JPH01239755A - Neutral particle energy analyzing device - Google Patents

Neutral particle energy analyzing device

Info

Publication number
JPH01239755A
JPH01239755A JP63066519A JP6651988A JPH01239755A JP H01239755 A JPH01239755 A JP H01239755A JP 63066519 A JP63066519 A JP 63066519A JP 6651988 A JP6651988 A JP 6651988A JP H01239755 A JPH01239755 A JP H01239755A
Authority
JP
Japan
Prior art keywords
magnetic field
correction
electromagnet
excitation coil
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066519A
Other languages
Japanese (ja)
Inventor
Mitsuo Kiyono
清野 満夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63066519A priority Critical patent/JPH01239755A/en
Publication of JPH01239755A publication Critical patent/JPH01239755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compensate the influence of the hysteresis of an electromagnet and to analyze the energy of neutrons highly accurately by comparing a magnetic field to measure and the magnetic field obtained by the standard current value, and feeding the correction current responding to the resultant deviation magnetic field to an exciting coil for correction. CONSTITUTION:Not only the main exciting coil 14, but also an exciting coil 15 for correction are wound on an electromagnet 13, and the magnetic field generated when a standard current responding to the injection of the maximum neutron energy to a detector 17 positioned at the maximum Raman radius is fed to the main exciting coil 14 is measured by a magnetic field measuring device 19. At the same time, a correction current responding to the deviation between the magnetic field to measure and the magnetic field obtained by the standard current is fed to the correction exciting coil 15 from a correction exciting power source 21. As a result, even though a variation of the generated magnetic field is generated by the hysteresis property of the electromagnet 13, it can be compensated by the coil 15, and the neutral particle energy can be analyzed highly accurately.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、中性粒子を中性ガスで荷電交換されて得られ
るイオンの運動量から中性粒子のエネルギーを分析する
中性粒子エネルギー分析装置の改良に係わり、特に荷電
交換されたイオンにラーマ回転運動を付与する電磁石の
ヒステリシスによる磁場変動を補正する中性粒子エネル
ギー分析装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is a method for analyzing the energy of neutral particles from the momentum of ions obtained by charge-exchanging neutral particles with a neutral gas. The present invention relates to improvements in neutral particle energy analyzers, and particularly to neutral particle energy analyzers that correct magnetic field fluctuations due to hysteresis of an electromagnet that imparts Larma rotational motion to charge-exchanged ions.

(従来の技術) 従来のこの種の分析装置は、第4図に示すようにプラズ
マ1からの中性粒子2がストリッピングセル3内におい
て中性ガスにより荷電交換されてイオン化された後、電
磁石4からの磁場によりラーマ回転運動を行わせ、その
回転運動によるイオン到達点に検出器5.・・・を設置
し、この検出器5、・・・によりイオンの運動量を検出
することにより中性粒子1のエネルギーを分析している
(Prior Art) As shown in FIG. 4, in a conventional analyzer of this type, neutral particles 2 from a plasma 1 are charge-exchanged and ionized by a neutral gas in a stripping cell 3, and then an electromagnet is used. The magnetic field from 4 causes a Rama rotational movement, and the ion arrival point due to the rotational movement is detected by the detector 5. ... are installed, and the energy of the neutral particles 1 is analyzed by detecting the momentum of ions using the detectors 5, ....

ところで、従来、荷電交換されたイオンにラーマ回転運
動を与える手段として、電磁石4に励磁コイルを巻装す
ると共に励磁電源から励磁コイルにイオンが最大ラーマ
半径RL ff1aXの回転運動を与える様な最大電流
を流し、その後、前記励磁コイルへの流入電流を徐々に
増減させて検出器5が最大出力となる所を見つけ、その
ときの検出器5の検出値から中性粒子のエネルギーを分
析している。
By the way, conventionally, as a means for imparting a Larma rotational motion to charge-exchanged ions, an excitation coil is wound around the electromagnet 4, and a maximum current is applied from an excitation power source to the excitation coil such that the ions are given a rotational motion of a maximum Larma radius RLff1aX. After that, the current flowing into the excitation coil is gradually increased or decreased to find the point where the detector 5 has the maximum output, and the energy of the neutral particles is analyzed from the detected value of the detector 5 at that time. .

(発明が解決しようとする課題) しかしながら、以上のような磁場発生手段は、電磁石4
固有の材料特性等からヒステリシス現象が生じ、第5図
に示すように同一の励磁電流を流した場合でも電磁石4
の温度あるいは電流値等に応じて発生磁場が異なり、こ
の発生磁場の相違から中性粒子エネルギーに測定誤差が
生じ高精度な測定できない問題があった。
(Problem to be Solved by the Invention) However, the above-described magnetic field generating means is limited to the electromagnet 4
A hysteresis phenomenon occurs due to inherent material properties, and as shown in Figure 5, even when the same excitation current is applied, the electromagnet 4
The generated magnetic field differs depending on the temperature or current value, etc., and this difference in the generated magnetic field causes a measurement error in the neutral particle energy, making it impossible to measure with high precision.

本発明は以上のような問題点を解決するためになされた
もので、電磁石のヒステリシスの影響を補償し、中性粒
子のエネルギーを高精度に分析しうる中性粒子エネルギ
ー分析装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a neutral particle energy analyzer that can compensate for the effects of hysteresis of an electromagnet and analyze the energy of neutral particles with high precision. With the goal.

[発明の構成] (課題を解決するための手段) 本発明による中性粒子エネルギー分析装置は、上記目的
を達成するために、中性粒子から荷電交換によって得ら
れるイオンを電磁石から磁場を与えて偏向し、この偏向
イオンから前記中性粒子のエネルギーを分析する中性粒
子エネルギー分析装置において、前記電磁石にそれぞれ
巻装された主励磁コイルおよび補正用励磁コイルと、こ
の主励磁コイルに基準電流を流したときに発生する磁場
を測定する磁場ΔP1定手投手段この磁場i’JllI
定手段によって測定された測定磁場と前記基準電流値に
よって得られるべき磁場とを比較しその偏差磁場に応じ
た補正用電流を補正用励磁コイルへ流して補正磁場を発
生する磁場補正手段とを備えたものである。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the neutral particle energy analyzer according to the present invention applies a magnetic field from an electromagnet to ions obtained from neutral particles by charge exchange. In a neutral particle energy analyzer that deflects and analyzes the energy of the neutral particles from the deflected ions, a reference current is applied to a main excitation coil and a correction excitation coil respectively wound around the electromagnet, and to the main excitation coil. Magnetic field ΔP1 constant hand pitching means for measuring the magnetic field generated when flowing this magnetic field i'JllI
and a magnetic field correction means that compares the measurement magnetic field measured by the determination means with the magnetic field to be obtained by the reference current value, and generates a correction magnetic field by flowing a correction current in accordance with the deviation magnetic field to a correction excitation coil. It is something that

(作用) 従って、本発明は以上のような手段とすることにより、
主励磁コイルに基準電流を与えたとき、電磁石のヒステ
リシスによる影響を受けて基準磁場が得られないが、磁
場測定手段によりヒステリシスの影響を受けた実際の発
生磁場を測定し、この測定磁場と前記基準電流によって
得られるべき基準磁場とを比較しその偏差磁場に応じた
補正用電流を補正用励磁コイルに流すことにより、電磁
石から所望する基準磁場を発生されて荷電交換されたイ
オンを回転運動させるものである。
(Function) Therefore, the present invention has the above-mentioned means.
When a reference current is applied to the main excitation coil, a reference magnetic field cannot be obtained due to the influence of hysteresis of the electromagnet. However, the actual generated magnetic field affected by hysteresis is measured by a magnetic field measuring means, and this measured magnetic field and the A desired reference magnetic field is generated from the electromagnet by comparing the reference magnetic field to be obtained by the reference current and flowing a correction current corresponding to the deviation magnetic field to the correction excitation coil, causing the charge-exchanged ions to rotate. It is something.

(実施例) 以下、本発明の一実施例について第1図ないし第3図を
参照して説明する。第1図は装置本体の側面図、第2図
は装置本体の平面図、第3図は本発明装置の全体構成図
である。これらの図において10は装置筐体であって、
プラズマからの中性粒子がストリッピングセル11で中
性ガスと荷電交換されてイオン化された状態で入射され
る。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a side view of the device main body, FIG. 2 is a plan view of the device main body, and FIG. 3 is an overall configuration diagram of the device of the present invention. In these figures, 10 is a device housing,
Neutral particles from the plasma undergo charge exchange with a neutral gas in the stripping cell 11, and enter the stripping cell 11 in an ionized state.

このストリッピングセル11の出側にはイオンを回転運
動させる偏向用隙間12を形成する如くその両側に電磁
軟鉄又は低炭素鋼板等の電磁石13が配置され、この電
磁石13には主励磁コイル14および補正用励磁コイル
15が巻装されている。この主励磁コイル14は大電流
の基準電流を流すコイルであり、そのため温度上昇を防
ぐ点からコイル内部にホロコンダクタ(角型中空鋼管等
)16が設けられ、これらホロコンダクタ16内に冷却
水が流通されている。一方、補正用励磁コイル15は比
較的小電流を流すために細い絶縁電線で多くの巻数によ
り巻装されている。17.・・・は電磁石13からの磁
場で偏向されるイオンの回転運動量を検出する検出器で
ある。なお、主励磁コイル14には基準励磁電源17か
ら最大ラーマ半径RL l1axに相当する位置の検出
器17に到達する最大中性粒子エネルギーに必要な磁場
を作る基準電流が供給される。
On the exit side of the stripping cell 11, electromagnets 13 made of electromagnetic soft iron or low carbon steel plate are arranged on both sides of the stripping cell 11 to form a deflection gap 12 for rotationally moving the ions. A correction excitation coil 15 is wound. This main excitation coil 14 is a coil through which a large reference current flows.Therefore, in order to prevent temperature rise, a holo-conductor (square hollow steel tube, etc.) 16 is provided inside the coil, and cooling water is provided inside these holo-conductors 16. It is being distributed. On the other hand, the correction excitation coil 15 is wound with a thin insulated wire with a large number of turns in order to flow a relatively small current. 17. ... is a detector that detects the rotational momentum of ions deflected by the magnetic field from the electromagnet 13. Note that the main excitation coil 14 is supplied with a reference current from the reference excitation power supply 17 to create a magnetic field necessary for the maximum neutral particle energy to reach the detector 17 at the position corresponding to the maximum Larma radius RL l1ax.

また、本装置においては例えば前記イオン偏向用隙間1
2に相当する部分に磁場測定器19が設けられ、この測
定器19で測定された測定磁場信号が比較演算手段20
の一方入力端に供給される。
In addition, in this device, for example, the ion deflection gap 1
A magnetic field measuring device 19 is provided at a portion corresponding to 2, and the measurement magnetic field signal measured by this measuring device 19 is sent to the comparison calculation means 20.
is supplied to one input terminal of

この比較演算手段20の他方入力端には基準励磁電源】
8から基学電流値に相応する基準磁場相当信号が入力さ
れている。この比較演算手段2oは基準励磁電源18か
らの基準磁場信号と測定磁場信号とを比較しその偏差磁
場に応じた信号を補正用磁場電源2]に与え、この補正
磁場電源21から補正用励磁コイル15へ偏差磁場相当
分の磁場を発生させるための補正用電流を供給する。
The other input terminal of this comparison calculation means 20 is connected to the reference excitation power supply]
8, a reference magnetic field equivalent signal corresponding to the basic current value is input. This comparison calculation means 2o compares the reference magnetic field signal from the reference excitation power supply 18 with the measurement magnetic field signal, and supplies a signal corresponding to the deviation magnetic field to the correction magnetic field power supply 2], and sends a signal from the correction magnetic field power supply 21 to the correction excitation coil. 15, a correction current is supplied to generate a magnetic field equivalent to the deviation magnetic field.

次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.

先ず、プラズマからの中性粒子はストリップジグセル1
1内の中性ガスにより荷電交換されてイオンとなる。こ
のとき、基準励磁電源18から主励磁コイル14に基準
電流が与えられている。その結果、前記荷電交換された
イオンは主励磁コイル14に供給した基準電流に応じた
電磁石13からの磁場を受けて180゛ラ一マ回転運動
を行い、最大ラーマ半径RLaaxに位置する検出器1
7に最大中性粒子エネルギーが入射される。
First, neutral particles from the plasma are transferred to the strip jig cell 1.
The neutral gas inside 1 undergoes charge exchange and becomes ions. At this time, a reference current is applied to the main excitation coil 14 from the reference excitation power supply 18 . As a result, the charge-exchanged ions receive a magnetic field from the electromagnet 13 according to the reference current supplied to the main excitation coil 14, and perform a 180° ram rotational movement, and the detector 1 located at the maximum ram radius RLaax
7, the maximum neutral particle energy is incident.

ところで、電磁石13からは基準電流に比例した磁場が
発生するが、電磁石13の材料特有のヒステリシスによ
りその発生磁場が変動する。そこで、この電磁石13に
よる磁場発生時、磁場測定器19でその発生磁場をΔ−
1定し、このδP1定磁場信号と基準励磁電源18によ
る最大ラーマ半径位置の検出器17に入射する最大中性
子エネルギーに必要な基準磁場信号とを比較演算手段2
0へ導入し、ここで測定磁場信号と基準磁場信号とを比
較しその偏差磁場に応じた磁場を発生させるために必要
とする補正電流を求めて補正用励磁電源21へ供給する
。この補正用励磁電源21では前記偏差磁場に応じた電
流を補正用励磁コイル15に流すことにより、主励磁コ
イル14による発生磁場と補正用励磁コイル15による
発生磁場とをトータルした磁場、つまり基準電流によっ
て発生すべき基準磁場を発生することができる。
Incidentally, the electromagnet 13 generates a magnetic field proportional to the reference current, but the generated magnetic field fluctuates due to hysteresis specific to the material of the electromagnet 13. Therefore, when the electromagnet 13 generates a magnetic field, the magnetic field measuring device 19 measures the generated magnetic field by Δ-
1, and compares this δP1 constant magnetic field signal with a reference magnetic field signal required for the maximum neutron energy incident on the detector 17 at the maximum Larma radius position by the reference excitation power source 18.
Here, the measurement magnetic field signal and the reference magnetic field signal are compared, and a correction current required to generate a magnetic field corresponding to the deviation magnetic field is determined and supplied to the correction excitation power supply 21. In this correction excitation power supply 21, by flowing a current corresponding to the deviation magnetic field to the correction excitation coil 15, a magnetic field that is the total of the magnetic field generated by the main excitation coil 14 and the magnetic field generated by the correction excitation coil 15, that is, a reference current The reference magnetic field to be generated can be generated by

従って、以上のような実施例の構成によれば、電磁石1
3に主励磁コイル14のほかに補正用励磁コイル15を
巻装し、かつ、前記主励磁コイル14に最大ラーマ半径
に位置する検出器17へ最大中性子エネルギーを入射す
るに相当する基準電流を与えたときに発生する磁場を磁
場測定器19で測定するとともに、この測定磁場と基準
電流により得られる磁場との偏差に応じた補正電流を補
正用励磁電源21から補正用励磁コイル15に供給する
ので、電磁石13のヒステリシス特性により発生磁場に
変動が生じても、その変動分に相当する磁場を前記補正
用励磁コイル15により発生させて補償でき、中性粒子
エネルギーを高精度に分析できる。また、補正用励磁コ
イル15には細い絶縁電線で多数の巻数を巻装している
ので、小さな電流を流して磁場変動を確実に補償できる
Therefore, according to the configuration of the embodiment as described above, the electromagnet 1
In addition to the main excitation coil 14, a correction excitation coil 15 is wound around the main excitation coil 14, and a reference current corresponding to the maximum neutron energy is applied to the detector 17 located at the maximum Larma radius is applied to the main excitation coil 14. A magnetic field measuring device 19 measures the magnetic field generated when the current is generated, and a correction current is supplied from the correction excitation power source 21 to the correction excitation coil 15 in accordance with the deviation between the measured magnetic field and the magnetic field obtained by the reference current. Even if the generated magnetic field fluctuates due to the hysteresis characteristic of the electromagnet 13, it can be compensated for by generating a magnetic field corresponding to the fluctuation by the correction excitation coil 15, and the neutral particle energy can be analyzed with high precision. Furthermore, since the correction excitation coil 15 is wound with a large number of turns of thin insulated wire, it is possible to reliably compensate for magnetic field fluctuations by passing a small current.

また、以上のように基準電流相当分の磁場と実測磁場と
の偏差に応じた磁場を発生させて補正するので、例えば
周囲温度の変化や経年変化により磁場変動があっても容
易にエネルギー校正を行うことができる。
In addition, as described above, since a magnetic field is generated and corrected according to the deviation between the magnetic field equivalent to the reference current and the measured magnetic field, it is easy to calibrate the energy even if the magnetic field fluctuates due to changes in ambient temperature or changes over time, for example. It can be carried out.

なお、上記実施例では磁場hp+定器19を用いて発生
磁場を測定するようにしたが、例えば磁束検知コイルを
用い、その磁束変化から発生磁場を測定してもよい。そ
の他、本発明はその要旨を逸脱しない範囲で種々変形し
て実施できる。
In the above embodiment, the generated magnetic field is measured using the magnetic field hp + constant device 19, but the generated magnetic field may also be measured from changes in the magnetic flux using, for example, a magnetic flux detection coil. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上詳記したように本発明によれば、主励磁コイルとは
別に補正用励磁コイルを設け、実測磁場と主励磁コイル
へ流す基準電流に相当する基準磁場との偏差に応じた電
流を補正用コイルに流すようにしたので、電磁石のヒス
テリシスによる磁場の変動を確実に補償でき、中性粒子
エネルギーを高精度に分析できる中性粒子エネルギー分
析装置を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, a correction excitation coil is provided separately from the main excitation coil, and the correction excitation coil is adjusted according to the deviation between the actually measured magnetic field and the reference magnetic field corresponding to the reference current flowing to the main excitation coil. Since the current is passed through the correction coil, it is possible to reliably compensate for fluctuations in the magnetic field due to hysteresis of the electromagnet, and it is possible to provide a neutral particle energy analyzer that can analyze neutral particle energy with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明に係わる中性粒子エネルギ
ー分析装置の一実施例を説明するために示したもので、
第1図は装置本体を一部断面にして示す内部構成の側面
的な模式図、第2図は装置本体を一部断面にして示す内
部構成の平面的な模式図、第3図は装置全体の構成図、
第4図は一般的に使用されている中性粒子エネルギー分
析装置の基本的な構成図、第5図は荷電交換されたイオ
ンを回転運動させる電磁石のヒステリシス特性を示す図
である。 1・・・プラズマ、2・・・中性粒子、11・・・スト
リッピングセル、13・・・電磁石、14・・・主励磁
コイル、15・・・補正用励磁コイル、17・・・検出
器、18・・・基準励磁電源、19・・・磁場測定器、
20・・・比較演算手段、21・・・補正用励磁電源。 出願人代理人 弁理士 鈴江武彦 Wk1図 第2図
Figures 1 to 3 are shown to explain one embodiment of the neutral particle energy analyzer according to the present invention.
Fig. 1 is a schematic side view of the internal structure of the main body of the device, partially cut away, Fig. 2 is a schematic plan view of the internal structure of the main body of the device, partially shown in cross section, and Fig. 3 is the entire device. Configuration diagram,
FIG. 4 is a basic configuration diagram of a commonly used neutral particle energy analyzer, and FIG. 5 is a diagram showing the hysteresis characteristics of an electromagnet that rotates charge-exchanged ions. DESCRIPTION OF SYMBOLS 1... Plasma, 2... Neutral particle, 11... Stripping cell, 13... Electromagnet, 14... Main excitation coil, 15... Excitation coil for correction, 17... Detection 18... Reference excitation power supply, 19... Magnetic field measuring device,
20... Comparison calculation means, 21... Correction excitation power supply. Applicant's agent Patent attorney Takehiko Suzue Wk1 Figure 2

Claims (1)

【特許請求の範囲】 中性粒子から荷電交換によって得られるイオンを電磁石
から磁場を与えて偏向し、この偏向イオンから前記中性
粒子のエネルギーを分析する中性粒子エネルギー分析装
置において、 前記電磁石にそれぞれ巻装された主励磁コイルおよび補
正用励磁コイルと、この主励磁コイルに基準電流を流し
たときに発生する磁場を測定する磁場測定手段と、この
磁場測定手段によって測定された測定磁場と前記基準電
流によって得られるべき磁場とを比較しその偏差磁場に
応じた補正用電流を前記補正用励磁コイルへ流して補正
磁場を発生する磁場補正手段とを備えたことを特徴とす
る中性粒子エネルギー分析装置。
[Scope of Claim] A neutral particle energy analyzer that deflects ions obtained from neutral particles by charge exchange by applying a magnetic field from an electromagnet, and analyzes the energy of the neutral particles from the deflected ions, the electromagnet comprising: A main excitation coil and a correction excitation coil wound around each other, a magnetic field measurement means for measuring a magnetic field generated when a reference current is passed through the main excitation coil, a measurement magnetic field measured by the magnetic field measurement means, and a magnetic field measured by the magnetic field measurement means. Neutral particle energy comprising: magnetic field correction means that compares the magnetic field to be obtained by a reference current and flows a correction current corresponding to the deviation magnetic field to the correction excitation coil to generate a correction magnetic field. Analysis equipment.
JP63066519A 1988-03-18 1988-03-18 Neutral particle energy analyzing device Pending JPH01239755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066519A JPH01239755A (en) 1988-03-18 1988-03-18 Neutral particle energy analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066519A JPH01239755A (en) 1988-03-18 1988-03-18 Neutral particle energy analyzing device

Publications (1)

Publication Number Publication Date
JPH01239755A true JPH01239755A (en) 1989-09-25

Family

ID=13318193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066519A Pending JPH01239755A (en) 1988-03-18 1988-03-18 Neutral particle energy analyzing device

Country Status (1)

Country Link
JP (1) JPH01239755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636741A (en) * 1992-07-10 1994-02-10 Shimadzu Corp Magnetic field type mass spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636741A (en) * 1992-07-10 1994-02-10 Shimadzu Corp Magnetic field type mass spectrometer

Similar Documents

Publication Publication Date Title
JP2008508511A (en) Ion mobility spectrometer with corona discharge ionization element
US4667157A (en) Linear Hall effect oxygen sensor with auxiliary coil magnetic field balancing
Fouquet et al. Thermal energy He3 spin-echo spectrometer for ultrahigh resolution surface dynamics measurements
Holmes Electron flow through transverse magnetic fields in magnetic multipole arc discharges
Swartz et al. Observation of target electron momentum effects in single-arm Møller polarimetry
Pierce et al. Electron spin polarization analyzers for use with synchrotron radiation
US5565773A (en) Arrangement of excitation and detection heads for detecting the magnetic properties of an object
Baldini et al. Gas distribution and monitoring for the drift chamber of the MEG II experiment
JPH01239755A (en) Neutral particle energy analyzing device
US7161352B2 (en) Beam current measuring device and apparatus using the same
US4193296A (en) Method and an instrument for the measurement of the flow rate of gases based on ionization
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
US3479504A (en) Mass spectrometer control system utilizing auxillary mass spectrometer as a reference standard
Wolff-Fabris et al. High accuracy measurements of magnetic field integrals for the European XFEL undulator systems
Demers et al. Heavy ion beam probe advances from the first installation of the diagnostic on an RFP
Arpaia et al. On-field monitoring of the magnetic axis misalignment in multi-coils solenoids
JP4822055B2 (en) Mass spectrometer for ion implantation equipment
US2969462A (en) Mass spectrometry
JP4368698B2 (en) Sample analyzer and method thereof
Olsen et al. A simple beam-energy measurer for heavy ions
Tchórz et al. Capabilities of Thomson parabola spectrometer in various laser-plasma-and laser-fusion-related experiments
JP3465221B2 (en) Ion implanter
Rout et al. A magnetic spectrograph for angular distribution measurements
JP2001099815A (en) Apparatus for analyzing charged particle beam magnetic moment
Lowell Investigation of pinning sites in superconductors by means of alternating currents. ii. experiments