JPH01246726A - Glass fiber-reinforced lamination layer insulating part - Google Patents

Glass fiber-reinforced lamination layer insulating part

Info

Publication number
JPH01246726A
JPH01246726A JP7362288A JP7362288A JPH01246726A JP H01246726 A JPH01246726 A JP H01246726A JP 7362288 A JP7362288 A JP 7362288A JP 7362288 A JP7362288 A JP 7362288A JP H01246726 A JPH01246726 A JP H01246726A
Authority
JP
Japan
Prior art keywords
glass fiber
alumina
lamination layer
reinforced
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7362288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kagawa
加川 芳弘
Michihiko Koyama
充彦 小山
Mitsuru Oyamada
小山田 満
Masamitsu Tsushima
対馬 政光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7362288A priority Critical patent/JPH01246726A/en
Publication of JPH01246726A publication Critical patent/JPH01246726A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve waterproofness and tracking resistance by forming an inorganic coat having alumina as the main component on at least a processed surface of glass fiber-reinforced lamination layer product. CONSTITUTION:An inorganic coat 25 having alumina as its main component is formed on a glass fiber-reinforced lamination layer plate, for example a bus support 20, particularly on its processed surfaces 23, 24. That is, on the processed surfaces 23, 24, an alumina-based inorganic filler employing alcohol as its aolvent is applied with a spray gun or the like, and then these surfaces are heated and dried. In this case, the thickness of the inorganic coat is approximately 1mm or less.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ガラス繊維強化積層絶縁部品に係り、特に母
線等を支持するガラス繊維強化積層絶縁部品に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a glass fiber-reinforced laminated insulating component, and particularly to a glass fiber-reinforced laminated insulating component that supports busbars and the like.

(従来の技術および発明が解決しようとする課題) 屋外に設置される相非分割母線の母線を支持する部品(
以下母線サポートと言う)は、電気絶縁性とともに衝撃
的に加わる電磁力、母線の支持による耐クリープ性等の
機械特性面からガラス繊維強化積層部品が用いられてい
る。この母線サポートは、ガラス繊維強化積層板から機
械加工によってrめ規定寸法に切断され、これ等を有機
材料のバインダにより数枚積重ねて接着したものである
(Prior art and problems to be solved by the invention) Parts that support the busbar of a phase-free busbar installed outdoors (
Glass fiber-reinforced laminate parts are used for the bus bar support (hereinafter referred to as bus bar support) due to its mechanical properties such as electrical insulation, electromagnetic force applied by impact, and creep resistance due to support of the bus bar. This busbar support is made by cutting a glass fiber reinforced laminate into a specified size by machining, and then stacking and bonding several sheets using an organic binder.

ところが、このような母線サポートは機械加工したとき
の加工面、例えば切断部が粗面となってガラス繊維が露
出しているため、この粗面から大気中の水分が吸湿され
易く耐水性に問題がある。また、上記加工面は、上述の
ように粗面となっているため電気絶縁に対して有害な汚
損物が付着した場合落ちにくくなり母線サポートの電気
的な絶縁特性が低下することがあり、さらに、バインダ
が有機材料であるためトラッキングが発生し易くなり、
母線間の相間短絡、地絡等の重大事故を誘発することが
ある等の問題があった。
However, when such busbar supports are machined, the machined surfaces, such as the cut portions, are rough and the glass fibers are exposed, so moisture in the atmosphere is easily absorbed through these rough surfaces, resulting in problems with water resistance. There is. In addition, since the above-mentioned processed surface is a rough surface as mentioned above, if contaminants that are harmful to electrical insulation adhere to the surface, they may be difficult to remove and may deteriorate the electrical insulation properties of the bus bar support. , since the binder is an organic material, tracking is more likely to occur.
There were problems such as phase-to-phase short circuits between busbars, ground faults, and other serious accidents.

これらの問題を解決するため、母線サポートの加工面に
は、脂環式エポキシ樹脂を主成分とする配合物をコーテ
ィングしたり、あるいは脂環式エポキシ樹脂に水酸化ア
ルミニュウム (AIo  ・3H20)等の無機質の水和物を添加し
た配合物をコーティング処理したり、さらにまたシリコ
ーンゴムを主成分とする熱収縮チューブの被膜を母線サ
ポートの加工面に被覆する等の方法がとられていた。
In order to solve these problems, the processed surface of the bus bar support is coated with a compound mainly composed of alicyclic epoxy resin, or a mixture of aluminum hydroxide (AIo 3H20) etc. is coated on the alicyclic epoxy resin. Methods such as coating with a compound containing an inorganic hydrate, or coating the processed surface of the bus bar support with a film of heat-shrinkable tube mainly composed of silicone rubber have been used.

しかし、脂環式エポキシ樹脂を含む配合物は、主成分が
有機化合物を母体とする炭化水素の化合物であることか
ら燃えやす<、トラッキングの発生原因であるシンチレ
ーションによって起こる炭化が防止されない問題があっ
た。
However, compounds containing alicyclic epoxy resins are highly flammable because the main component is a hydrocarbon compound based on an organic compound, and there are problems in that they do not prevent carbonization caused by scintillation, which is the cause of tracking. Ta.

また、脂環式エポキシ樹脂に水酸化アルミニュウム等の
無機質の水和物を添加した配合物をコーティングする場
合には、水和物の水分子がシンチレーションの熱によっ
て分解させられ樹脂成分の炭化が防止されるものの侵食
によって加工面が露出されるため最終的にはトラッキン
グ破壊が発生させられる問題がある。
In addition, when coating a compound containing an inorganic hydrate such as aluminum hydroxide added to an alicyclic epoxy resin, the water molecules of the hydrate are decomposed by the heat of scintillation, preventing carbonization of the resin component. Since the machined surface is exposed due to erosion of the material being processed, there is a problem in that tracking failure may eventually occur.

さらにこれら脂環式エポキシ樹脂を主成分とする配合物
は、一般に加熱硬化タイプであることから硬化時の熱に
よって塗膜の粘度が低下して垂れ流れだし、塗膜が均一
な厚さにできない問題があった。
Furthermore, since these compounds based on alicyclic epoxy resins are generally heat-curable, the heat during curing reduces the viscosity of the paint film and causes it to drip, making it impossible to maintain a uniform thickness of the paint film. There was a problem.

さらに、熱収縮チューブを被覆する場合には、第3図に
示すごとく母線サポート10の幅の違いやこれに形成さ
れる溝11等により、熱収縮チューブ12の収縮率が不
均一となって母線サポート10と熱収縮チューブ12と
に隙間ができたり1、母線サポート10の角部13に亀
裂が発生させられたりして前記のように母線間の相間短
絡、地絡等を誘発する等の問題があった。
Furthermore, when covering a heat-shrinkable tube, the shrinkage rate of the heat-shrinkable tube 12 becomes uneven due to the difference in the width of the busbar support 10 and the grooves 11 formed therein, as shown in FIG. Problems such as a gap being formed between the support 10 and the heat shrink tube 12, or a crack being generated at the corner 13 of the bus bar support 10, may cause interphase short circuits, ground faults, etc. between the bus bars as described above. was there.

本発明は、上記問題を解決するため耐水性および耐トラ
ツキング性を有するガラス繊維強化積層絶縁部品を1り
ることを目的とするものである。
The object of the present invention is to provide a glass fiber reinforced laminated insulating component having water resistance and tracking resistance in order to solve the above problems.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、ガラ繊維強化積層部品の少なくとも加工面に
アルミナを主成分とする無機質被膜を形成したものであ
り、上記無機質被膜は約1.0am以下にしたものであ
る。
(Means for Solving the Problems) The present invention forms an inorganic coating mainly composed of alumina on at least the processed surface of a glass fiber-reinforced laminate component, and the inorganic coating has a thickness of about 1.0 am or less. It is something.

(作 用) ガラス繊維強化積層部品に形成された無機質被膜により
耐水性、耐電気絶縁性および機械的強度が維持され、ガ
ラス繊維強化積層部品の絶縁抵抗の低下が防止されると
ともに、相間短絡、線間短絡が防止される。また、無機
質被膜を約1.0mm以下の厚さにした場合には、長時
間使用しても亀裂が入らず耐水性、耐電気絶縁性および
機械的強度が維持される。
(Function) The inorganic coating formed on the glass fiber-reinforced laminate parts maintains water resistance, electrical insulation resistance, and mechanical strength, prevents a decrease in insulation resistance of the glass fiber-reinforced laminate parts, and prevents interphase short circuits and Line-to-line short circuits are prevented. Further, when the inorganic coating has a thickness of about 1.0 mm or less, no cracks occur even after long-term use, and water resistance, electrical insulation resistance, and mechanical strength are maintained.

(実施例) 以下本発明のガラス繊維強化積層絶縁部品の一実施例に
ついて説明する。
(Example) An example of the glass fiber reinforced laminated insulating component of the present invention will be described below.

第1図において、全体を20で示す母線サポートは、ガ
ラス繊維強化積層板を適宜の細長い幅に切断加工し、複
数枚を不飽和ポリエステル樹脂等のバインダにより接着
したものである。この母線サポート20の図示上部には
所定の間隔をおいて母線サポート用溝21.21・・・
が設けられとともに端部には固定用ねじ(図示せず)の
取付は穴22が設けられている。このようにして構成し
た母線サポート20、特に、その加工面23.24には
アルミナを主成分とする無機質被膜25が形成されてい
る。すなわち上記加工面23.24にはスプレーガン(
図示せず)により、アルコールを溶剤とするアルミナ系
無機質充填材が厚さ約1.0III11以下になるよう
に塗布され、温度が120℃で10分間以上の加熱乾燥
せしめられている。ところで、このアルミナ系無機質充
填材を塗布する場合には、その接着力は、表面粗さに関
係することから、その表面粗さとアルミナ系無機質充填
材との接着の強さを調べた。第3図は、この関係を示す
もので表面粗さが粗くなるほど接着の強さが強くなるこ
とがわかる。そこで本実施例では表面粗さを140μ以
上とした。
In FIG. 1, the busbar support, which is indicated as a whole by 20, is made by cutting glass fiber-reinforced laminates into appropriate elongated widths and bonding a plurality of sheets together with a binder such as unsaturated polyester resin. In the upper part of the busbar support 20 in the drawing, busbar support grooves 21, 21, .
A hole 22 is provided at the end for mounting a fixing screw (not shown). An inorganic coating 25 containing alumina as a main component is formed on the busbar support 20 constructed in this manner, particularly on the machined surfaces 23 and 24 thereof. In other words, a spray gun (
(not shown), an alumina-based inorganic filler using alcohol as a solvent is applied to a thickness of about 1.0III11 or less, and dried by heating at a temperature of 120° C. for 10 minutes or more. By the way, when applying this alumina-based inorganic filler, the adhesive force is related to the surface roughness, so the strength of the adhesion between the surface roughness and the alumina-based inorganic filler was investigated. FIG. 3 shows this relationship, and it can be seen that the rougher the surface roughness, the stronger the adhesive strength. Therefore, in this example, the surface roughness was set to 140 μm or more.

このようにした母線サポート20は、アルミナ系無機質
充填材が炭化水素を含まず、磁器に近い特性を有するこ
とから、耐熱温度が1,000℃以上となり、炭化しな
いことから耐トラツキング性および耐アーク性があり、
しかも耐水性および耐湿性が向上する。
Since the alumina-based inorganic filler does not contain hydrocarbons and has properties similar to those of porcelain, the bus bar support 20 thus constructed has a heat resistance temperature of 1,000°C or higher and does not carbonize, so it has tracking resistance and arc resistance. sexual,
Moreover, water resistance and moisture resistance are improved.

また、このアルミナ系無機質充填材は、水を溶媒とした
ものに比べ、アルコールであることから数分で指触乾燥
し、垂れ流れがなく均一な被膜が得られる。
Furthermore, compared to those using water as a solvent, this alumina-based inorganic filler is alcohol-based and dries to the touch within a few minutes, resulting in a uniform coating without dripping.

このアルミナ系無機質充填材の被膜の厚さを約0、 5
1001%約1.0mmおよび2.  On+11以上
のものとした3個の母線サポートを用意し、−30℃と
100℃の温度で各2時間づつ保持した気相冷熱条件で
10サイクルの繰返し試験行ったところ、被膜が約0.
 5mm5約1.0IQmのものは表面には亀裂が何等
も認められなかったが、被膜が2,0IIII11以上
のものになると表面に微細な亀裂が認められるようにな
った。この結果アルミナ系無機質充填材の被膜は、あま
り厚すぎても問題があり約]、O+am以下にするのが
適すると考えられる。
The thickness of this alumina-based inorganic filler film is approximately 0.5.
1001% approximately 1.0mm and 2. Three busbar supports with On+11 or higher were prepared, and a 10-cycle test was conducted under vapor phase cooling and heating conditions held at temperatures of -30°C and 100°C for 2 hours each. As a result, the film was approximately 0.
No cracks were observed on the surface of the 5mm5 approximately 1.0IQm film, but fine cracks were observed on the surface when the film was 2,0III11 or larger. As a result, if the film of the alumina-based inorganic filler is too thick, there is a problem, so it is thought that it is appropriate to make the film less than O+am.

この本発明による母線サポート20と従来のものとを処
理試験片により、゛吸水率(JIS  K69115.
26による)、耐アーク性(JISK  6911 5
,15による)および耐トラツキング性(IECPub
  587による)の比較試験を行った。この結果は、
下表に示す通りである。
The bus bar support 20 according to the present invention and the conventional one were evaluated for water absorption rate (JIS K69115.
26), arc resistance (JISK 6911 5)
, 15) and tracking resistance (according to IECPub
587) was conducted. This result is
As shown in the table below.

表 注 従来例A:脂環式エポキシ樹脂を主成分とする配合
物を塗布した母線サポート。
Table notes Conventional example A: Bus bar support coated with a compound containing an alicyclic epoxy resin as its main component.

従来例B:指環式エポキシ樹脂を主成分とする配合物に
水酸化アルミニュウムを添加した組成物を塗布した母線
サポート。
Conventional example B: Bus bar support coated with a composition in which aluminum hydroxide is added to a compound containing ring type epoxy resin as a main component.

この表から明らかなように本発明によるアルミナ系無機
質充填材を塗布した母線サポートは、脂環式エポキシ樹
脂を主成分とする配合物または脂環式エポキシ樹脂を主
成分とする配合物に水酸化アルミニュウムを添加した組
成物を塗布したものに比べ、水の重量増加率は少なく、
さらに耐アーク性および耐トラツキング性が相当に向上
していることが分る。
As is clear from this table, the bus bar support coated with the alumina-based inorganic filler according to the present invention is hydroxylated into a compound containing a cycloaliphatic epoxy resin as a main component or a compound containing a cycloaliphatic epoxy resin as a main component. Compared to those coated with compositions containing aluminum, the weight increase rate of water is smaller.
Furthermore, it can be seen that arc resistance and tracking resistance are considerably improved.

なお、本発明ではアルミナ系無機質充填材は、母線サポ
ートの加工面に塗布したが、母線サポートの全面にアル
ミナ系無機質充填材を塗布してもよいことも勿論である
In the present invention, the alumina-based inorganic filler is applied to the processed surface of the bus support, but it goes without saying that the alumina-based inorganic filler may be applied to the entire surface of the bus support.

〔発明の効果〕〔Effect of the invention〕

ガラス繊維強化積層部品の少なくとも加工面にアルミナ
系無機質充填材による被膜を形成したので、ガラス繊維
強化積層部品の耐水性および耐湿性が向上せしめられ、
電気絶縁に対して有害な汚損物が付若しに<<、耐電気
絶縁性が向上され、さらに耐トラツキング性も向上され
る。また、被膜を1.0mm以下とした場合には高温度
あるいは低温度での使用に際して、より亀裂の発生が少
なく長時間の使用に適する。
Since a coating of an alumina-based inorganic filler is formed on at least the processed surface of the glass fiber-reinforced laminate component, the water resistance and moisture resistance of the glass fiber-reinforced laminate component are improved.
Even if contaminants harmful to electrical insulation are removed, electrical insulation resistance is improved, and tracking resistance is also improved. Further, when the film thickness is 1.0 mm or less, cracks are less likely to occur when used at high or low temperatures, and the film is suitable for long-term use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のガラス繊維強化積層部品を示す斜視
図、第2図は、ガラス繊維強化積層部品の加工面の粗さ
と接着の強さを示す特性図、第3図は、従来のガラス繊
維強化積層部品を示す斜視図である。 10・・・母線サポート、11・・・溝、12・・・熱
収縮チューブ、13・・・角部、20・・・ガラス繊維
強化積層絶縁部品、21・・・溝、22・・・穴、23
.24・・・加工面、25・・・無機質被膜。 出願人代理人  佐  藤  −雄
Fig. 1 is a perspective view showing a glass fiber-reinforced laminate part of the present invention, Fig. 2 is a characteristic diagram showing the roughness of the machined surface and adhesive strength of the glass fiber-reinforced laminate part, and Fig. 3 is a diagram showing a conventional glass fiber-reinforced laminate part. It is a perspective view showing a glass fiber reinforced laminated component. DESCRIPTION OF SYMBOLS 10... Bus bar support, 11... Groove, 12... Heat shrinkable tube, 13... Corner part, 20... Glass fiber reinforced laminated insulation component, 21... Groove, 22... Hole , 23
.. 24... Processed surface, 25... Inorganic coating. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】 1、ガラス繊維強化積層部品の少なくとも加工面にアル
ミナを主成分とする無機質被膜を形成したことを特徴と
するガラス繊維強化積層絶縁部品。 2、前記無機質被膜は約1.mm以下にしたことを特徴
とする請求項1記載のガラス繊維強化積層絶縁部品。
[Scope of Claims] 1. A glass fiber reinforced laminated insulating part, characterized in that an inorganic coating containing alumina as a main component is formed on at least the processed surface of the glass fiber reinforced laminated part. 2. The inorganic coating has a thickness of about 1. The glass fiber reinforced laminated insulating component according to claim 1, wherein the glass fiber reinforced laminated insulating component has a thickness of less than mm.
JP7362288A 1988-03-28 1988-03-28 Glass fiber-reinforced lamination layer insulating part Pending JPH01246726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7362288A JPH01246726A (en) 1988-03-28 1988-03-28 Glass fiber-reinforced lamination layer insulating part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7362288A JPH01246726A (en) 1988-03-28 1988-03-28 Glass fiber-reinforced lamination layer insulating part

Publications (1)

Publication Number Publication Date
JPH01246726A true JPH01246726A (en) 1989-10-02

Family

ID=13523602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7362288A Pending JPH01246726A (en) 1988-03-28 1988-03-28 Glass fiber-reinforced lamination layer insulating part

Country Status (1)

Country Link
JP (1) JPH01246726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546013A (en) * 1993-03-05 1996-08-13 International Business Machines Corporation Array tester for determining contact quality and line integrity in a TFT/LCD
US6040528A (en) * 1993-10-18 2000-03-21 Fuji Electric Co., Ltd. Insulating supporting structure for high-voltage apparatus including inorganic insulating layer formed on a surface of an organic insulating structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546013A (en) * 1993-03-05 1996-08-13 International Business Machines Corporation Array tester for determining contact quality and line integrity in a TFT/LCD
US6040528A (en) * 1993-10-18 2000-03-21 Fuji Electric Co., Ltd. Insulating supporting structure for high-voltage apparatus including inorganic insulating layer formed on a surface of an organic insulating structure

Similar Documents

Publication Publication Date Title
US5225265A (en) Environmentally durable lightning strike protection materials for composite structures
US3974314A (en) Electrical insulation particularly for use in winding slots of dynamo-electric machines and method for its manufacture
US4286010A (en) Insulating mica paper and tapes thereof
US2320866A (en) Flexible insulating material
KR920012265A (en) Heat Resistant Resin Compositions, Products and Processes
WO2002076430A1 (en) Carbon nanotubes in structures and repair compositions
WO2018128368A1 (en) Insulating and heat-radiating coating composition, and insulating and heat-radiating product implemented therewith
US2222729A (en) Resin-containing composite structure
JPH058344A (en) Laminated body for protecting supporting body from flame and/or heat
US3990029A (en) Insulated windings provided with a mould releasing material
CN104927414A (en) Insulating coating used for protecting mirror plate
JPH01246726A (en) Glass fiber-reinforced lamination layer insulating part
US2995688A (en) Electrical device and dielectric material therefor
CA2836693A1 (en) High thermal conductivity composite for electric insulation, and articles thereof
US3811005A (en) Glass-mica composite structure containing dephenyl oxide b-stage resin
JP4298174B2 (en) Manufacturing method of impregnable micro mica tape mixed with accelerator
KR20190127402A (en) A electrostatic chuck comprising a protecting coating layer
US5270105A (en) Fireproof barrier system for composite structure
EP2795640A1 (en) Corrosion-resistant coating system for a dry-type transformer core
US1915969A (en) Electrical arc resistant material
RU2277199C1 (en) Method of applying isolation coating on metallic surface
US3083119A (en) Thermally stable layer insulation
RU2289061C1 (en) Method of applying insulation on metallic surface
JP2571483B2 (en) Method for forming a conductive layer on an epoxy resin insulating molded article
RU2010367C1 (en) Impregnating compound