JPH01238171A - Gate-insulated bipolar transistor - Google Patents

Gate-insulated bipolar transistor

Info

Publication number
JPH01238171A
JPH01238171A JP6542488A JP6542488A JPH01238171A JP H01238171 A JPH01238171 A JP H01238171A JP 6542488 A JP6542488 A JP 6542488A JP 6542488 A JP6542488 A JP 6542488A JP H01238171 A JPH01238171 A JP H01238171A
Authority
JP
Japan
Prior art keywords
layer
channel
drain region
source
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6542488A
Other languages
Japanese (ja)
Inventor
Shunji Miura
俊二 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6542488A priority Critical patent/JPH01238171A/en
Publication of JPH01238171A publication Critical patent/JPH01238171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

PURPOSE:To prevent a latching effect without a diffusion potential between a source layer and a channel layer being exceeded by the potential change under a source layer, by collecting carrier to be injected from a drain region by one conductivity type layer in the drain region under the channel layer. CONSTITUTION:The same conductivity type P<+> type collector layer 32 as that of a channel forming layer is formed with substantially the same width in the N<-> type layer 2 of a drain region under the P-type layer 3 of a channel layer, and connected by a P<+> type layer 31 to the layer 3 and a source electrode. Part of carrier (hole) 11 injected from a P<+> type layer 1 to a drain region 2 is collected to the layer 32 of a collector layer, and the number of holes arriving at the layer 3 of an N<+> type layer 4 is reduced. An important point to design an IGBT is of an interval W of the region 2 between the layers 32 for collecting the carrier. If the interval is excessively narrow, resistance is increased against the carrier (electrons) injected from a source layer 4 designated by a solid line 12, thereby causing a voltage drop between a source electrode 7 and a drain electrode 8 to increase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、バイポーラトランジスタとそれにベース電流
を供給するMO3電界効果トランジスタ(以下MO3F
ET)とが同−半導体素体内に形成されるゲート絶縁型
バイポーラトランジスタ(以下IGBT)に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a bipolar transistor and an MO3 field effect transistor (hereinafter referred to as MO3F) that supplies a base current to the bipolar transistor.
The present invention relates to an insulated gate bipolar transistor (hereinafter referred to as IGBT) formed in the same semiconductor body.

〔従来の技術〕[Conventional technology]

近年、半導体素子分野において、PN接合を中心にした
バイポーラ形が主体であったが、MO3技術の向上によ
り電界効果形が多(使用されるようになった。特に電力
用トランジスタ分野において、従来のバイポーラトラン
ジスタに代わりMOSFETが多用されつつある。しか
し高耐圧用分野ではMOSFETは導通状態での電圧降
下が大きいことから、使用することが問題であった。こ
の問題に対して、構造上は縦型MOS F ETのドレ
イン領域にドレイン領域と反対の導電形を有する領域を
形成したI GBTが開発された。IGBTは、第2図
に示すように基板lの上に高不純物濃度のN゛層21を
介して低不純物濃度のN−層・2を形成し、このN−層
2の表面部に選択的に2層3を、さらにこの表面部に選
択的にソース領域N0層4を形成し、2層3のN−層2
とN0層4で挟まれた表面令!!域をチャネル形成領域
として、この上にゲート酸化膜5を介してゲート電極6
を形成する。そして、2層3のゲート電極6より遠い側
に形成された深いP゛層31とN′″層4にまたがって
ソース電極7を、またP゛層1ドレインを橿8を接触さ
せたものである。ゲート電極6の上は窒化膜51で覆わ
れている。このI GBTにおいては、導通状態におい
て、P“層1からドレイン領域2にキャリアの注入を起
こさせることにより、ドレイン領域2の伝導度変調を起
こさせて電圧降下を小さくする。
In recent years, in the field of semiconductor devices, bipolar types centered on PN junctions have been the main type, but with improvements in MO3 technology, field effect types have come to be used more frequently.Particularly in the field of power transistors, MOSFETs are increasingly being used in place of bipolar transistors.However, in the field of high-voltage applications, MOSFETs have a problem in their use because they have a large voltage drop in the conductive state.To solve this problem, vertical type An IGBT has been developed in which a region having a conductivity type opposite to that of the drain region is formed in the drain region of a MOSFET.As shown in FIG. forming an N-layer 2 with a low impurity concentration through the N-layer 2, selectively forming a 2-layer 3 on the surface of this N-layer 2, and further selectively forming a source region N0 layer 4 on this surface; 2 layer 3 N- layer 2
The surface order sandwiched between and N0 layer 4! ! This region is used as a channel formation region, and a gate electrode 6 is formed thereon via a gate oxide film 5.
form. Then, the source electrode 7 is made to straddle the deep P layer 31 and the N'' layer 4 formed on the side far from the gate electrode 6 of the second layer 3, and the drain of the P layer 1 is brought into contact with the edge 8. The top of the gate electrode 6 is covered with a nitride film 51. In this IGBT, conduction in the drain region 2 is improved by injecting carriers from the P" layer 1 into the drain region 2 in a conductive state. This reduces the voltage drop by causing frequency modulation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、注入キャリア層1からの注入キャリアが多くな
ると、ソース領域N4層4の下のチャネル層3に破線1
1で示すこの注入キャリアが到達して、N“層4の下を
流れソース電極7に到達するが、N°層4の下の2層3
の横方向抵抗と、到達したキャリア (正孔)ならびに
2層3およびN−層2で熱発生した正札による電流との
積によりN0層4の下に横方向の電位差が生じ、この電
位差がN0層4と2層3の間の拡散電位を超えると、ソ
ース層のN゛層4らキャリア (電子)の注入が起こり
、N′″層4,2層3.N〜層2およびP゛層1らなる
サイリスタがゲート電極6に関係なく導通するラッチン
グ効果を起こし、トランジスタ効果を失うことになる。
However, when the number of injected carriers from the injected carrier layer 1 increases, the broken line 1 appears in the channel layer 3 below the source region N4 layer 4.
This injected carrier, denoted by 1, reaches and flows under the N'' layer 4 and reaches the source electrode 7, but the two layers 3 below the N° layer 4 reach the source electrode 7.
A lateral potential difference is generated under the N0 layer 4 due to the product of the lateral resistance of the N0 layer 4 and the current due to the arrived carriers (holes) and the heat generated in the 2nd layer 3 and the N- layer 2, and this potential difference becomes the N0 When the diffusion potential between layer 4 and layer 23 is exceeded, carriers (electrons) are injected from N' layer 4 of the source layer, and N''' layer 4, layer 2 3. A latching effect occurs in which the thyristor consisting of 1 becomes conductive regardless of the gate electrode 6, and the transistor effect is lost.

21層1とN−層2の間のN″″層21はこれを防止す
るためのもので、P゛層1らN−層2へのキャリアの注
入を小さくする。そのほか、N′″層4の下の2層3の
横方向抵抗を低くすることによりラッチング効果の防止
対策が行われている。
The N″″ layer 21 between the 21 layer 1 and the N− layer 2 is for preventing this, and reduces the injection of carriers from the P′ layer 1 to the N− layer 2. In addition, measures to prevent the latching effect are taken by lowering the lateral resistance of the two layers 3 below the N'' layer 4.

しかし、N0層4の下に到達するキャリア (正孔)数
を制御することが困難であり、またドレイン度領域での
伝導度変調効果も小さくなり、電流密度も小さくなるこ
とから、所期の電流と電圧降下を達成するにはチップ面
積を大きくしなければならなかった。
However, it is difficult to control the number of carriers (holes) that reach the bottom of the N0 layer 4, and the conductivity modulation effect in the drain region also decreases, resulting in a decrease in current density. To achieve the current and voltage drop, the chip area had to be increased.

本発明の課題は、このような欠点を除去し、ラッチング
効果を防止すると共に小さい面積で所期の電流と電圧降
下を達成するI GBTを提供することにある。
An object of the present invention is to provide an IGBT that eliminates such drawbacks, prevents latching effects, and achieves desired current and voltage drop in a small area.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明はドレイン電極に接
触する第−導電形の半導体層と、その上に設けられる第
二導電形の半導体層からなるドレイン領域と、そのドレ
イン領域のうちドレイン電極側と反対側の表面の一部に
形成された第−導電形のチャネル層と、そのチャネル層
の表面に端部にチャネル形成領域を残して形成された第
二導電形のソース層と、チャネル形成領域上にゲート絶
縁膜を介して形成されたゲート電極と、ソース層および
その間に介在するチャネル層に接触するソース電極を有
するI GETにおいて、チャネル層の下のドレイン領
域中にチャネル層、とほぼ同じ広がりをもつ第−導電形
の層が形成され、その層とソース電極の接触する表面と
が高不純物濃度の第−導電形の層により接続されたもの
とする。
In order to solve the above problems, the present invention provides a drain region consisting of a semiconductor layer of a first conductivity type in contact with a drain electrode, a semiconductor layer of a second conductivity type provided thereon, and a drain region of the drain region. a channel layer of a second conductivity type formed on a part of the surface opposite to the electrode side; a source layer of a second conductivity type formed on the surface of the channel layer with a channel formation region left at the end; In an IGET having a gate electrode formed on a channel forming region via a gate insulating film, a source electrode contacting a source layer and a channel layer interposed therebetween, a channel layer, a channel layer in a drain region below the channel layer, It is assumed that a layer of the first conductivity type having approximately the same extent as is formed, and that this layer and the surface in contact with the source electrode are connected by a layer of the first conductivity type with a high impurity concentration.

〔作用〕[Effect]

チャネル層の下のドレイン領域中にある第−導電形の層
がドレイン領域より注入するキャリアを集めることによ
り、その上にあるチャネル層のソース層の下の領域の到
達するキャリアの数が減少し、ソース層からドレイン領
域へのキャリアの注入がゲート信号により形成されるチ
ャネル領域を通したもののみとなる。その結果、ソース
層の下の電位変化がソース層とチャネル層間での拡散電
位を越えることがなく、ラッチング効果が防止される。
The layer of the second conductivity type in the drain region below the channel layer collects carriers injected from the drain region, reducing the number of carriers reaching the region below the source layer of the channel layer above it. , carriers are injected from the source layer to the drain region only through the channel region formed by the gate signal. As a result, the potential change under the source layer does not exceed the diffusion potential between the source layer and the channel layer, and the latching effect is prevented.

〔実施例〕〔Example〕

第1図は本発明の一実施例の断面を示し、第2図と共通
の部分に同一の符号が付されている。図から明らかなよ
うに、チャネル層の2層3の下のドレイン領域のN−層
2の中にチャネル形成層と同じ導電形のP“コレクタJ
I32がほぼ同じ幅をもって形成されており、20層3
1により2層3およびソース電極に接続されている。ド
レイン領域2にP゛層1ら注入されたキャリア (正孔
)11の一部はコレクタ層のP゛層32に収集され、N
4層4の下の2層3に到達する正孔の数が減少する。
FIG. 1 shows a cross section of an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. As is clear from the figure, there is a P" collector J of the same conductivity type as the channel forming layer in the N- layer 2 of the drain region under the second layer 3 of the channel layer.
I32 are formed with almost the same width, and 20 layers 3
1 is connected to the second layer 3 and the source electrode. A part of the carriers (holes) 11 injected into the drain region 2 from the P layer 1 are collected in the P layer 32 of the collector layer, and N
The number of holes reaching the second layer 3 below the fourth layer 4 is reduced.

第3図fal〜ff)は第1図に示したI GBTの具
体的を製造工程を示す、まずN型基板2の一面に拡散等
によりP゛層1形成し、他面にP゛コレクタ層32を部
分的に拡散等により形成する (図aL次にエビタキソ
ヤル法等によりP゛層32を覆ってドレイン領域の一部
となるN−層21を形成する(図b)、このN−121
のソース電極を形成すべき部分に拡散等によりP゛接続
層31を形成する (図c)、さらにチャネル層となる
2層部分3をイオン注入法等により形成する (図d)
、この2層3の中にソース領域となるN゛層4部分的に
形成し、表面をゲート絶縁膜5等により被覆する。(図
eLこの絶縁膜5の上に、多結晶シリコン層のパターン
ニングによってゲート電極6をチャネル層3のチャネル
形成領域をはさんでソース領域4とドレイン領域2にま
たがって形成し、P′″層4とN”113の一部にまた
がってソース電極7を接触させたのちSiJ、等の表面
保護膜51により被覆し、最後にドレイン領域2の下の
P゛層1ドレイン電極を形成する (図f)。
Figures 3 (fal to ff) show the specific manufacturing process of the IGBT shown in Figure 1. First, a P layer 1 is formed on one surface of the N-type substrate 2 by diffusion, etc., and a P collector layer is formed on the other surface. 32 is partially formed by diffusion, etc. (Figure aL) Next, the N- layer 21, which covers the P layer 32 and becomes a part of the drain region, is formed by the Ebitaki-Soyal method (Figure b).
A P connection layer 31 is formed by diffusion or the like in the area where the source electrode is to be formed (Figure c), and a second layer portion 3 that will become the channel layer is further formed by ion implantation or the like (Figure d).
A N layer 4 serving as a source region is partially formed in the two layers 3, and the surface is covered with a gate insulating film 5 or the like. (Figure eL) On this insulating film 5, a gate electrode 6 is formed by patterning a polycrystalline silicon layer, sandwiching the channel formation region of the channel layer 3 and spanning the source region 4 and drain region 2, and After contacting the source electrode 7 over part of the layer 4 and N'' 113, it is covered with a surface protective film 51 such as SiJ, and finally, a drain electrode of the P layer 1 under the drain region 2 is formed. Figure f).

第1図に示したようなI GBTを設計する上での重要
な点は、キャリアを集めるためのコレクタ1i32間の
ドレイン領域2の間隔Wであり、この間隔が狭すぎると
実線12で示すソース層4から注入されたキャリア (
電子)に対して抵抗が大きくなり、ソース電極7とドレ
イン電極8の間の電圧降下を大きくする原因となる。従
って、ドレイン領域2でのソース層4からの注入キャリ
ア (電子)に対する抵抗と、ドレイン領域2から注入
されるキャリア (正孔)のチャネル層3に到達する数
との関係からWを最適な値にしなければならない。
An important point in designing an IGBT as shown in FIG. 1 is the distance W between the drain regions 2 between the collectors 1i32 for collecting carriers; if this distance is too narrow, the source Carriers injected from layer 4 (
This increases the resistance to electrons), which causes an increase in the voltage drop between the source electrode 7 and the drain electrode 8. Therefore, from the relationship between the resistance of the drain region 2 to carriers (electrons) injected from the source layer 4 and the number of carriers (holes) injected from the drain region 2 that reach the channel layer 3, set W to an optimal value. must be done.

このことは、ドレイン領域2への29層1からのキャリ
アの注入効率、ドレイン領域中での注入されたキャリア
の輸送効率等からP゛層32に集められるキャリア濃度
および2層3に到達するキャリア数を計真し、ソース層
のN′″層4の下のチャネル層3の横方向抵抗を算出す
ることにより可能になる。その他の設計は一部の縦型M
O3FETと同様に行うことが可能である。
This can be determined from the carrier injection efficiency from the 29 layer 1 into the drain region 2, the transport efficiency of the injected carriers in the drain region, etc., and the carrier concentration collected in the P' layer 32 and the carriers reaching the 29 layer 3. This is possible by calculating the lateral resistance of the channel layer 3 under the N''' layer 4 of the source layer.
This can be done in the same way as O3FET.

第4図は本発明に基づ<IGBTIGのN−基板2にI
C20を形成した実施例で、本発明により■GBTに形
成されるP0コレクタ層32およびP1接続層31が、
IC20の埋込層22および分離層23と同一工程で作
成可能であることを示す。
FIG. 4 shows an IGBTIG N-board 2 based on the present invention.
In the example in which C20 is formed, the P0 collector layer 32 and the P1 connection layer 31 formed in the GBT according to the present invention are
This shows that it can be created in the same process as the buried layer 22 and separation layer 23 of the IC 20.

以上の説明はNチャネルI GBTについて行ったが、
PチャネルI GBTにおいても全く同様に本発明が通
用できることはいうまでもない。
The above explanation was about N-channel IGBT, but
It goes without saying that the present invention is equally applicable to P-channel IGBTs.

〔発明の効果〕 本発明によれば、ドレイン領域からの注入キャリアをチ
ャネル層下に形成されソース電極に接続されるチャネル
層と同一導電形のコレクタ層に収集することにより、ソ
ース層直下の低不純物濃度のチャネル層に到達するキャ
リアを少なくして横方向抵抗による電位差を低くし、ラ
ッチング効果を起こしに(くすることができる、ゲート
信号によりチャネル層に形成されるチャネルを通してド
レイン領域に注入されるキャリアに対しての抵抗は増大
するが、その他の厚いドレイン領域での電圧降下はラッ
チング効果が防止されることからドレイン電極から注入
されるキャリアの密度を大きくできるため非常に小さく
することが可能であり、総合的には従来のI GBTに
比較して電流密度を高く、また電圧降下を小さくするこ
とができる。
[Effects of the Invention] According to the present invention, carriers injected from the drain region are collected in the collector layer formed under the channel layer and connected to the source electrode and having the same conductivity type as the channel layer, thereby reducing the low voltage directly under the source layer. Fewer carriers reach the channel layer with impurity concentration, lowering the potential difference due to lateral resistance and preventing the latching effect. However, the voltage drop in other thick drain regions can be made very small because the latching effect is prevented and the density of carriers injected from the drain electrode can be increased. Overall, the current density can be increased and the voltage drop can be reduced compared to conventional IGBTs.

そのため、所期の電流、電圧降下に対してチップ面積が
減少し、経済的効果は、多少製造工程が増加するにも拘
らず大きいものがある。その製造工程の増加も集積回路
と同一チップに形成する場合には解消され、制御回路の
ついた電力用素子として本発明によるI GBTは極め
て有効である。
As a result, the chip area is reduced relative to the desired current and voltage drop, and the economical effects are large, although the manufacturing process is increased somewhat. The increase in manufacturing steps can be eliminated if the IGBT is formed on the same chip as the integrated circuit, and the IGBT according to the present invention is extremely effective as a power device equipped with a control circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のI GBTの要部断面図、
第2図は従来のI GBTの要部断面図、第3図(al
〜(flは本発明の一実施例のI GBTの製造工程を
順次示す断面図、第4図は本発明の他の実施例を示す断
面図である。 1:P+層、2:N−ドレイン領域、3:チャネル層、
31:P’接続層、32:P”コレクタ層、4:N゛ソ
ース層5:ゲート絶縁膜、6:ゲート電極、7;ソース
電極、8ニドレイン電極。 第1図 第2図 −〜〜1 第3図 m      囮 第4図
FIG. 1 is a sectional view of a main part of an IGBT according to an embodiment of the present invention.
Figure 2 is a sectional view of the main parts of a conventional IGBT, and Figure 3 (al.
~(fl is a cross-sectional view sequentially showing the manufacturing process of an IGBT according to an embodiment of the present invention, and FIG. 4 is a cross-sectional view showing another embodiment of the present invention. 1: P+ layer, 2: N- drain Region, 3: Channel layer,
31: P' connection layer, 32: P" collector layer, 4: N' source layer 5: gate insulating film, 6: gate electrode, 7: source electrode, 8 drain electrode. Figure 1 Figure 2 - ~ ~ 1 Figure 3 m Decoy Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)ドレイン電極に接触する第一導電形の半導体層と、
その上に設けられる第二導電形の半導体層からなるドレ
イン領域と、該ドレイン領域のうちドレイン電極側と反
対側の表面の一部に形成された第一導電形のチャネル層
と、該チャネル層の表面に端部にチャネル形成領域を残
して形成された第二導電形のソース層と、前記チャネル
形成領域上にゲート絶縁膜を介して形成されたゲート電
極と、前記ソース層およびその間に介在する前記チャネ
ル層に接触するソース電極を有するものにおいて、チャ
ネル層の下のドレイン領域中に該チャネル層とほぼ同じ
広がりをもつ第一導電形の層が形成され、該層とソース
電極の接触する表面とが高不純物濃度の第一導電形の層
により接続されたことを特徴とするゲート絶縁型バイポ
ーラトランジスタ。
1) a first conductivity type semiconductor layer in contact with the drain electrode;
a drain region formed of a second conductivity type semiconductor layer provided thereon; a first conductivity type channel layer formed on a part of the surface of the drain region on the side opposite to the drain electrode side; and the channel layer. a source layer of a second conductivity type formed on the surface with a channel formation region left at the end; a gate electrode formed on the channel formation region with a gate insulating film interposed therebetween; In the device having a source electrode in contact with the channel layer, a layer of the first conductivity type having approximately the same extent as the channel layer is formed in the drain region under the channel layer, and the layer and the source electrode are in contact with each other. A gate-insulated bipolar transistor characterized in that the surface thereof is connected to a first conductivity type layer with a high impurity concentration.
JP6542488A 1988-03-18 1988-03-18 Gate-insulated bipolar transistor Pending JPH01238171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6542488A JPH01238171A (en) 1988-03-18 1988-03-18 Gate-insulated bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6542488A JPH01238171A (en) 1988-03-18 1988-03-18 Gate-insulated bipolar transistor

Publications (1)

Publication Number Publication Date
JPH01238171A true JPH01238171A (en) 1989-09-22

Family

ID=13286672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6542488A Pending JPH01238171A (en) 1988-03-18 1988-03-18 Gate-insulated bipolar transistor

Country Status (1)

Country Link
JP (1) JPH01238171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616369A1 (en) * 1993-02-16 1994-09-21 Fuji Electric Co., Ltd. MOS-type semiconductor device
EP0822600A1 (en) * 1996-07-29 1998-02-04 Motorola, Inc. Lateral gate, vertical drift region transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616369A1 (en) * 1993-02-16 1994-09-21 Fuji Electric Co., Ltd. MOS-type semiconductor device
US5397905A (en) * 1993-02-16 1995-03-14 Fuji Electric Co., Ltd. Power semiconductor device having an insulated gate field effect transistor and a bipolar transistor
EP0822600A1 (en) * 1996-07-29 1998-02-04 Motorola, Inc. Lateral gate, vertical drift region transistor

Similar Documents

Publication Publication Date Title
JP3911566B2 (en) MOS type semiconductor device
US5162966A (en) Semiconductor device having a surge protecting element
EP0450306B1 (en) High-speed diode and method for producing the same
JP2988871B2 (en) Trench gate power MOSFET
US8039346B2 (en) Insulated gate silicon carbide semiconductor device and method for manufacturing the same
KR920005513B1 (en) Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method
US20020100935A1 (en) High breakdown voltage semiconductor device
JPH0427712B2 (en)
US5777367A (en) Integrated structure active clamp for the protection of power devices against overvoltages
JP3467381B2 (en) Silicon carbide diode
US5278443A (en) Composite semiconductor device with Schottky and pn junctions
JPH04251983A (en) Semiconductor device
CN111512448B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JPH04283968A (en) Insulating gate type bipolar transistor
US5079607A (en) Mos type semiconductor device
JP5001494B2 (en) Field effect transistor formed on an insulating substrate
JP4431761B2 (en) MOS type semiconductor device
JPS6180860A (en) Power mosfet
JPH08148675A (en) Semiconductor device
JPS6180858A (en) Power mosfet
JP2000164859A (en) Semiconductor device and method for manufacturing the same
JPH0654796B2 (en) Composite semiconductor device
JPH01238171A (en) Gate-insulated bipolar transistor
JP2513640B2 (en) Conduction modulation type MOSFET
JPH09148566A (en) Mos type semiconductor element