JPH01232260A - Flow analysis of chloride ion in caustic alkali - Google Patents

Flow analysis of chloride ion in caustic alkali

Info

Publication number
JPH01232260A
JPH01232260A JP63059096A JP5909688A JPH01232260A JP H01232260 A JPH01232260 A JP H01232260A JP 63059096 A JP63059096 A JP 63059096A JP 5909688 A JP5909688 A JP 5909688A JP H01232260 A JPH01232260 A JP H01232260A
Authority
JP
Japan
Prior art keywords
chloride ions
exchange resin
anion exchange
column
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63059096A
Other languages
Japanese (ja)
Other versions
JPH0721485B2 (en
Inventor
Shigeo Asada
茂雄 麻田
Masahiko Oosumi
雅彦 大炭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP63059096A priority Critical patent/JPH0721485B2/en
Publication of JPH01232260A publication Critical patent/JPH01232260A/en
Publication of JPH0721485B2 publication Critical patent/JPH0721485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To easily or exactly measure the concn. of trace chloride ion in a sample alkaline soln. by executing the neutralization reaction of the above- mentioned soln. by an H type anion exchange resin, the adsorption of the trace chloride ions by an anion exchange resin and the detection and determination of the chloride ions by a halide ion selective electrode. CONSTITUTION:The sample soln. is passed through the H type anion exchange resin-packed column and is subjected to the neutralization treatment; thereafter, the soln. is passed through the anion exchange resin-packed preenriching column where the trace chloride ions are adsorbed to the resin. The soln. contg. the chloride ions eluted by the eluate is then passed through the anion exchange resin-packed column. The separated chloride ions are detected and determined by using the halide ion selective electrode. A series of the operations are carried out within the system of the flow injection analysis. The analysis operations are thereby simplified and speeded up and the problem of stain in the pretreatment operation is solved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は濃厚な高純度苛性アルカリ溶液中の微量塩化物
イオンを測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for determining trace chloride ions in concentrated high purity caustic solutions.

(従来技術と解決すべき課題) 近年電子産業のIC製造工程や原子炉1次冷却水の浄化
装置等に使用される苛性アルカリの要求品質が厳しくな
り、塩化物含有量に関しても例えば48重間%苛性アル
カリ基準に於いてippm以下という値が要求されてい
る。
(Prior art and issues to be solved) In recent years, the required quality of caustic alkali used in IC manufacturing processes in the electronics industry and purification equipment for nuclear reactor primary cooling water has become stricter, and the chloride content has also increased to 48% by weight, for example. % caustic alkali standard, a value of ippm or less is required.

苛性アルカリ中の塩化物イオンの分析法としては、従来
より種々の滴定法や比色法が広く行われている。しかし
ながら滴定法では本発明が目的とする微量測定には充分
な感度が期待できない。比色法では感度が充分であるも
のの、前処理段階に於いて行う中和操作がpHの異なる
ブランク溶液に対しては試料溶液と同一条件で行うこと
が出来ない為に、中和に用いた酸に含まれる塩化物イオ
ン量を正確に差引き補正することが困難でおり、また塩
濃度の影響を受けるため試料のアルカリ濃度のばらつき
が発色状態のばらつきとなって現われるので測定値の変
動が大きくなるという欠点がある。このことは試料中の
塩化物イオン濃度が微量になるほど問題となってくる。
As methods for analyzing chloride ions in caustic alkali, various titration methods and colorimetric methods have been widely used. However, the titration method cannot be expected to provide sufficient sensitivity for the trace measurement aimed at by the present invention. Although the colorimetric method has sufficient sensitivity, the neutralization operation performed in the pretreatment stage cannot be performed on a blank solution with a different pH under the same conditions as the sample solution, so it was used for neutralization. It is difficult to accurately subtract and correct the amount of chloride ions contained in acids, and since it is affected by salt concentration, variations in the alkali concentration of the sample will appear as variations in the coloring state, resulting in fluctuations in measured values. It has the disadvantage of being large. This becomes a problem as the chloride ion concentration in the sample becomes minute.

(発明の目的) 上記の点に鑑み、発明者らは微量塩化物イオン濃度を簡
便で正確に測定する方法を得る目的で鋭意検討を行った
(Object of the Invention) In view of the above points, the inventors conducted extensive studies with the aim of obtaining a simple and accurate method for measuring trace chloride ion concentration.

その結果、H型陽イオン交換樹脂を用いて前処理段階の
中和操作を行い、一連の分析操作をイオンクロマトグラ
フ法を含む流れ分析法として組込むことにより上記目的
を充分達成し得ることを見出し本発明を完成するに至っ
たものである。
As a result, we discovered that the above objective could be fully achieved by performing a neutralization operation in the pretreatment stage using an H-type cation exchange resin and incorporating a series of analysis operations into a flow analysis method including ion chromatography. This has led to the completion of the present invention.

(発明の構成) 本発明は高純度苛性アルカリ溶液中の微量塩化物イオン
の測定法に於いて、試料溶液をH型陽イオン交換樹脂充
填カラムに通して中和処理した俊陰イオン交換樹脂充填
の前濃縮カラムに通して微量塩化物イオンを吸着させ、
次いで溶離液により溶離させた塩化物イオンを含む溶液
を陰イオン交換樹脂充填の分離カラムに通し、分離され
た塩化物イオンをハロゲン化物イオン選択性電極を用い
て検出定量する上記一連の操作をフローインジェクショ
ン分析のシステム内で行うことを特徴とする流れ分析法
でおる。
(Structure of the Invention) The present invention is a method for measuring trace amounts of chloride ions in a high-purity caustic alkaline solution. pass through a pre-concentration column to adsorb trace chloride ions,
Next, the solution containing chloride ions eluted with the eluent is passed through a separation column packed with anion exchange resin, and the separated chloride ions are detected and quantified using a halide ion-selective electrode. This is a flow analysis method characterized by being carried out within an injection analysis system.

フローインジェクション分析法はそれ自体公知であって
、試料溶液その他必要な分析用薬剤溶液等を細いチュー
ブ内に連続的に通して種々の反応や分離を行い、末端に
設置した検出器を用いて迅速に分析する方法でおる。
The flow injection analysis method is known per se, and involves continuously passing sample solutions and necessary analytical drug solutions into thin tubes to perform various reactions and separations, and using a detector installed at the end to perform rapid detection. This is the method of analysis.

本発明方法はこのシステムの特徴を利用して、H型陽イ
オン交換樹脂による試料アルカリ溶液の中和反応、陰イ
オン交換樹脂による微量塩化物イオンの吸着、塩化物イ
オンのハロゲン化物イオン選択性電極による検出定量を
行うことにより、分析操作の簡便、迅速化を図ると同時
に前処理操作における汚染の問題を解決し得るものであ
る。
The method of the present invention takes advantage of the characteristics of this system to perform a neutralization reaction of an alkaline sample solution using an H-type cation exchange resin, adsorption of trace chloride ions by an anion exchange resin, and a halide ion selective electrode for chloride ions. By carrying out detection and quantification using this method, it is possible to simplify and speed up the analysis operation and at the same time solve the problem of contamination in the pretreatment operation.

第1図は本発明法に使用される装置の概略フローを例示
するものであり、以下これに従って説明する。図中A弁
は例えば3方弁、B、C弁は6方切替え弁(図に於いて
6方切替弁は、1−2.3−4.5−6の3経路の組合
せか、又は2−3゜4−5.6−1の3経路の組合せで
夫々同時通液可能なものである。)とする。
FIG. 1 illustrates a schematic flow of an apparatus used in the method of the present invention, and the following description will be made accordingly. In the diagram, valve A is, for example, a 3-way valve, and valves B and C are 6-way switching valves (in the diagram, the 6-way switching valve is a combination of 3 paths 1-2.3-4.5-6, or 2-way switching valves). -3° 4-5. It is possible to simultaneously pass liquid through a combination of the three routes of 6-1.

本装置での操作は中和用樹脂の再生、試料溶液の採取、
試料溶液の中和、塩化物イオンの前濃縮及び分離検出の
5つに大別することが出来る。
Operations with this device include regenerating the neutralizing resin, collecting sample solutions,
It can be roughly divided into five categories: neutralization of sample solution, pre-concentration of chloride ions, and separation detection.

まず、中和用樹脂の再生操作は、再生用酸をポンプ1に
よりA弁、B弁(1−2,3−4,5−6の通液状態を
保持。)を経て中和カラム2に送液し、C弁(1−2,
3−4,5−6の通液状態を保持。)を経て排出口3よ
り外部に排出する。
First, in the regeneration operation of the neutralization resin, the regeneration acid is pumped into the neutralization column 2 via the A valve and the B valve (maintaining the flow state of 1-2, 3-4, and 5-6) using the pump 1. Send liquid and close C valve (1-2,
Maintain the fluid flow status of 3-4 and 5-6. ) and is discharged to the outside from the discharge port 3.

次にA弁のみを操作して洗浄用脱イオン水をポンプ4に
よりA弁、B弁を経て、以下前記再生用酸と同一のフロ
ーで中和カラム2に送液して、余剰の酸を中和用例」旨
より除き中和用樹脂の洗浄を行う。
Next, by operating only valve A, the pump 4 sends deionized water for cleaning through valves A and B to the neutralization column 2 in the same flow as the regenerating acid to remove excess acid. Clean the neutralizing resin except for the "Example for Neutralization".

試料溶液の採取操作はシリンジ等を用いて試料溶液を試
料ライン(図示せず)よりB弁(1−2゜3−4.5−
6の通液状態を保持。)のINを通して試料採取管5に
送ることにより一定量の試料溶液が採取保持され、余分
の試料はB弁のOUTより試料ラインへ排出される。
To collect the sample solution, use a syringe or the like to transfer the sample solution from the sample line (not shown) to valve B (1-2゜3-4.5-
Maintain the fluid flow state of 6. ) A certain amount of sample solution is collected and held by sending it to the sample collection tube 5 through the IN of the B valve, and the excess sample is discharged from the OUT of the B valve to the sample line.

試料溶液の中和及び塩化物イオンの前濃縮操作は、A弁
を前記中和用樹脂洗浄操作の状態で、B。
Neutralization of the sample solution and preconcentration of chloride ions are performed with valve A in the state of the neutralizing resin washing operation described above.

C弁を夫々2−3.4−5.6−1の通液状態に操作し
、洗浄用脱イオン水をポンプ4によりA弁。
Operate the C valves to the flow state of 2-3.4-5.6-1, respectively, and pump deionized water for cleaning to the A valve with pump 4.

B弁を経て試料採取管5に送液し、一定量の試料溶液を
押出しB弁を経て中和カラム2に導入し試料溶液を中和
する。次いでC弁を経て前濃縮カラム6に導入し塩化物
イオンを吸着させ、余剰の洗浄用脱イオン水はC弁を経
て排出口3より外部に廃棄される。
The liquid is sent to the sample collection tube 5 through the B valve, and a certain amount of the sample solution is pushed out and introduced into the neutralization column 2 through the B valve to neutralize the sample solution. Next, it is introduced into a pre-concentration column 6 through a C valve to adsorb chloride ions, and excess deionized water for washing is disposed of outside through a discharge port 3 through a C valve.

分離検出操作はC弁を1−2.3−4.5−6の通液状
態に操作し、溶離液をポンプ7によりC弁を経て前濃縮
カラム6に送液し、溶離した微量塩化物イオンを含有す
る溶液をC弁を経て分離カラム8に導入する。他の陰イ
オンから分離した塩化物イオンを検出器9のハロゲン化
物イオン選択性電極により検出し、電位測定器10によ
り測定された電位変化をクロマトグラムとして記録計1
1により記録する。
In the separation and detection operation, the C valve is operated in the flow state of 1-2.3-4.5-6, and the eluent is sent to the preconcentration column 6 via the C valve by the pump 7, and the eluted trace chloride is removed. A solution containing ions is introduced into separation column 8 via C-valve. The chloride ion separated from other anions is detected by the halide ion selective electrode of the detector 9, and the potential change measured by the potential measuring device 10 is converted into a chromatogram by the recorder 1.
Record by 1.

本装置ではB、C弁の様な6方切替弁を使用す  ′る
ことにより分離検出操作と並行して中和用樹脂の再生操
作を行うことができ、更に分離検出以外の操作進行中に
於いても検出器9のハロゲン化物イオン選択性電極に通
液することができるのでベースライン(ベース電位)の
安定化を図ることが出来る。
By using six-way switching valves such as B and C valves, this device can regenerate the neutralizing resin in parallel with the separation detection operation, and can also perform operations other than separation detection. Even in this case, since the liquid can be passed through the halide ion selective electrode of the detector 9, the baseline (base potential) can be stabilized.

本発明に用いられる陽イオン交換樹脂としては、スチレ
ン、メタクリル酸、アクリル酸等とジビニルベンゼンと
の共重合体を母体としたゲル型又はポーラス型の構造を
有し、スルホン酸基、カルボン酸基或いはイミノニ酢酸
基、アミノリン酸基等を交換基とするものを挙げること
が出来る。これらの内、迅速な再生が可能である強酸性
型のスルホン酸型がより好ましい。
The cation exchange resin used in the present invention has a gel type or porous type structure based on a copolymer of styrene, methacrylic acid, acrylic acid, etc. and divinylbenzene, and has a sulfonic acid group and a carboxylic acid group. Alternatively, examples include those having an iminodiacetic acid group, an aminophosphoric acid group, etc. as an exchange group. Among these, the strongly acidic sulfonic acid type is more preferable because it can be rapidly regenerated.

陽イオン交換樹脂の使用量は分析対象とする試料の苛性
アルカリ濃度と容量に依存する。例えば、市販の陽イオ
ン交換樹脂の交換容量は通常2〜4ミリ当量/7!樹脂
程度であるから、濃度10モル/jの苛性ソーダ1ml
を中和処理する場合樹脂2,5〜5mlで等量となる。
The amount of cation exchange resin used depends on the caustic concentration and volume of the sample to be analyzed. For example, the exchange capacity of commercially available cation exchange resins is usually 2 to 4 milliequivalents/7! Since it is about the same as a resin, 1 ml of caustic soda with a concentration of 10 mol/j
When neutralizing, 2.5 to 5 ml of resin is equivalent.

しかしながら、中和が不完全であると溶離操作に於いて
水酸化物イオンが塩化物イオンより先に溶出し、尚且つ
ハロゲン化物イオン選択性電極に応答するので、その指
が塩化物イオン量に対して多聞残存する場合は塩化物イ
オンの測定値に影響する。また陽イオン交換樹脂量が過
剰であると中和は完全に行われるが、前濃縮操作での洗
浄時間に多くの時間を要するので分析の迅速さが失われ
る。この様な点から中和用の陽イオン交換樹脂量は理論
的必要量の1.5〜2倍にすることが好ましい。陽イオ
ン交換樹脂の粒度は10〜100メツシュ程度で充分に
目的を達成することが可能であるが、20〜60メツシ
ユがより好ましく用いられる。
However, if neutralization is incomplete, the hydroxide ions will elute before the chloride ions during the elution operation, and will respond to the halide ion-selective electrode, so the finger will be sensitive to the amount of chloride ions. On the other hand, if a large amount of chloride ions remain, it will affect the measured value of chloride ions. Moreover, if the amount of cation exchange resin is excessive, neutralization will be completed, but the washing time in the pre-concentration operation will take a lot of time, so the speed of analysis will be lost. From this point of view, the amount of cation exchange resin for neutralization is preferably 1.5 to 2 times the theoretically required amount. Although the particle size of the cation exchange resin is approximately 10 to 100 mesh, it is possible to sufficiently achieve the purpose, but a particle size of 20 to 60 mesh is more preferably used.

これらの陽イオン交換樹脂をH型に■生する為の再生用
酸としては一般的には塩醒以外の無機酸又は有機蒙を用
いることが出来る。この場合、再生操作での洗浄が不十
分ならば、次回分析の前濃縮操作に於いて陰イオン交換
樹脂が残存する再生用酸の陰イオン(共役塩基)を吸着
することになる。従ってこの樹脂が塩化物イオンよりも
該陰イオンを強く吸着することとなれば、塩化物イオン
の吸着が妨げられる。また吸着された陰イオンは溶離操
作に於いて検出部に導かれるので、これがハロゲン化物
イオン選択性電極に応答するならば測定値に影響する。
As the regenerating acid for converting these cation exchange resins into H-type, inorganic acids or organic acids other than those obtained by salting can generally be used. In this case, if the cleaning in the regeneration operation is insufficient, the anion exchange resin will adsorb the remaining anion (conjugate base) of the regeneration acid in the preconcentration operation for the next analysis. Therefore, if this resin adsorbs the anion more strongly than chloride ion, the adsorption of chloride ion will be hindered. Also, since the adsorbed anions are guided to the detection section during the elution operation, they will affect the measured value if they respond to the halide ion selective electrode.

これらの理由により再生用酸としては硝酸又は酢酸を用
いるのが好ましい。
For these reasons, it is preferable to use nitric acid or acetic acid as the regenerating acid.

本発明に用いられる前濃縮用の陰イオン交換樹脂は微量
塩化物イオンを迅速且つ確実に吸着することが要求され
る。本発明の目的に適う陰イオン交換樹脂としては、ス
チレン、アクリル酸エステル等とジビニルベンゼンの共
重合体を母体としたゲル型又はポーラス型の構造を有し
、第四級アンモニウム塩基、第一〜三アミン、或いはフ
ェノール性弱塩基を交換基とするものが挙げられるが、
好ましくは広いl)H領域で交換能力を有する強塩基性
の第四級アンモニウム塩基を有するものを用いる。これ
らの樹脂の量は本発明が分析対象とする試料生塩化物イ
オン量の少くとも1000倍以上の交換容量を有してい
ることが望ましい。例えば塩化物イオン濃度が3.5μ
’J/rdである苛性アルカリ1mlを処理する場合、
これに含まれる塩化物イオン伍は3.5μ3.即ち1x
lO−4ミリモルであり、市販の陰イオン交換樹脂の交
換容量は通常1〜2ミリ当ffi/mi樹脂であるから
、樹脂量は0.1dもあれば充分である。また樹脂粒度
は小さい程吸着反応が速やかに進行すると考えられるが
、逆にカラム圧力損失が大きくなり、溶離も困難になる
ので、60〜300メツシユが適当であり、100〜2
00メツシユがより好ましい。
The anion exchange resin for preconcentration used in the present invention is required to quickly and reliably adsorb trace amounts of chloride ions. The anion exchange resin suitable for the purpose of the present invention has a gel type or porous type structure based on a copolymer of styrene, acrylic acid ester, etc. and divinylbenzene, and has a quaternary ammonium base, primary to Examples include those with triamines or phenolic weak bases as exchange groups,
Preferably, one having a strongly basic quaternary ammonium base having exchange ability in a wide 1)H region is used. It is desirable that the amount of these resins has an exchange capacity that is at least 1000 times greater than the amount of raw chloride ions in the sample to be analyzed by the present invention. For example, the chloride ion concentration is 3.5 μ
When processing 1 ml of caustic alkali that is 'J/rd,
The chloride ion contained in this is 3.5μ3. i.e. 1x
Since the exchange capacity of commercially available anion exchange resins is usually 1 to 2 mm/ffi/mi resin, a resin amount of 0.1 d is sufficient. In addition, it is thought that the smaller the resin particle size, the faster the adsorption reaction will proceed, but on the other hand, the column pressure loss will increase and elution will be difficult.
00 mesh is more preferred.

本発明に用いられる分離用陰イオン交換樹脂としては前
記の前濃縮用陰イオン交換樹脂と同一のものが挙げられ
る。樹脂量は前濃縮に用いる量の3〜20倍が適当であ
る。粒度は60〜300メツシユが適当であり、100
〜250メツシユがより好ましい。
The anion exchange resin for separation used in the present invention includes the same anion exchange resin for preconcentration as described above. The appropriate amount of resin is 3 to 20 times the amount used for pre-concentration. The appropriate particle size is 60 to 300 mesh, and 100 to 300 mesh.
~250 meshes is more preferred.

本発明に用いるハロゲン化物イオン選択性電極としては
銀電極、塩化物電極、臭化物電極、沃化物電極及び硫化
銀電極を挙げることが出来る。
Examples of the halide ion selective electrode used in the present invention include a silver electrode, a chloride electrode, a bromide electrode, an iodide electrode, and a silver sulfide electrode.

分析の実施に当り本発明では洗浄用水として脱イオン水
を用いる。試料溶液の中和操作に引続いて微量塩化物イ
オンを前濃縮カラムに導入する為に洗浄水を用いるが、
洗浄水量が少ないと前濃縮カラムに塩化物イオンの凡て
を吸着させることが出来ない。従って本発明で用いる洗
浄水量は中和用陽イオン交換樹脂量の2倍以上、好まし
くは5倍以上を必要とする。
In the present invention, deionized water is used as washing water in carrying out the analysis. Following the neutralization of the sample solution, wash water is used to introduce trace chloride ions into the preconcentration column.
If the amount of washing water is small, all of the chloride ions cannot be adsorbed to the preconcentration column. Therefore, the amount of washing water used in the present invention needs to be at least twice, preferably at least 5 times, the amount of cation exchange resin for neutralization.

本発明では検出器としてイオン選択性電極を使用してい
るが、電極の応答は通常脱イオン水等イオン強度の小さ
い希薄溶液に於いては不安定になるので、イオン強度調
節剤として電極の応答に無関係なイオンを含有する溶液
を一定量添加して測定を行うのが普通でおる。本発明に
於いては上記のハロゲン化物イオン選択性電極の応答に
無関係なイオン種を溶離液として用いることでイオン強
度調節剤の役目を同時に持たせている。この条件に沿う
化合物としてはカリウム、ナトリウム等アルカリ金属の
硝酸塩、酢酸塩を挙げることが出来る。溶離液の濃度は
陰イオン交換樹脂の吸着能力。
In the present invention, an ion-selective electrode is used as a detector, but since the response of the electrode is usually unstable in dilute solutions with low ionic strength such as deionized water, the response of the electrode is It is common practice to perform measurements by adding a fixed amount of a solution containing ions unrelated to the ion. In the present invention, by using an ion species unrelated to the response of the halide ion selective electrode as an eluent, it simultaneously serves as an ionic strength regulator. Compounds that meet this condition include nitrates and acetates of alkali metals such as potassium and sodium. The concentration of the eluent is the adsorption capacity of the anion exchange resin.

分離カラムの長さ、溶離液の流速等の条件によって適宜
決定されるが、通常は濃度0.1モル/、l!以上の溶
離液を用いることによりイオン選択性電極の応答挙動を
安定さゼることか出来る。
Although it is determined appropriately depending on conditions such as the length of the separation column and the flow rate of the eluent, the concentration is usually 0.1 mol/l! By using the above eluent, it is possible to stabilize the response behavior of the ion-selective electrode.

前濃縮カラムに溶離液を通して溶離する際、カラムを通
過した初期の溶離液部分には残存脱イオン水が含まれる
が、分離カラムによりこの初期の塩濃度の希薄な溶離液
部分と塩化物イオンを分離することができる。更に中和
操作での水故化物イオンが少し残存しても分離カラムに
よりこれを塩化物イオンと分離することが可能であり、
支障なく塩化物イオンを定量することが出来る。
When eluent is passed through a pre-concentration column, the initial eluate portion that has passed through the column contains residual deionized water, but the separation column separates this initial eluate portion with a dilute salt concentration and chloride ions. Can be separated. Furthermore, even if some hydride ions remain during the neutralization operation, they can be separated from chloride ions using a separation column.
Chloride ions can be determined without any problem.

本発明に用いる装置に於いて使用される各ライン及び弁
の材質としては、酸や濃厚な塩を通液し微量塩化物イオ
ンを測定対象とするので化学的に安定なポリテトラフル
オロエチレン、ポリプロピレン等の合成樹脂が好ましい
The materials for each line and valve used in the device used in the present invention include polytetrafluoroethylene and polypropylene, which are chemically stable because acids and concentrated salts are passed through and trace amounts of chloride ions are to be measured. Synthetic resins such as are preferred.

尚前濃縮操作は塩化物イオンの吸着を樹脂の上部から下
方向きの流れで行い、溶離操作は逆に下部から上方向き
の流れで行うことにより樹脂の上部に吸着させた塩化物
イオンを速やかに溶出させることができる。
In the pre-concentration operation, chloride ions are adsorbed in a downward flow from the top of the resin, and in the elution operation, conversely, in an upward flow from the bottom, the chloride ions adsorbed on the top of the resin are quickly removed. It can be eluted.

(発明の効果) 本発明は高純度苛性アルカリ溶液中の微量塩化物イオン
の測定法に於いて試料溶液をH型陽イオン交換樹脂充填
カラムを用いて中和処理後陰イオン交換樹脂充填の前濃
縮カラムに微量塩化物イオンを吸着させ、次いで溶離さ
れた塩化物イオンを陰イオン交換樹脂充填の分離カラム
に導入し、塩化物イオンをハロゲン化物イオン選択性電
極を用いて検出定量を行う上記一連の操作をフローイン
ジェクション分析のシステム内で行うことにより、試料
の前処理操作に於ける塩化物イオンの汚染の問題及び従
来の比色法では問題となっていた中和に用いる酸中の塩
化物イオンによる影響を解決した。
(Effects of the Invention) In the method for measuring trace chloride ions in a high-purity caustic solution, the present invention uses an H-type cation exchange resin-packed column to neutralize a sample solution and then before filling it with an anion exchange resin. The above series of steps involves adsorbing trace amounts of chloride ions on a concentration column, then introducing the eluted chloride ions into a separation column packed with anion exchange resin, and detecting and quantifying chloride ions using a halide ion-selective electrode. By performing this operation within a flow injection analysis system, it is possible to eliminate the problem of chloride ion contamination during sample pretreatment and the problem of chloride ion in the acid used for neutralization, which was a problem with conventional colorimetric methods. The effect of ions has been resolved.

本発明は迅速且つ容易な操作で苛性アルカリ中微量塩化
物イオン濃度を正確に定量することが出来、オンライン
分析も可能であるので、電子産業や原子力産業分野で使
用される高純度苛性アルカリ中微量塩化物イオンの検査
に有用である。
The present invention can accurately quantify trace chloride ion concentrations in caustic alkali with quick and easy operations, and online analysis is also possible. Useful for testing for chloride ions.

以下本発明を実施例により具体的に詳m説明する。尚実
施例生滅薬類は特級量を、濃度調整用及び洗浄用脱イオ
ン水には、超純水を用いた。
EXAMPLES The present invention will be explained in detail below using examples. In this example, a special grade amount of raw sterilizing chemicals was used, and ultrapure water was used as deionized water for concentration adjustment and washing.

実施例1 30重但%苛性ソーダ溶液中の微量塩化物を測定対象と
する分析を第1図に記載したフローの装置を用いて以下
の条件で実施した。
Example 1 An analysis of a trace amount of chloride in a 30% by weight caustic soda solution was carried out under the following conditions using an apparatus having the flow shown in FIG. 1.

官能基としてスルホン酸基を有する陽イオン交換樹脂(
ダウケミカル社製「Dowex 50W J  100
〜200メツシユ、交換容量4.5ミリ当量/威湿潤樹
脂)4威を中和カラム(内径12mmX長ざ50mm)
に、四級アンモニウム塩基を官能基とする陰イオン交換
樹脂(ダウケミカル社製「Dowex 1x8 J  
100〜200メツシユ、交換容量1.2ミリ当量/威
湿潤樹脂)を前濃縮カラム(内径6mmX長ざ15mm
)に0.3ml、分離カラム(内径6mmX長さ100
mm )に2.5m!夫々充填した。
Cation exchange resin with sulfonic acid group as a functional group (
“Dowex 50W J 100” manufactured by Dow Chemical Company
~200 mesh, exchange capacity 4.5 meq/wet resin) neutralizing column (inner diameter 12 mm x length 50 mm)
In addition, an anion exchange resin having a quaternary ammonium base as a functional group (Dowex 1x8 J
100 to 200 meshes, exchange capacity 1.2 meq/wet resin) to a pre-concentration column (inner diameter 6 mm x length 15 mm)
), add 0.3 ml to a separation column (inner diameter 6 mm x length 100
mm) to 2.5m! Each was filled.

試料溶液の採取量1威を、内径2mmX長さ33cmの
テフロンチューブからなる試料採取管により採取した。
One sample of the sample solution was collected using a sample collection tube made of a Teflon tube with an inner diameter of 2 mm and a length of 33 cm.

中和用陽イオン交換樹脂の再生用酸溶液として1.0モ
ル/j硝酸溶液を、溶離)々とじて1.0モル/g硝醒
ナトリウム溶液を用いた。また、検出器のハロゲン化物
選択性電極として塩化物イオン選択性電極を使用した。
A 1.0 mol/j nitric acid solution was used as an acid solution for regenerating the cation exchange resin for neutralization, and a 1.0 mol/g nitrified sodium solution was used for elution. In addition, a chloride ion selective electrode was used as the halide selective electrode of the detector.

まず硝酸溶液を1m1/分の流速で5分間中和カラムに
通液した後、洗浄用脱イオン水を5d/分の流速で5分
間流して洗浄を行い、排出口3よりの流出液のpHが中
性であることを確認した。
First, a nitric acid solution was passed through the neutralization column for 5 minutes at a flow rate of 1 ml/min, and then deionized water for washing was passed at a flow rate of 5 d/min for 5 minutes, and the pH of the effluent from the outlet 3 was was confirmed to be neutral.

次に、試料採取管に微量の塩化物イオンを含む30重量
%苛性ソーダ溶液を採取し、洗浄用脱イオン水を用いて
最初の3分間は流速1威/分で押出して中和反応を行わ
せ、続いて流速3m1/分で洗浄及び前濃縮カラムへの
塩化物イオンの吸着操作を5分間行った。
Next, a 30% by weight caustic soda solution containing a trace amount of chloride ions was collected in a sample collection tube, and extruded using deionized water for washing at a flow rate of 1 force/min for the first 3 minutes to perform a neutralization reaction. Subsequently, washing and adsorption of chloride ions onto the preconcentration column were performed for 5 minutes at a flow rate of 3 ml/min.

最後に、溶離液を流速1m/分で前濃縮カラム及び分離
カラムに通し塩化物イオンを検出定量した。
Finally, the eluate was passed through a preconcentration column and a separation column at a flow rate of 1 m/min to detect and quantify chloride ions.

検量線用溶液は100100O塩化物イオン標準溶液か
ら0. 1. 2. 3mg/、Qの塩化物イオン溶液
を夫々脱イオン水を用いて調製し、中和用樹脂の再生操
作を除いた外は試料溶液と同様の操作で分析を行った。
The solution for the calibration curve is 0.0% from the 100100O chloride ion standard solution. 1. 2. Chloride ion solutions of 3 mg/Q were each prepared using deionized water and analyzed in the same manner as for the sample solution, except that the neutralizing resin was not regenerated.

以上の操作で得られたクロマトグラムから第2図に記載
のa、検量線を作成し、予め測定した試料溶液の比重(
25°Cで1.33)を基に試料溶液中塩化物濃度(N
aCUとして)を求めた10回の測定値はO,d3.0
147.0.50.0.45.0.44.0.52゜0
.45.0.46.0.43.及び0.45ppmであ
った。これらの平均値は0.460ppm、変動係数は
6.1%となり再現性の良い結果が得られた。
From the chromatogram obtained by the above procedure, a calibration curve shown in Figure 2 is created, and the specific gravity (
The chloride concentration in the sample solution (N
The 10 measurement values obtained (as aCU) are O, d3.0
147.0.50.0.45.0.44.0.52゜0
.. 45.0.46.0.43. and 0.45 ppm. The average value of these was 0.460 ppm, and the coefficient of variation was 6.1%, so results with good reproducibility were obtained.

次に試料溶液95威を4本のポリエチレン製メスフラス
コに夫々採取し、1mCl/、11塩化物イオン標準溶
液を夫々0. 1. 2. 3d添加し、脱イオン水を
加えて全100dとした。これらの溶液について上記試
料溶液と同一の操作で分析を行って第2図のす、標準添
加線を得た。これらの測定値に標準添加法を適用して試
料溶液中塩化物濃度(NaC1として)を求めたところ
0.50ppmとなった。前記の方法で求めた測定値と
良い一致が見られることが分る。
Next, 95 volumes of the sample solution were collected into four polyethylene volumetric flasks, and 1 mCl/1 mCl/11 chloride ion standard solution was added to each of the 4 polyethylene volumetric flasks. 1. 2. 3 d was added and deionized water was added to make a total of 100 d. These solutions were analyzed in the same manner as for the sample solution, and the standard addition line shown in Figure 2 was obtained. The chloride concentration in the sample solution (as NaCl) was determined to be 0.50 ppm by applying the standard addition method to these measured values. It can be seen that there is good agreement with the measured values obtained by the method described above.

実施例2 前記実施例1と同じカラム条件で48重量%苛性カリ溶
液中微量塩化物濃度の測定を行った。
Example 2 The trace chloride concentration in a 48% by weight caustic potassium solution was measured under the same column conditions as in Example 1.

試料の採取量を2ml1とし、その為に内径3mm、 
  。
The amount of sample to be collected is 2ml1, so the inner diameter is 3mm,
.

長さ29cmのテフロンチューブを用いて試料採取管を
構成した。
A sample collection tube was constructed using a Teflon tube with a length of 29 cm.

試料溶液95dを4本のポリエチレン製メスフラスコに
夫々採取し、1m(]/N塩化物イオン標準溶液を夫々
0. 1. 2. 3d添加し、脱イオン水を加えて全
100mI!とじた。これらの溶液について実施例1と
同様の操作で分析を行い、第3図の標準添加線を得た。
95 d of sample solution was taken into four polyethylene volumetric flasks, 0.1, 2. 3 d of 1 m(]/N chloride ion standard solution were added to each flask, and deionized water was added for a total of 100 mI!). These solutions were analyzed in the same manner as in Example 1, and the standard addition line shown in FIG. 3 was obtained.

これらの測定値を基に標準添加法を適用して試料溶液中
塩化物濃度(Kαとして)を求めたところ1.36pp
mでおった。
Based on these measured values, the chloride concentration (as Kα) in the sample solution was determined by applying the standard addition method and was found to be 1.36 pp.
It was m.

比較例 実施例1及び2で測定を行った各試料溶液について試薬
特級の溌硝醒を用いて中和処理を行った後、従来のチオ
シアン酸第二水銀を用いた比色法により標準添加法を用
いて測定を行ったところ、試料溶液中塩化物濃度は実施
例1の試料が0,81pf)m (NaCf7として)
、実施例2の試料が1.64ppm(KCf!とじて)
であった。前記実施例の結果と比較して相当過大である
ことが分る。
Comparative Example Each sample solution measured in Examples 1 and 2 was neutralized using reagent-grade nitrification, and then the standard addition method was performed using a conventional colorimetric method using mercuric thiocyanate. The chloride concentration in the sample solution was 0.81 pf)m (as NaCf7) for the sample of Example 1.
, the sample of Example 2 was 1.64 ppm (KCf!)
Met. It can be seen that this is considerably excessive compared to the results of the previous example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施例に使用した装置の概略フロー
を示す図である。第2図のa、bは実施例1で得られた
a、検量線及びす、標準添加線を示す図である。第3図
は実施例2で得られた標準添加線を示す図である。
FIG. 1 is a diagram showing a schematic flow of an apparatus used in an embodiment of the method of the present invention. Figures a and b in Fig. 2 are diagrams showing a, a calibration curve, and a standard addition curve obtained in Example 1. FIG. 3 is a diagram showing the standard addition line obtained in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 高純度苛性アルカリ溶液中の微量塩化物イオンの測定法
に於いて、試料溶液をH型陽イオン交換樹脂充填カラム
に通して中和処理した後陰イオン交換樹脂充填の前濃縮
カラムに通して微量塩化物イオンを吸着させ、次いで溶
離液により溶離させた塩化物イオンを含む溶液を陰イオ
ン交換樹脂充填の分離カラムに通し、分離された塩化物
イオンをハロゲン化物イオン選択性電極を用いて検出定
量する上記一連の操作をフローインジェクション分析の
システム内で行うことを特徴とする流れ分析法。
In the method for measuring trace amounts of chloride ions in high-purity caustic alkaline solutions, the sample solution is passed through an H-type cation exchange resin-filled column for neutralization, and then passed through an anion-exchange resin-filled preconcentration column. After adsorbing chloride ions, the solution containing chloride ions eluted with an eluent is passed through a separation column packed with anion exchange resin, and the separated chloride ions are detected and quantified using a halide ion-selective electrode. A flow analysis method characterized in that the series of operations described above are performed within a flow injection analysis system.
JP63059096A 1988-03-11 1988-03-11 Flow analysis method of chloride ion in caustic. Expired - Lifetime JPH0721485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63059096A JPH0721485B2 (en) 1988-03-11 1988-03-11 Flow analysis method of chloride ion in caustic.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059096A JPH0721485B2 (en) 1988-03-11 1988-03-11 Flow analysis method of chloride ion in caustic.

Publications (2)

Publication Number Publication Date
JPH01232260A true JPH01232260A (en) 1989-09-18
JPH0721485B2 JPH0721485B2 (en) 1995-03-08

Family

ID=13103460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059096A Expired - Lifetime JPH0721485B2 (en) 1988-03-11 1988-03-11 Flow analysis method of chloride ion in caustic.

Country Status (1)

Country Link
JP (1) JPH0721485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329938A (en) * 2005-05-30 2006-12-07 Shimadzu Corp Sugar chain cut-out device
JP2009236933A (en) * 1997-12-24 2009-10-15 Cepheid Integrated fluid manipulation cartridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635046A (en) * 1979-08-30 1981-04-07 Toshiba Corp Hydrogen gas purity meter
JPS60190858A (en) * 1984-03-12 1985-09-28 Yokogawa Hokushin Electric Corp Anion analytical method and apparatus thereof
JPS62223668A (en) * 1986-01-21 1987-10-01 ミリポア・コ−ポレイシヨン Ion chromatographic method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635046A (en) * 1979-08-30 1981-04-07 Toshiba Corp Hydrogen gas purity meter
JPS60190858A (en) * 1984-03-12 1985-09-28 Yokogawa Hokushin Electric Corp Anion analytical method and apparatus thereof
JPS62223668A (en) * 1986-01-21 1987-10-01 ミリポア・コ−ポレイシヨン Ion chromatographic method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236933A (en) * 1997-12-24 2009-10-15 Cepheid Integrated fluid manipulation cartridge
JP4522480B2 (en) * 1997-12-24 2010-08-11 セフィード Integrated fluid handling cartridge
JP2006329938A (en) * 2005-05-30 2006-12-07 Shimadzu Corp Sugar chain cut-out device

Also Published As

Publication number Publication date
JPH0721485B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US3925019A (en) Chromatographic analysis of ionic species
US3920397A (en) Apparatus and method for quantitative analysis of ionic species by liquid column chromatography
US3926559A (en) Method and apparatus for quantitative chromatographic analysis of cationic species
JPH0481659A (en) Analysis of fluid using suspension of granular reagent
JPS62223668A (en) Ion chromatographic method and device
US5175110A (en) Analysis of ions present at low concentrations in solutions containing other ions
US4672042A (en) Method of and apparatus for chromatographic analysis
US4017262A (en) Chromatographic apparatus for analysis of ionic species
US3918906A (en) Determining total ionic content
US3915642A (en) Quantitative analysis of single ion species
US5073502A (en) Method and apparatus for analyzing total organic halogens
Tan et al. Determination of arsenic (III) and arsenic (V) in ferric chloride-hydrochloric acid leaching media by ion chromatography
CN111077195A (en) System and method for automatically measuring exchange capacity of strongly basic anion exchange resin
JPH01232260A (en) Flow analysis of chloride ion in caustic alkali
JP3422219B2 (en) Selenium analysis method and selenium analyzer
CN101571530A (en) Compound for ultraviolet-detecting anions containing sulfur by ion chromatography post-column derivatization
Saari-Nordhaus et al. Elimination of matrix interferences in ion chromatography by the use of solid-phase extraction disks
JP4465434B2 (en) Apparatus and method for highly sensitive measurement of phosphate ion and silicate ion using ion exclusion separation
JP4665154B2 (en) Coexisting anion treatment apparatus and method
JPS6353509B2 (en)
JPH01299458A (en) Quantitative analysis method of alkaline earth metal by ion chromatography method
JPH08155451A (en) Simple monitoring method for chlorine ion
CA1044824A (en) Determining total ionic content
JPS60111959A (en) Simultaneous analysis of anion and cation
JPS61246664A (en) Analysis method and apparatus for organic acid