は、吸
水材各1gを100cm2の100メツシユ節上に均一に敷
いて水中に15分間投入した後、取り出して濾紙上
に乗せさらに節と同形のアクリル板を膨潤した吸
水材の上に乗せ、その上に5Kgの分銅も置いて4
分後に重量測定を行なうことにより求めた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorbent (meaning absorption and water absorption, sometimes represented by water absorption) material. More specifically, the present invention relates to an absorbent material made of a tufted mass of fiber aggregates holding a water-insoluble resin having high water absorption performance. Recently, resins with high water absorption performance have been applied to disposable products such as sanitary napkins and disposable diapers, and there are signs that they will become widespread. However, since superabsorbent resins are generally in powder form, they are difficult to handle, and their uses and uses are limited. As a method of commercializing this, a method of forming it into a sheet or a fiber has been developed. However, since the water-absorbing resin gels when absorbed, the strength of the sheet is extremely reduced when wet, and it is difficult to maintain the sheet shape, so it cannot be used alone. Furthermore, fibrous materials are too weak and brittle to be called fibers. On the other hand, there is a method of immobilizing such powdered water-absorbing resin in a sandwich structure with a support such as absorbent paper or non-woven fabric, but this method is difficult because the water-absorbing resin is crimped between the supports. However, it has the disadvantage that it reduces the absorbing and swelling power of the water-absorbing resin, making it unable to fully demonstrate its original absorbing power. Furthermore, there is a method of simply mixing a water-absorbent resin with a fiber aggregate such as pulverized pulp, but although this method improves the absorbing power compared to the Sanderch structure, it is not sufficient and also prevents the absorbed liquid from diffusing in the lateral direction. Since the amount is small, the absorption rate is also insufficient. The inventors of the present invention have conducted various studies with the aim of eliminating such drawbacks, fully demonstrating the water absorption function of superabsorbent resin, and providing an easy-to-handle superabsorbent resin-containing absorbent material. The present invention is based on the invention that a specific form of a mixture of a powdered super absorbent resin and a fiber aggregate such as crushed pulp has an extremely high water absorbing power and has the property of instantaneously absorbing water. Reached. That is, the present invention provides a mixture of a uniformly dispersed water-insoluble water-absorbing resin () and fiber aggregates (), the weight of each of which is 0.5 g.
The apparent specific gravity is divided into the following: 0.1g/cm 3
This is an absorbent material characterized by being composed of the above tufted masses. The water-absorbing material of the present invention consists of tufted masses. In the present invention, a tuft-like mass refers to a tuft of curled fibers of different lengths entwined like a strand of hair, and is particularly often seen when the fibers are beaten. Regarding tufts, "Nonwoven Fabric Essentials" (written by Yoshito Miura, published by Kobunshi Publishing Co., Ltd., published on May 15, 1970)
It is described on page 13, and it can be the same as this.
The size of the tufted mass is usually 0.1 to 10 mm, preferably 1
~5mm. Further, the shape of the tufted mass is not particularly limited, and examples include spherical, ellipsoidal, prismatic, and spindle shapes. The water-absorbing material in the present invention is a mixture of a water-insoluble water-absorbing resin () and a fiber aggregate (). In the present invention, the water-insoluble water-absorbent resin () used as one component of the mixture includes a water-soluble monomer and/or a monomer (A) that becomes water-soluble upon hydrolysis, a polysaccharide (B) and Examples include polymers obtained by polymerizing with/or a crosslinking agent (C) as an essential component and hydrolyzing as necessary. (A) Used in the production of water-soluble water absorbent resin ()
The water-soluble monomer has at least one hydrophilic group (for example, a carboxyl group, a carboxylic acid anhydride group,
Carboxylic acid group, sulfonic acid group, sulfonic acid group, hydroxyl group, ether group, amide group, amino group,
Examples include monoethylenically unsaturated monomers having a quaternary ammonium base). Examples of monomers that become water-soluble upon hydrolysis include monomers having at least one hydrolyzable group (ester group, nitrile group, etc.). Among (A), preferred are water-soluble monomers. Preferred water-soluble monomers from the viewpoint of providing high water absorption are monomers containing a carboxyl group, a carboxylic acid anhydride group, a carboxylic acid group,
For example, (meth)acrylic acid, maleic anhydride,
Sodium (meth)acrylate, (meth)acrylic acid trimethylamine acid, (meth)acrylic acid triethanolamine salt; and quaternary ammonium base-containing monomers such as N,N,N-trimethyl-
N-(meth)acryloyloxyethylammonium chloride. Polysaccharides (B) used in the production of water-insoluble water-absorbing resins include starch, cellulose, carrageenan, guar gum, and sodium alginate. Starch includes natural starch and modified starch (pregelatinized starch, oxidized starch, cationized starch, etc.), and cellulose includes cellulose and modified cellulose (carboxymethyl cellulose, carboxymethyl cellulose, etc.) obtained from wood, leaves, stems, gin bark, seed hair, etc. hydroxyethylcellulose, methylcellulose). Among these, preferred are natural starch and pregelatinized starch. The crosslinking agent (C) used in the production of the water-insoluble water-absorbent resin is (1) a compound having at least two polymerizable double bonds (non-conjugated), (2) a compound that reacts with the monomer (A). monoolefin having a functional group capable of reacting with a compound having at least one functional group to be obtained and at least one polymerizable double bond, such as a carboxyl group, a carboxylic acid anhydride group, a hydroxyl group, an amino group or an amide group. (3) A compound having at least two functional groups that can react with the monomer (A), such as a group that can react with a carboxyl group, a carboxylic acid anhydride group, a hydroxyl group, an amino group, or an amide group. (4) polyvalent metal compounds capable of forming ionic crosslinks, such as oxides, hydroxides and weak acid salts (carbonates, acetates, etc.) of alkaline earth metals (calcium, magnesium, etc.) and zinc; can be given. Among the crosslinking agents (C), preferred are alkylene (C 2 - C 6 ) glycols, di(meth)acrylates of polyoxyalkylene (C 2 -C 4 ) glycols (molecular weight 400 or less), and alkylene bis(meth) Acrylamide and alkaline earth metal or zinc oxides. (A),
In addition to (B) and (C), monomers that can be copolymerized with these (e.g. styrene, ethylene, propylene, butene)
It is also possible to copolymerize. Details of (A), (B), and (C) used in the production of the above water-absorbing resin, the method for producing the polymer, and specific examples of the water-absorbing resin can be found in JP-A-53-149190.
No., JP-A-51-125468, JP-A-52-25886 and JP-A-52-59690. The water-absorbing resin used in the present invention has a water-absorbing capacity of at least 60 ml/g (preferably 70 ml/g or more,
100 to 500 ml/g) is particularly suitable. The ratio (weight ratio) of polysaccharide (B):monomer (A):crosslinking agent (C) is usually 100:10 to 3000:0.0001 to 20, preferably 100:
50-1000: 0.001-10, more preferably 100:
100-500: 0.01-5. (A), (B) and (C) above
Examples of water-absorbing resins other than those obtained by polymerizing (A) and (B) include hydrolysates of starch-acrylonitrile graft polymers, hydrolysates of cellulose-acrylonitrile graft polymers;
Copolymers with (C) such as polyacrylamide crosslinked with divinyl compounds (such as methylene bisacrylamide) and its partial hydrolysis, crosslinked sulfonated polystyrene, crosslinked poval, JP-A-52-14689 and JP-A-Sho. Examples include saponified crosslinked vinyl ester-unsaturated carboxylic acid copolymers and crosslinked polyethylene oxide described in No. 52-27455. Two or more of these water-absorbing resins may be used in combination. The water-absorbing resin is usually used in the form of powder to granules. The particle size is usually 10 to 300 mesh, preferably 32 to 150 mesh. The fibers in the fiber aggregate used in the present invention include natural fibers such as cotton, wool, jute,
Semi-synthetic fibers such as viscose rayon, acetate, triacetate, etc.; synthetic fibers such as nylon, acrylic, polyester, polypropylene, etc., and mixtures of these fibers. Among these, hydrophilic fibers such as wood pulp, cotton, wool, and viscose rayon are preferable as the absorbent material of the present invention. Also particularly preferred are wood pulp, cotton pulp and viscose rayon. Although the fiber length is not particularly limited, it is usually 0.1 to 50 mm, preferably 0.5 to 10 mm. Examples of the shape of the fiber aggregate include pulp (soft lump), staple, or filament. It may also be in the form of a web, sheet, or mat. In the mixture of water-insoluble resin () and fiber aggregate () in the present invention, the mixing ratio of () and () is usually (): () 100:
1~10000, preferably ():()=100:~
20000. The method of mixing the water-insoluble water-absorbent resin () and the fiber aggregate () in the present invention is not particularly limited as long as the water-insoluble water-absorbent resin is uniformly dispersed and mixed in the fiber aggregate. For example, a method in which a fiber aggregate and a water-absorbing resin are mixed using a machine with a mixing function such as a mixer or a screw rotary mixer; the fiber aggregate absorbs water into water or an organic solvent (methanol, isopropyl alcohol, acetone, etc.). A method of dispersing the water-absorbing resin, stirring, mixing, and then filtering and drying; A method of opening the fiber aggregate using a card machine or the like and mixing it with the water-absorbent resin in an air stream using a jet airflow mill or the like; A method in which a water-absorbing resin is dispersed onto a fiber aggregate in the form of a web, a sheet, or a mat, and the water-absorbing resin is dispersed in the fiber aggregate by suctioning from the bottom of the fiber aggregate; Examples include a method in which a water-absorbing resin is spread on a mat-like fiber aggregate and then opened. When mixing the fiber aggregate () and the water-absorbing resin () using the above method, adding a small amount of water at any stage will cause the surface of the water-absorbing resin to swell and soften, making it strongly adhere to the fibers. Possible and preferable. In the present invention, there is no particular limitation on the method for producing the tufted mass of the mixture of the water-absorbing resin (2) and the fiber aggregate (2). For example, (1) a method in which a mixture of () and () is made into a web, sheet, or mat shape, then compressed with a press and cut into chips; (2)
A method of adding some moisture to a mixture of () and () and stirring at high speed with a mixer (in this case, fibers adhere and aggregate to the water-absorbing resin that has swollen and softened with moisture, forming tuft-like lumps). (3) A method of applying shear stress by placing a mixture of () and () between two belt conveyors with different vertical operating speeds; (4)
Add a mixture of () and () to water or an adhesive (acrylic emulsion, vinegar emulsion, etc.)
An example of this method is to form a sheet using a binder and then spread the sheet non-uniformly. In the present invention, each tuft-like mass of the mixture of the water absorbent resin () and the fiber aggregate () weighs 0.5 g or less, preferably 0.001 to 0.5 g. Apparent specific gravity is 0.1g/ cm3 or more, preferably 0.3-2
g/ cm3 . If the weight of one piece is more than 0.5g or the apparent specific gravity is less than 0.1g/cm 3 , its absorption power and absorption rate are greatly reduced, and it is not much different from a simple mixture of fiber aggregate and water-absorbing resin. . The tuft-like lumps do not necessarily have to satisfy the above-mentioned weight per unit and apparent specific gravity, and usually only need to contain these as a main component. The absorbent material of the present invention consists of multiple tufts. When using it, the tufts may be used as is in place of conventional absorbent materials (pulverized pulp, absorbent paper, etc.), or the tufts may be formed into a shape, for example, the tufts may be further formed into a sheet. Alternatively, the tufted mass may be further molded into a sandwich shape using a support such as absorbent paper or nonwoven fabric. As a method for further forming the tufted mass into a sheet shape, there is a method of laminating the tufted mass in layers and further fixing the layered product using a needle punch, a press machine, etc. so that the tufted mass does not move. It will be done. In addition, a method for further forming the tufted mass into a sandwich-like shape is to laminate the tufted mass on a support such as absorbent paper or nonwoven fabric, and then layer another support.Then, the resulting laminate is needle-punched. , a method of fixing using a press or the like. The absorbent material of the present invention is suitable for aqueous liquids such as water, urine,
When in contact with blood, emulsion, etc., the fiber components in the tufts absorb aqueous liquid and swell rapidly, and at the same time, the water-absorbing resin in the tufts also absorbs liquid and swells, causing a An unexpected synergistic effect appears. In other words, the absorption rate is significantly higher than that of the fiber aggregate or the water-absorbent resin alone, and the absorption capacity and pressure retention capacity (liquid retention capacity when pressurized after absorption) are also significantly greater than when each is used alone. do. When the absorbent material of the present invention is laminated in sheet form, there are spaces between each tufted mass, so it has cushioning properties and can also create a voluminous feel with a small amount of absorbent material. In addition, because the absorbent material of the present invention has high absorbing power and pressure holding power, less absorbent material is required when it is made into a final product, so the product form can be made smaller, which not only reduces raw material costs but also helps to store the product. It also reduces costs and transportation costs, making it possible to significantly reduce costs. The absorbent material of the present invention can be used for disposable diapers, sanitary napkins,
Suitable for medical pads, etc. In addition, it can be used for various purposes such as industrial water absorption and water retention materials (oil/water separation materials, water absorption materials in solvents, etc.) and soil water retention materials. The present invention will be explained below with reference to Examples. The water absorbent resins (resins) used in the examples are as follows. Resin According to the method of the example of JP-A No. 54-125468,
A white powdery water-insoluble water-absorbing resin produced from corn starch, acrylic acid, sodium acrylate, and N,N'-methylenebisacrylamide. The water absorption amount of this resin is ion exchange water 342
ml/g, 0.9% NaCl 77ml/g, water absorption rate 10ml/g
Less than 1 second at g time, 18.2 seconds at 50ml/g Pressure retention amount 328
It was ml/g. (The measurement method is described in Example 9). Example 1 100 g of flat pulp pulp and 30 g of resin were mixed using a jet air flow mill, and this was dispersed in 2 methanol, and then poured uniformly onto a 1 m 2 horizontal wire mesh (100 meshes) and filtered. this
A web-like mixture was obtained by drying with circulating air at 80°C for 3 hours. This mixture was pressurized at 5 kg/cm 2 using a press and then cut into square pieces of 3 mm x 3 mm using a cutter to obtain a tufted absorbent material [A]. The average weight of each cluster is 0.024g, and the apparent specific gravity is 0.61g/
It was warm at cm3 . Example 2 A tufted block of absorbent material [B] was obtained in the same manner as in Example 1, except that the amount of resin was changed to 10 g. The average weight of each cluster was 0.021 g, and the apparent specific gravity was 0.65 g/cm 3 . Example 3 A tufted block of absorbent material [C] was obtained in the same manner as in Example 1 except that the amount of resin was changed to 20 g.
The average weight of each cluster was 0.023 g, and the apparent specific gravity was 0.66 g/cm 3 . Example 4 In the same manner as in Example 1, 100 g of fluff pulp and 30 g of resin were mixed using a jet jet mill, and this was dispersed in the methanol/water mixed solvent (methanol/water = 8/2 volume ratio) of 2. After
The mixture was poured uniformly onto a 1 m 2 horizontal wire mesh (100 meshes), filtered, and dried with circulating air at 80° C. for 3 hours to obtain a web-like mixture. After uniformly spraying 20 g of water onto this mixture, two belt conveyors with a length of 5 m and a width of 50 cm were stacked one on top of the other, and the upper belt conveyor was operated at a speed of 1 m/min and the lower one at a speed of 5 m/min. Then, the water-sprayed mixture was thrown between two conveyors to obtain a tuft-like absorbent material [D]. The average weight of each cluster was 0.27 g, and the apparent specific gravity was 0.14 g/cm 3 . Example 5 A tuft-like absorbent material [E] was obtained in the same manner as in Example 1 except that 100 g of viscose rayon fiber was used instead of the flat pulp. The weight of each tuft is 0.022g, and the apparent specific gravity is
It was 0.61 g/cm 3 . Example 6 A tuft-like absorbent material [F] was obtained in the same manner as in Example 1 except that 100 g of cotton linter pulp was used instead of the flat pulp. Each tufted mass is 0.020g, and the apparent specific gravity is 0.60g/
It was warm at cm3 . Example 7 Tuft-like absorbent material [G] was produced in the same manner as in Example 1 except that the pressure of the press was 1 Kg/cm 2
I got it. The weight of each cluster was 0.008 g, and the apparent specific gravity was 0.18 g/cm 3 . Example 8 Absorbent material of the present invention obtained in Example 1 [A] 2.0 g
The mixture was uniformly spread on 100 cm 2 of rayon nonwoven fabric weighing 20 g/m 2 , and another sheet of rayon nonwoven fabric was layered and the surrounding area was sewn to obtain a sheet-like absorbent material [H]. Example 9 Absorbent materials [A] to [H] obtained in Examples 1 to 8
About water absorption rate, ion exchange water and 0.9%
The saturated water absorption amount of water-soluble NaCl and the amount of pressure retention under a 5 kg load were measured, and the results shown in Table 1 were obtained. In addition, Comparative Example 1 uses flat pulp alone, Comparative Example 2 uses 100 g of flat pulp and resin, 30 g
g and a mixture prepared in the same manner as in Example 1 were also measured. To measure the water absorption rate and saturated water absorption amount, 1 g of each water absorbing material was placed on 100 mesh nodes and administered into water.
25 seconds, 10 seconds, 25 seconds, 50 seconds, 75 seconds, 15 minutes, and 25 minutes later, take it out, leave it on the filter paper for 1 minute, measure the weight to determine the amount of water absorbed (ml/g), and calculate the amount of water absorbed and time. This was done by plotting the relationship and determining each water absorption rate and saturated water absorption amount. The amount of pressure retained is calculated by spreading 1 g of each water-absorbing material evenly on 100 mesh knots of 100 cm 2 and placing them in water for 15 minutes, then taking them out and placing them on filter paper.Then, the water-absorbing material is made by swelling an acrylic plate with the same shape as the knots. Place it on top, and place a 5Kg weight on top of it.
It was determined by measuring the weight after 1 minute. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明における房状塊の拡大斜
視図、第2図は房状塊をさらにシート状に成形し
たものの斜視図である。図中1は繊維集合体、2
は吸水性樹脂、3は房状塊を示す。
FIGS. 1a and 1b are enlarged perspective views of the tufted mass according to the present invention, and FIG. 2 is a perspective view of the tufted mass further formed into a sheet shape. In the figure, 1 is a fiber aggregate, 2
3 indicates a water-absorbing resin, and 3 indicates a tufted mass.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維間に均一に分散された水不溶性の吸収性
樹脂と繊維集合体との混合体であつて、該混合体
が多数個に分割されていてカールした繊維が毛房
状に絡んだ房状塊からなり、前記房状塊は、1個
当りの重量が0.001〜0.5g、見掛け密度比重が0.1
g/cm3以上であり、かつ、前記吸水性樹脂を前記
繊維集合体との重量比が100:1〜10.000である
ことを特徴とする吸収材。
1 A mixture of a water-insoluble absorbent resin uniformly dispersed between the fibers and a fiber aggregate, where the mixture is divided into many pieces and the curled fibers are entwined in a tuft shape. The tufted lumps each have a weight of 0.001 to 0.5 g and an apparent density specific gravity of 0.1.
g/cm 3 or more, and a weight ratio of the water-absorbing resin to the fiber aggregate is 100:1 to 10.000.
JP14188079A 1979-10-31 1979-10-31 Absorbing material Granted JPS5665630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14188079A JPS5665630A (en) 1979-10-31 1979-10-31 Absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14188079A JPS5665630A (en) 1979-10-31 1979-10-31 Absorbing material

Publications (2)

Publication Number Publication Date
JPS5665630A JPS5665630A (en) 1981-06-03
JPH0126736B2 true JPH0126736B2 (en) 1989-05-25

Family

ID=15302301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14188079A Granted JPS5665630A (en) 1979-10-31 1979-10-31 Absorbing material

Country Status (1)

Country Link
JP (1) JPS5665630A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3124008A1 (en) * 1981-06-19 1983-01-27 Chemische Fabrik Stockhausen & Cie, 4150 Krefeld CROSSLINKED, WATER-SWELLABLE COPOLYMERS AND THEIR USE AS AN ABSORBENT FOR AQUEOUS BODY LIQUIDS LIKE URINE
JPS5986657A (en) * 1982-11-09 1984-05-18 Nippon Shokubai Kagaku Kogyo Co Ltd Highly absorptive resin composition
GR79970B (en) * 1983-08-15 1984-10-31 Personal Products Co
JPS6162463A (en) * 1984-08-31 1986-03-31 三洋化成工業株式会社 Absorbing material and its production
US5047023A (en) * 1986-07-18 1991-09-10 The Procter & Gamble Company Absorbent members having low density and basis weight acquisition zones
JPS6373956A (en) * 1986-09-17 1988-04-04 花王株式会社 Absorbable article
US5061259A (en) * 1987-08-19 1991-10-29 The Procter & Gamble Company Absorbent structures with gelling agent and absorbent articles containing such structures
JP3734407B2 (en) 2000-06-19 2006-01-11 ユニ・チャーム株式会社 Absorbent articles
JP2002291785A (en) * 2001-03-30 2002-10-08 Mishima Paper Co Ltd Sanitary material having water disaggregation property and biodegradability
JP4508889B2 (en) * 2004-01-27 2010-07-21 花王株式会社 Absorbent articles
WO2005070363A1 (en) 2004-01-27 2005-08-04 Kao Corporation Absorbing article
JP2006198396A (en) * 2004-12-21 2006-08-03 Kao Corp Elastic absorber
JP5356712B2 (en) * 2008-03-28 2013-12-04 サンダイヤポリマー株式会社 Method for producing absorbent resin particles
JP6168892B2 (en) * 2013-07-23 2017-07-26 ユニ・チャーム株式会社 Water absorbent
JP6667495B2 (en) * 2017-12-26 2020-03-18 ユニ・チャーム株式会社 Absorbent articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135685A (en) * 1974-07-29 1976-03-26 Union Carbide Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135685A (en) * 1974-07-29 1976-03-26 Union Carbide Corp

Also Published As

Publication number Publication date
JPS5665630A (en) 1981-06-03

Similar Documents

Publication Publication Date Title
JPS5913215B2 (en) Funmatsujiyo grafted cellulose
CA1074475A (en) Absorbent blend of grafted polysaccharide and cellulose
JPH0126736B2 (en)
US5518761A (en) Absorbent material absorbent article, and method for production thereof
EP0427219B1 (en) Water absorbent latex polymer foams
US4605401A (en) Material for the absorption of water, aqueous solutions and aqueous body fluids
US4429001A (en) Sheet product containing sorbent particulate material
EP0437816B1 (en) Superabsorbent wet-lay nonwoven product
JP3583423B2 (en) Multilayer absorbent composite
US4102340A (en) Disposable article with particulate hydrophilic polymer in an absorbent bed
JP2001505961A (en) Integrated absorption layer
MXPA02005020A (en) Absorbent cores with y density gradient.
JPS5913213B2 (en) sanitary napkin
JP3895624B2 (en) Water-absorbing composite and method for producing the same
GB1570485A (en) Absorbent material for aqueous fluids
JPH09504471A (en) Absorbent material having a porous macrostructure of gel particles
JPS6162463A (en) Absorbing material and its production
Gross The evolution of absorbent materials
JP6730451B2 (en) Super absorbent material SAT (super absorbent thin paper)
JP4073508B2 (en) Water-absorbing composite and water-absorbing article
JP2544013B2 (en) Absorber and absorbent article
JP3078049B2 (en) Manufacturing method of absorber
JP3548651B2 (en) Absorber
JPH0133176B2 (en)
US20230049825A1 (en) Superabsorbent polymer and method of producing the same