JPH0124968B2 - - Google Patents

Info

Publication number
JPH0124968B2
JPH0124968B2 JP57096198A JP9619882A JPH0124968B2 JP H0124968 B2 JPH0124968 B2 JP H0124968B2 JP 57096198 A JP57096198 A JP 57096198A JP 9619882 A JP9619882 A JP 9619882A JP H0124968 B2 JPH0124968 B2 JP H0124968B2
Authority
JP
Japan
Prior art keywords
combustion
sludge
furnace
stage
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57096198A
Other languages
Japanese (ja)
Other versions
JPS58213111A (en
Inventor
Hidetaka Oomichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP9619882A priority Critical patent/JPS58213111A/en
Publication of JPS58213111A publication Critical patent/JPS58213111A/en
Publication of JPH0124968B2 publication Critical patent/JPH0124968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • F23G5/28Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber having raking arms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】 本発明は竪形多段炉に関し、さらに詳しくは高
分子凝集剤等を用いた発熱量の大きい汚泥の焼却
に適した多段炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vertical multistage furnace, and more particularly to a multistage furnace suitable for incinerating sludge with a large calorific value using a polymer flocculant or the like.

排水処理設備および下水処理設備等から排出さ
れる汚泥の処理方法のひとつとして、竪形多段炉
等で汚泥を焼却する方法が知られている。通常、
焼却の前に汚泥に適当な凝集剤が加えられ、脱水
機で脱水し、含水率約80%の脱水汚泥とした後、
竪形多段炉等に供給される。上記凝集剤としては
塩化第二鉄、石灰等の無機系の凝集剤が用いら
れ、これによつて例えば含水率約80%、固形分発
熱量約2500Kcal/(Kg固形分)の脱水汚泥(以
後、石灰汚泥という)が得られる。竪形多段炉
は、このような汚泥に対して最適な焼却炉といえ
る。これに対して最近、汚泥の減容化、処理コス
トの低減等の理由により、凝集剤として石灰等の
代りに高分子化合物が用いられるようになつた。
これによつて得られた脱水汚泥(以下、高分子汚
泥という)は、固形分発熱量が3000〜5000kcal/
Kg固形分)とかなり高く、また含水率も約75%と
低い。このような汚泥を多段炉で焼却すると、自
燃可能で、従来必要とされていた助燃油が不要
か、あるいは僅少で済むようになり、省エネギー
上非常に有効なものとなる。しかし高分子汚泥に
対して、石灰汚泥を焼却していた従来の多段炉
(以下、従来型炉という)をそのまま適用すると
種々の不都合が生じてくることが分つた。
BACKGROUND ART As one method for treating sludge discharged from wastewater treatment equipment, sewage treatment equipment, etc., there is a known method of incinerating sludge in a vertical multi-stage furnace or the like. usually,
Before incineration, an appropriate flocculant is added to the sludge, and it is dehydrated using a dehydrator to create dehydrated sludge with a moisture content of approximately 80%.
Supplied to vertical multistage furnaces, etc. As the above-mentioned flocculant, an inorganic flocculant such as ferric chloride or lime is used. , lime sludge) is obtained. A vertical multi-stage incinerator can be said to be the most suitable incinerator for this kind of sludge. In contrast, recently, polymer compounds have come to be used as coagulants instead of lime etc. for reasons such as reducing the volume of sludge and reducing processing costs.
The dehydrated sludge obtained in this way (hereinafter referred to as polymer sludge) has a solid calorific value of 3000 to 5000 kcal/
Kg solid content), which is quite high, and the moisture content is low at about 75%. When such sludge is incinerated in a multi-stage furnace, it is self-combustible, and the auxiliary fuel that was conventionally required becomes unnecessary or requires only a small amount, which is extremely effective in terms of energy conservation. However, it has been found that if a conventional multistage furnace (hereinafter referred to as a conventional furnace) for incinerating lime sludge is applied to polymer sludge as is, various problems will occur.

第1図および第2図は、従来型炉でそれぞれ石
灰汚泥および高分子汚泥を焼却する場合の炉内の
燃焼状況を示す図である。図において、炉1の頂
部から供給孔4を介して投入された脱水汚泥5
は、炉壁に設けられた炉床2および2Aを経て順
次落下し、乾燥、燃焼および冷却の過程を経て、
炉底のシユート6から焼却灰となつて排出され
る。炉中央の回転軸10はモータ11によつて回
転駆動される。一方、空気12は、回転軸10内
を通つて予熱されたのち、汚泥燃焼用空気13と
して炉下段から送入され、落下する汚泥と向流接
触し、冷却、燃焼に用いられたのち、燃焼排ガス
となつて炉頂排ガスダクト8から排出される。な
お、図中、3は回転軸10に設けられた撹拌羽
根、14は熱風発生炉である。
FIG. 1 and FIG. 2 are diagrams showing combustion conditions in a conventional furnace when lime sludge and polymer sludge are incinerated, respectively. In the figure, dehydrated sludge 5 is introduced from the top of the furnace 1 through the supply hole 4.
falls sequentially through the hearths 2 and 2A provided on the furnace wall, and goes through the processes of drying, combustion, and cooling.
The incineration ash is discharged from the chute 6 at the bottom of the furnace. A rotating shaft 10 at the center of the furnace is rotationally driven by a motor 11. On the other hand, air 12 is preheated through the rotating shaft 10 and then introduced from the lower stage of the furnace as air 13 for sludge combustion, comes into countercurrent contact with the falling sludge, is used for cooling and combustion, and then is combusted. It becomes exhaust gas and is discharged from the furnace top exhaust gas duct 8. In addition, in the figure, 3 is a stirring blade provided on the rotating shaft 10, and 14 is a hot air generating furnace.

第1図の石灰汚泥の場合には、炉内上部の乾燥
段(乾燥部15のある段をいう)では脱水汚泥と
汚泥燃焼排ガスが接触し、効率的な乾燥が行なわ
れ、適度に乾燥した汚泥は燃焼段(燃焼部16に
ある段をいう)に落下し、汚泥中の可燃性揮発分
が火炎19を伴ない燃焼する。この場合、可燃性
揮発分は燃焼部16においてほぼ完全燃焼し、煤
などの残在しない汚泥燃焼排ガスとなつて乾燥部
を上昇し、脱水汚泥を乾燥した後、炉頂排ガス9
とななつて最上段の炉頂排ガスダクト8から排出
される。このようにして石灰汚泥焼却時には、汚
泥中の水分蒸発を行なう乾燥部15と可燃性揮発
分の燃焼が行なわれる燃焼部16の境界が明瞭
で、排ガスも清浄となる。また炉の操作性という
観点からみると、操作性のポイントになる燃焼段
の位置は、熱風発生炉4で使用する助燃油量の加
減により容易に固定することができ、すなわち、
多段炉による石灰汚泥の焼却という技術に関して
は、排ガス性状および炉の操作性からみて完成さ
れた技術といえる。
In the case of lime sludge shown in Figure 1, dehydrated sludge and sludge combustion exhaust gas come into contact with each other in the drying stage at the upper part of the furnace (this is the stage where the drying section 15 is located), and efficient drying is performed, resulting in moderate dryness. The sludge falls into a combustion stage (refers to the stage located in the combustion section 16), and combustible volatiles in the sludge are combusted with flame 19. In this case, the combustible volatiles are almost completely combusted in the combustion section 16, become sludge combustion exhaust gas without remaining soot, and ascend through the drying section. After drying the dehydrated sludge, the furnace top exhaust gas 9
The gas is discharged from the furnace top exhaust gas duct 8 at the top. In this way, when lime sludge is incinerated, the boundary between the drying section 15 where water in the sludge is evaporated and the combustion section 16 where combustible volatile matter is burned is clear, and the exhaust gas is also clean. In addition, from the viewpoint of the operability of the furnace, the position of the combustion stage, which is a key point in operability, can be easily fixed by adjusting the amount of auxiliary fuel used in the hot air generating furnace 4.
The technology of incinerating lime sludge using a multistage furnace can be said to be a completed technology in terms of exhaust gas properties and furnace operability.

これに対して、第2図の高分子汚泥の場合、高
分子汚泥は含水率が低く、かつ発熱量が大きいた
め、助燃油等を要せずに自燃させることができ
る。また石灰汚泥焼却時の状況と比較して乾燥段
数が少なくなり、汚泥中の可燃性揮発分の量が多
いため、燃焼部16から発生する火炎が長くな
り、乾燥部5にまで達する。このような状況にな
ると、火炎19が乾燥途中の汚泥により冷却さ
れ、多量の可燃性揮発分が未燃分となつて排ガス
中に残存する。さらに乾燥段にある汚泥について
も汚泥燃焼火炎により加熱され、局部的に乾燥が
進み過ぎ、水分蒸発のみならず、可燃性揮発分を
発生するようになり、はなはだしい場合には瞬間
時に着火することさえある。このように乾燥段で
発生した可燃性揮発分は充分燃えないまま、未燃
分として乾燥段を通過し炉頂排ガス9に含まれ
る。すなわち高分子汚泥を従来形炉で焼却した時
には、乾燥部と燃焼部の境界界が明瞭でなくな
り、燃焼段から発生する火炎19の不完全燃焼に
よる未燃分と、乾燥段の汚泥から発生する未燃分
のため、炉頂排ガス9には多量の未燃分が含まれ
ることになる。また炉の操作性という観点からみ
ると、高分子汚泥の自燃時には燃焼段位置の固定
について、石灰汚泥焼却時の助燃油量の調節に相
当するような有効な調節方法がなく、汚泥性状の
わずかな変化等により燃焼段が上下し、炉を定常
に保つことは容易でない。そのため、従来形炉で
高分子汚泥を焼却する場合には処理量を低下さ
せ、しかも空気比を下げて燃焼を抑制し、炉内状
況の安定化を計らざるを得ない。しかし、このよ
うにした場合は、空気比を下げることから、排ガ
ス9中の未燃分は益々増加することになる。
On the other hand, in the case of the polymer sludge shown in FIG. 2, since the polymer sludge has a low water content and a large calorific value, it can be self-combusted without the need for auxiliary combustion oil or the like. Furthermore, compared to the situation when incinerating lime sludge, the number of drying stages is reduced and the amount of combustible volatile matter in the sludge is large, so the flame generated from the combustion section 16 becomes longer and reaches the drying section 5. In such a situation, the flame 19 is cooled by the sludge in the middle of drying, and a large amount of combustible volatile matter remains in the exhaust gas as unburned matter. Furthermore, the sludge in the drying stage is also heated by the sludge combustion flame, causing localized excessive drying, which not only evaporates water, but also generates flammable volatile matter, which in extreme cases can even ignite instantly. be. In this way, the combustible volatile matter generated in the drying stage passes through the drying stage as unburned matter without being sufficiently burned, and is included in the furnace top exhaust gas 9. That is, when polymer sludge is incinerated in a conventional furnace, the boundary between the drying section and the combustion section is no longer clear, and the unburned matter due to incomplete combustion of the flame 19 generated from the combustion stage and the sludge in the drying stage are generated. Because of the unburned matter, the furnace top exhaust gas 9 contains a large amount of unburned matter. In addition, from the viewpoint of operability of the furnace, there is no effective adjustment method for fixing the combustion stage position during self-combustion of polymer sludge, equivalent to adjusting the amount of auxiliary combustion oil during lime sludge incineration. The combustion stage moves up and down due to various changes, making it difficult to keep the furnace steady. Therefore, when incinerating polymer sludge in a conventional furnace, it is necessary to reduce the throughput and lower the air ratio to suppress combustion and stabilize the situation inside the furnace. However, in this case, since the air ratio is lowered, the amount of unburned matter in the exhaust gas 9 increases more and more.

以上、高分子汚泥を従来形炉で焼却する場合の
問題点をまとめると次のようになる。
The problems when incinerating polymer sludge in a conventional furnace can be summarized as follows.

(1) 燃焼部16から発生する火炎19が乾燥部1
5にまで達し、この火炎19が乾燥途中の汚泥
により冷却され、燃焼が完結しないまま未燃
分、特に煤になつて炉頂排ガス9中に残存す
る。
(1) The flame 19 generated from the combustion section 16 flows into the drying section 1.
5, this flame 19 is cooled by the sludge in the middle of drying, and remains in the furnace top exhaust gas 9 as unburned matter, especially soot, without completing combustion.

(2) 乾燥段にある汚泥が汚泥燃焼火炎19により
過熱され、乾燥が進みすぎて可燃性揮発分を発
生するようになり、これが未燃分として炉頂排
ガス9に含まれる。
(2) The sludge in the drying stage is overheated by the sludge combustion flame 19, and the drying progresses too much to generate flammable volatile matter, which is included in the furnace top exhaust gas 9 as unburned matter.

(3) 燃焼段の固定のため有効な方法がなく、操作
性が悪い。このため、強いて炉内を定常に保つ
ためには、石灰汚泥に比較して処理量を減ら
し、かつ空気比を下げる必要があり、このこと
はさらに炉頂排ガス8中の未燃分を増加させる
ことになる。
(3) There is no effective method for fixing the combustion stage, and operability is poor. Therefore, in order to maintain a steady state inside the furnace, it is necessary to reduce the amount of treatment compared to lime sludge and lower the air ratio, which further increases the unburned content in the furnace top exhaust gas 8. It turns out.

本発明の目的は、高分子凝集剤等を含む発熱量
の高い脱水汚泥を焼却する際に、未燃分の発生が
少なく、操作性の良好な竪形多段炉を提供するこ
とにある。
An object of the present invention is to provide a vertical multistage furnace that generates less unburned matter and has good operability when incinerating dehydrated sludge containing a polymer flocculant and the like and having a high calorific value.

本発明の竪形多段炉は、高分子凝集剤等を含む
発熱量の高い汚泥を焼却するための、炉内部を複
数段に区画した竪形多段炉において、炉内燃焼部
の炉床上に、汚泥から発生する可燃性揮発分等の
未燃分が充分に燃焼する空間部を設けたことを特
徴とする。
The vertical multi-stage furnace of the present invention is a vertical multi-stage furnace in which the inside of the furnace is divided into multiple stages for incinerating sludge with a high calorific value containing a polymer flocculant, etc. On the hearth of the combustion section in the furnace, It is characterized by providing a space in which unburned components such as combustible volatile components generated from the sludge are sufficiently combusted.

本発明において、前記燃焼空間部はその負荷率
が25万kacl/hr・燃焼部単位m3以下になるような
容積を有することが好ましく、また該空間部には
燃焼排ガスの一部を抜き出すための燃焼空間部の
負荷率を25万Kcal/h・燃焼部単位m3よりも大
きくすると、火炎が上方の乾燥段まで延び、ここ
で冷却されて未燃分を生じ、これが排ガス中に多
く含まれてくることになる。なお、燃焼空間部の
負荷率の下限は、燃焼を継続できる程度であれば
特に限定されない。
In the present invention, the combustion space preferably has a volume such that its load rate is 250,000 kacl/hr/combustion unit m 3 or less, and the space is provided with a space for extracting part of the combustion exhaust gas. When the load rate of the combustion space is greater than 250,000 Kcal/h/combustion space unit m3 , the flame extends to the upper drying stage, where it is cooled and produces unburned matter, which is largely contained in the exhaust gas. It will come. Note that the lower limit of the load factor of the combustion space is not particularly limited as long as combustion can continue.

また、前記空間部には燃焼を促進するための邪
魔板を設け、さらに該邪魔板の中央部に汚泥が円
滑に落下するようにテーパ状部に案内さる連通孔
を設けることが好ましい。
Further, it is preferable that a baffle plate is provided in the space to promote combustion, and that a communication hole is provided in the center of the baffle plate to guide the sludge to the tapered portion so that the sludge falls smoothly.

以下、本発明を図面によりさらに詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図、第4図および第5図は、それぞれ本発
明の典型的な実施例を示す竪形多段炉の断面図で
ある。第1図および第2図の従来炉と較べて異な
る点は下記のようである。
FIGS. 3, 4, and 5 are cross-sectional views of vertical multi-stage furnaces showing typical embodiments of the present invention, respectively. The differences from the conventional furnaces shown in FIGS. 1 and 2 are as follows.

(1) 燃焼段にある燃焼中の汚泥18から発生する
可燃性揮発分が燃焼を完結するのに必要かつ充
分な大きさの燃焼空間(以下、燃焼室20と称
する)を燃焼部16に設けたこと(各図共通)。
(1) The combustion section 16 is provided with a combustion space (hereinafter referred to as the combustion chamber 20) of a size necessary and sufficient for the combustible volatiles generated from the sludge 18 during combustion in the combustion stage to complete combustion. (common to all figures).

このような燃焼室20を設けることにより、
乾燥部15と燃焼部16の境界が明瞭になり、
燃焼部16から乾燥部15に上昇する汚泥燃焼
排ガス中に未燃分および火炎は消滅する。した
がつて乾燥部15で火炎が冷却されることによ
り発生する未燃分、特に煤、および乾燥部15
の汚泥が過熱されることにより発生する未燃分
がなくなり、したがつて炉頂排ガス9も清浄化
される。
By providing such a combustion chamber 20,
The boundary between the drying section 15 and the combustion section 16 becomes clear,
Unburnt components and flames disappear in the sludge combustion exhaust gas rising from the combustion section 16 to the drying section 15. Therefore, unburned matter, especially soot, generated when the flame is cooled in the drying section 15, and the drying section 15
When the sludge is superheated, unburned matter generated is eliminated, and the furnace top exhaust gas 9 is also purified.

(2) 上記燃焼室20をもつ多段炉において、乾燥
部15で汚泥の乾燥程度を調整するために、燃
焼部16から乾燥部15へ上昇する汚泥燃焼排
ガス量を変えられるように、燃焼室20に汚泥
燃焼排ガスの一部抜出用ダクト(以下、抜出ダ
クト21と称する)を設けたこと(各図共通)。
抜出ガス22の量の調節は乾燥部15の温度が
一定になるように行なわれる。
(2) In the multi-stage furnace having the combustion chamber 20, in order to adjust the degree of drying of the sludge in the drying section 15, the combustion chamber 2 A duct (hereinafter referred to as the extraction duct 21) for partially extracting the sludge combustion exhaust gas is provided (common to all figures).
The amount of extracted gas 22 is adjusted so that the temperature of drying section 15 is constant.

これにより乾燥部15にある汚泥が必要以上
に加熱され、未燃分が発生するのを防ぐととも
に、燃焼段に乾燥程度が一定の汚泥を供給する
ことにより、燃焼段を安定に固定し、操作性を
向上させることができる。さらにこのような調
節機構を付加することにより、燃焼用空気を充
分に送入して燃焼性を良くすることが可能で、
従来形炉を用いるときのように空気比を低下さ
せる必要はなくなる。
This prevents the sludge in the drying section 15 from being heated more than necessary and generating unburned matter, and by supplying sludge with a constant degree of dryness to the combustion stage, the combustion stage can be stably fixed and operated. can improve sex. Furthermore, by adding such an adjustment mechanism, it is possible to introduce sufficient combustion air to improve combustion performance.
There is no need to reduce the air ratio as with conventional furnaces.

(3) 上記の燃焼室20内で、可燃性揮発分の燃焼
をすみやかに完結するために、燃焼用空気との
混合、撹拌を促進させるための邪魔板23を設
けることが望ましい(第4図および第5図)。
(3) In order to quickly complete the combustion of flammable volatiles in the combustion chamber 20, it is desirable to provide a baffle plate 23 to promote mixing and stirring with the combustion air (see Figure 4). and Figure 5).

このように、燃焼室負荷率の高い燃焼室とす
ることにより、燃焼段炉床単位面積当りの汚泥
処理量は従来形炉に比較して格段に向上する。
In this way, by providing a combustion chamber with a high combustion chamber load factor, the amount of sludge throughput per unit area of the combustion stage hearth is significantly improved compared to the conventional furnace.

(4) 上記燃焼室20をもつ多段炉において、乾燥
部から排出された汚泥が、燃焼段の炉床上に落
下する間に、汚泥燃焼火炎に長時間触れること
のないように、乾燥汚泥がすみやかに燃焼段の
炉床上に落下する構造とすることが望ましい
(第4図および第5図)。
(4) In the multi-stage furnace having the above-mentioned combustion chamber 20, the dried sludge is removed quickly so that it does not come into contact with the sludge combustion flame for a long time while it falls onto the hearth of the combustion stage. It is desirable to have a structure in which the fuel falls onto the hearth of the combustion stage (Figures 4 and 5).

上記(1)および(3)項で述べた条件は、燃焼段の炉
床上にある汚泥についてのものであり、汚泥から
発生する可燃性揮発分が完全に燃焼するのに充分
な燃焼室を設けることを規定している。しかし、
この場合、燃焼段の炉床上に落下する以前に長時
間汚泥燃焼火炎に触れると、従来形炉と同様に、
乾燥途中の汚泥が加熱され、可燃性揮発分を発生
し、これが充分に燃焼しないまま、乾燥部に上昇
することがあり、本項はこのようなことがないよ
うにするためである。
The conditions stated in paragraphs (1) and (3) above are for sludge above the hearth of the combustion stage, and provide a sufficient combustion chamber for the complete combustion of combustible volatiles generated from the sludge. It stipulates that. but,
In this case, if the sludge comes into contact with the combustion flame for a long time before falling onto the hearth of the combustion stage, it will cause
The sludge during drying is heated and generates flammable volatile matter, which may rise to the drying section without being sufficiently combusted, and this section is intended to prevent this from happening.

このような構造例として、第4図では、燃焼部
20の炉壁に汚泥が落下する通路25が形成さ
れ、さらに汚泥を強制的に燃焼室に供給するスク
リユーフイーダ26が設けられ、汚泥が高温燃焼
排ガスに触れずに燃焼室に供給される構成が示さ
れている。また第5図および第6図は、邪魔板2
3中央部の回転軸10の貫通部に、テーパ状壁3
0を有する漏斗形の開口部31が設けられ、汚泥
が低温の回転軸10に接触しながら、なるべく高
温ガスに触れずに、速やかに燃焼室の炉床上に落
下する構成が示されている。
As an example of such a structure, in FIG. 4, a passage 25 through which sludge falls is formed on the furnace wall of the combustion section 20, and a screw feeder 26 for forcibly feeding sludge into the combustion chamber is provided. A configuration is shown in which the combustion gas is supplied to the combustion chamber without contacting the high-temperature combustion exhaust gas. In addition, FIGS. 5 and 6 show the baffle plate 2.
3. A tapered wall 3 is provided in the central part of the rotating shaft 10 through the penetrating part.
A funnel-shaped opening 31 having a diameter of 0 is provided, and a configuration is shown in which the sludge quickly falls onto the hearth of the combustion chamber while contacting the low-temperature rotating shaft 10 and without coming into contact with high-temperature gas.

以下、本発明の実施例として示した第4図ない
し第6図の具体的なフローを説明する。
Hereinafter, specific flows shown in FIGS. 4 to 6, which are shown as embodiments of the present invention, will be explained.

第4図において、乾燥部15の最下段から排出
された、乾燥程度の調節された汚泥は、乾燥汚泥
バイパス管25を通つてフイーダ26により燃焼
段の炉床上に供給される。燃焼部16の燃焼段炉
床上にある汚泥から発生する可燃性揮発分は、燃
焼促進のために邪魔板23をもつ燃焼室20にお
いて完全燃焼する。燃焼室20の最上部には、抜
出ダクト21が設けられ、乾燥部15の温度が所
定温度になるように排ガスが抜き出される。
In FIG. 4, the dried sludge discharged from the lowest stage of the drying section 15 is fed to the hearth of the combustion stage by a feeder 26 through a dried sludge bypass pipe 25. Combustible volatiles generated from the sludge on the combustion stage hearth of the combustion section 16 are completely combusted in the combustion chamber 20, which has a baffle plate 23 to promote combustion. An extraction duct 21 is provided at the top of the combustion chamber 20, and exhaust gas is extracted so that the temperature of the drying section 15 reaches a predetermined temperature.

上記乾燥汚泥バイパス管25は乾燥部から排出
された汚泥が燃焼室内の火炎に触れて未燃分を発
生することを防ぐためのものであり、またフイー
ダ26は汚泥を燃焼室20内に供給するととも
に、燃焼室の火炎が乾燥汚泥バイパス管25を通
り直接乾燥部に上昇するのを防ぐ作用をする。
The dried sludge bypass pipe 25 is for preventing the sludge discharged from the drying section from coming into contact with the flame in the combustion chamber and generating unburned matter, and the feeder 26 supplies the sludge into the combustion chamber 20. At the same time, it serves to prevent the flame in the combustion chamber from passing through the dried sludge bypass pipe 25 and rising directly to the drying section.

このようにして、燃焼部16から排出される汚
泥燃焼排ガスは充分に清浄なものとなり、従つて
炉頂排ガス中の未燃分はなくなり、また抜出しガ
ス量の調節により、燃焼段が固定され、安定した
運転が可能になる。なお、上記実施例において、
汚泥の発熱量が不足する場合には、燃焼室20内
で十分な燃焼が行なわれるのを助けるため、補助
燃料を焚くためのバーナー27を設置することが
できる。
In this way, the sludge combustion exhaust gas discharged from the combustion section 16 becomes sufficiently clean, so that there is no unburned matter in the furnace top exhaust gas, and by adjusting the amount of extracted gas, the combustion stage is fixed. Enables stable driving. In addition, in the above example,
If the calorific value of the sludge is insufficient, a burner 27 for burning auxiliary fuel can be installed to help ensure sufficient combustion within the combustion chamber 20.

第5図および第6図の実施例は、第4図の実施
例よりも簡便に本発明を実施するためのもので、
乾燥部15最下段から排出され、乾燥程度の調節
された汚泥は、直ちに開口部31を経て燃焼部1
6の燃焼段炉床26に落下し、燃焼する。燃焼室
20内の燃焼促進のための邪魔板23にテーパー
状部30を有する開口部31を設けたことによ
り、汚泥が燃焼室20の途中に長く滞留し未燃分
が発生することがなくなる。燃焼段炉床26から
発生する可燃性揮発分の燃焼火災は燃焼室20内
の邪魔板23により乱されて燃焼が促進され、燃
焼室20内で完全燃焼する。燃焼部20の最上部
は第4図と同様に抜出ダクト21が設けられてい
る。このようにして燃焼部16から排出される汚
泥燃焼排ガスは清浄なものとなるが、第4図の場
合と比較して燃焼室20内の構造が簡便になり、
建設コストが安価になる反面、排ガスの清浄性は
やや犠性になるが、炉の操作性に関しては第4図
の場合と同様に安定した運転が可能となる。
The embodiments shown in FIGS. 5 and 6 are for carrying out the present invention more easily than the embodiment shown in FIG.
The sludge discharged from the lowest stage of the drying section 15 and whose degree of dryness has been adjusted immediately passes through the opening 31 and enters the combustion section 1.
It falls onto the combustion stage hearth 26 of No. 6 and burns. By providing the opening 31 having the tapered portion 30 in the baffle plate 23 for promoting combustion within the combustion chamber 20, sludge will not remain in the middle of the combustion chamber 20 for a long time and unburned matter will not be generated. A combustion fire of combustible volatile matter generated from the combustion stage hearth 26 is disturbed by the baffle plate 23 in the combustion chamber 20, combustion is promoted, and complete combustion occurs within the combustion chamber 20. At the top of the combustion section 20, an extraction duct 21 is provided as in FIG. 4. In this way, the sludge combustion exhaust gas discharged from the combustion section 16 becomes clean, but the structure inside the combustion chamber 20 is simplified compared to the case shown in FIG.
While the construction cost is lower, the cleanliness of the exhaust gas is somewhat sacrificed, but in terms of operability of the furnace, stable operation is possible as in the case of FIG. 4.

以上、本発明の竪形多段炉によれば、次のよう
な優れた効果が得られる。
As mentioned above, according to the vertical multistage furnace of the present invention, the following excellent effects can be obtained.

(1) 竪形多段炉から排出されるガス中に未燃分が
含まれず、排出ガスが清浄になる。
(1) The gas discharged from the vertical multi-stage furnace does not contain any unburned matter, resulting in clean exhaust gas.

(2) 燃焼段の固定が容易で、操作性がよい。(2) The combustion stage is easy to fix and has good operability.

(3) (1)および(2)を達成しつつ汚泥処理を増加する
ことができる。
(3) Sludge treatment can be increased while achieving (1) and (2).

(4) (1)を達成することによる付随効果として、従
来装置と比較して排ガス処理装置への負担が減
り、その関係の設備費、ランニングコストを低
減することができる。
(4) As a side effect of achieving (1), the burden on the exhaust gas treatment device is reduced compared to conventional devices, and related equipment costs and running costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、従来の竪形多段炉を用
いてそれぞれ石灰汚泥および高分子汚泥を燃焼さ
せた状態を示す断面図、第3図は、本発明の一実
施例を示す竪形多段炉の断面図、第4図および第
5図は、それぞれ本発明の他の実施例を示す竪形
多段炉の部分断面図、第6図は、第5図の―
線に沿つた矢視方向断面図である。符号の説明は
次のとおりである。 1……炉、2,2A……炉床、5……脱水汚
泥、7……焼却灰、9……排ガス、10……回転
軸、15……乾燥部、16……燃焼部、20……
燃焼室、23……邪魔板。
1 and 2 are cross-sectional views showing the state in which lime sludge and polymer sludge are burned using a conventional vertical multi-stage furnace, respectively, and FIG. 3 is a vertical sectional view showing an embodiment of the present invention. 4 and 5 are partial sectional views of a vertical multistage furnace showing other embodiments of the present invention, and FIG. 6 is a cross-sectional view of a vertical multistage furnace, and FIG.
FIG. The explanation of the symbols is as follows. 1... Furnace, 2, 2A... Hearth, 5... Dehydrated sludge, 7... Incineration ash, 9... Exhaust gas, 10... Rotating shaft, 15... Drying section, 16... Combustion section, 20... …
Combustion chamber, 23... baffle plate.

Claims (1)

【特許請求の範囲】 1 高分子凝集剤等を含む、発熱量が
3000Kcal/Kg固形分以上の汚泥を焼却するため
の、炉内部を複数段に区画した竪形多段炉におい
て、炉内燃焼部の炉床上に、汚泥から発生する可
燃性揮発分等の未燃分が充分に燃焼される、負荷
率が25万Kcal/h・燃焼部単位m3以下になるよ
うな、空間部を設けたことを特徴とする竪形多段
炉。 2 特許請求の範囲第1項の竪形多段炉におい
て、前記燃焼空間部に燃焼排ガスの一部を抜き出
すダクトを設けたことを特徴とする竪形多段炉。 3 特許請求の範囲第1項または第2項の竪形多
段炉において、前記燃焼部の空間に燃焼を促進す
るための邪魔板を設けたことを特徴とする竪形多
段炉。 4 特許請求の範囲第3項記載の竪形多段炉にお
いて、前記邪魔板は、中央部に汚泥が円滑に落下
するようにテーパ状部によつて案内された連通孔
を有することを特徴とする竪形多段炉。
[Scope of claims] 1.
In a vertical multi-stage furnace in which the inside of the furnace is divided into multiple stages to incinerate sludge with a solid content of 3000 Kcal/Kg or more, unburned matter such as combustible volatile matter generated from the sludge is placed on the hearth of the combustion section in the furnace. A vertical multi-stage furnace characterized by having a space so that the fuel is sufficiently combusted and the load rate is 250,000 Kcal/h/ m3 or less per unit of combustion section. 2. The vertical multistage furnace according to claim 1, characterized in that the combustion space is provided with a duct for extracting part of the combustion exhaust gas. 3. The vertical multi-stage furnace according to claim 1 or 2, characterized in that a baffle plate for promoting combustion is provided in the space of the combustion section. 4. The vertical multi-stage furnace according to claim 3, wherein the baffle plate has a communicating hole in the center that is guided by a tapered part so that the sludge falls smoothly. Vertical multistage furnace.
JP9619882A 1982-06-07 1982-06-07 Vertical multistage furnace Granted JPS58213111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9619882A JPS58213111A (en) 1982-06-07 1982-06-07 Vertical multistage furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9619882A JPS58213111A (en) 1982-06-07 1982-06-07 Vertical multistage furnace

Publications (2)

Publication Number Publication Date
JPS58213111A JPS58213111A (en) 1983-12-12
JPH0124968B2 true JPH0124968B2 (en) 1989-05-15

Family

ID=14158585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9619882A Granted JPS58213111A (en) 1982-06-07 1982-06-07 Vertical multistage furnace

Country Status (1)

Country Link
JP (1) JPS58213111A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331378A (en) * 1976-07-19 1978-03-24 Nichols Eng & Res Corp Method of treating waste containing alkali metal in furnace with controlled atmosphere and apparatus thereof
JPS5411629A (en) * 1977-06-27 1979-01-27 Maspro Denko Kk Community receiving system amplifier monitor and amplifier monitoring system
JPS5525353A (en) * 1978-08-11 1980-02-23 Ricoh Co Ltd Printing means

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331378A (en) * 1976-07-19 1978-03-24 Nichols Eng & Res Corp Method of treating waste containing alkali metal in furnace with controlled atmosphere and apparatus thereof
JPS5411629A (en) * 1977-06-27 1979-01-27 Maspro Denko Kk Community receiving system amplifier monitor and amplifier monitoring system
JPS5525353A (en) * 1978-08-11 1980-02-23 Ricoh Co Ltd Printing means

Also Published As

Publication number Publication date
JPS58213111A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
CA2219288C (en) Apparatus and method for oxygen lancing in a multiple hearth furnace
US4215637A (en) System for combustion of wet waste materials
US4453474A (en) Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace
US4391208A (en) Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace
US4481890A (en) Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace
WO1992014969A1 (en) Method of burning a particulate fuel and use of the method for burning sludge
JPH11286684A (en) Continuous carbonization furnace
JPH0124968B2 (en)
ES2111354T3 (en) PROCEDURE AND INSTALLATION FOR WASTE TREATMENT.
KR20010076672A (en) Heat recovery installation using sludge fluidized bed destruction by fire apparatus and thereof method
JP3091181B2 (en) Incinerator
JP2001235133A (en) Operating method of vertical self-burning carbonization furnace for organic waste
JP3075465B2 (en) Sludge incineration method and incineration equipment
JPS6026261Y2 (en) Constant heat drying incinerator
JPH0124969B2 (en)
KR100336540B1 (en) Incinerator for ship
JP2001065844A (en) Method and apparatus for spheroidizing incineration ash
JP3372526B2 (en) Waste treatment method and apparatus
KR0148030B1 (en) Multi-stage combustion system
JP4183213B2 (en) Carbonization furnace
SU1177623A1 (en) Plant for thermal processing of solid materials
JPH0214604B2 (en)
Tejima et al. Reduction of dioxin emission on start up and shut down at batch-operational MSW incineration plant
JP2000161635A (en) Waste incinerating method
JP2001234175A (en) Operating method of vertical self-burning carbonization furnace