JPH01230472A - Sintered silicon carbide and production thereof - Google Patents

Sintered silicon carbide and production thereof

Info

Publication number
JPH01230472A
JPH01230472A JP63057883A JP5788388A JPH01230472A JP H01230472 A JPH01230472 A JP H01230472A JP 63057883 A JP63057883 A JP 63057883A JP 5788388 A JP5788388 A JP 5788388A JP H01230472 A JPH01230472 A JP H01230472A
Authority
JP
Japan
Prior art keywords
silicon carbide
spinel
sintering
sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63057883A
Other languages
Japanese (ja)
Inventor
Yutaka Kubota
裕 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP63057883A priority Critical patent/JPH01230472A/en
Publication of JPH01230472A publication Critical patent/JPH01230472A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a sintered silicon carbide containing a specific amount of added Al2O3.MgO.spinel based on the sum of the spinel and silicon carbide, composed of fine texture containing crossed plate crystals, having high density, strength and toughness and producible by normal pressure sintering process. CONSTITUTION:A silicon carbide having alpha- or beta-crystal form and preferably haivng a purity of >=95% and an average particle diameter of <=0.5mum is added with 0.3-35wt.% (based on the sum of the components) of the above spinel preferably having a purity of >=98% and a particle diameter of <=0.3mum as a sintering assistant. The mixture is formed by conventional forming method for ceramics, e.g., press forming, casting, injection molding, etc., and sintered in a non-oxidizing atmosphere at 1900-2300 deg.C, preferably 1900-2100 deg.C without applying pressure. The sintered product has a tough fine texture containing crossed plate crystals and has high critical stress expansion coefficient KIc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、常圧焼結法により得られる高密度。[Detailed description of the invention] [Industrial application field] The present invention provides high-density products obtained by pressureless sintering.

高強度且つ高靭性の炭化けい素質焼結体及びその製造方
法に関する。
The present invention relates to a high-strength and high-toughness silicon carbide sintered body and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、高温構造材料として化学的に安定で、耐摩耗性に
優れ、高温強度が高い等の多くの利点を有する炭化けい
素質焼結体は、再結晶法1反応焼結法、常圧焼結法、加
圧焼結法等の焼結法によって製造されて来た。
Conventionally, silicon carbide sintered bodies, which have many advantages as high-temperature structural materials such as chemical stability, excellent wear resistance, and high high-temperature strength, have been processed using recrystallization, one-reaction sintering, and pressureless sintering. It has been manufactured by sintering methods such as sintering method and pressure sintering method.

上記の各種製造方法の中で、再結晶法による焼結体は、
高純度であるが密度が小さく、一般に強度が劣る。反応
焼結法による焼結体では、焼結体中に遊離のシリコンが
存在するた約、高温強度はシリコンの溶融に伴い、急激
に低下する欠点がある。また、加圧焼結法では、特性の
優れた焼結体が得られるが、焼結体の形状は比較的単純
なものに限定され量産性に劣るという欠点がある。
Among the various manufacturing methods mentioned above, the sintered body by the recrystallization method is
It has high purity but low density and generally poor strength. A sintered body produced by the reaction sintering method has the disadvantage that the high-temperature strength rapidly decreases as the silicon melts due to the presence of free silicon in the sintered body. Further, in the pressure sintering method, a sintered body with excellent properties can be obtained, but the shape of the sintered body is limited to a relatively simple one, and mass productivity is poor.

そのため、高温で強度が高く、比較的複雑な形状の焼結
体を得ることができる点から常圧焼結法の適用が、現在
、炭化けい素質焼結体製造の主流となっている。
Therefore, the application of the pressureless sintering method is currently the mainstream in the production of silicon carbide sintered bodies because it is possible to obtain sintered bodies with high strength and relatively complex shapes at high temperatures.

この常圧焼結法の適用に際しては、硼素、アルミニウム
、ベリリウム等の焼結助剤が用いられるが、これらの焼
結助剤を用いて得られた焼結体は、破壊靭性を示す臨界
応力拡大係数(K、、) か約3MPam”2  と小
さく、非常に脆いという欠点がある。
When applying this pressureless sintering method, sintering aids such as boron, aluminum, beryllium, etc. are used, and the sintered bodies obtained using these sintering aids have a critical stress that indicates fracture toughness. The disadvantage is that the magnification factor (K,...) is small, about 3 MPam''2, and it is very fragile.

このため、炭化けい素の焼結助剤として、無加圧の下で
、比較的低温で焼結が可能なように、アルミナ・マクネ
ンヤのスピネルと酸化イツトリウム表の固溶体形成過程
で生成する液相を使用することが特開昭58−1997
79号公報、特開昭60−180961号公報に開示さ
れている。
For this reason, it is used as a sintering aid for silicon carbide to enable sintering at relatively low temperatures without pressure. To use JP-A-58-1997
It is disclosed in Japanese Patent Application Laid-open No. 79 and Japanese Patent Application Laid-open No. 180961/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記各公報に記載のものは、比較的低温で液
相が生成するため炭化けい素本来の高温での優れた緒特
性を劣化させ、高温強度7 高温クリープ特性等は期待
てきない。
However, in the products described in the above-mentioned publications, a liquid phase is generated at a relatively low temperature, which deteriorates the excellent properties of silicon carbide at high temperatures, and high temperature strength, high temperature creep properties, etc. cannot be expected.

本発明の目的は、炭化けい素本来の高温での優れた緒特
性を劣化することなく、常圧焼結法により破壊靭性の高
い炭化けい素焼結体を得ることにある。
An object of the present invention is to obtain a silicon carbide sintered body with high fracture toughness by an atmospheric pressure sintering method without deteriorating the excellent properties of silicon carbide at high temperatures.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、炭化けい素を主体とする出発原料に焼結助剤
としてアルミナ・マグネシア・スピネル単味を添加して
得た焼結体は、板状結晶の交叉した強固な微細組織を構
成し、破壊靭性が向上するという知見に基づいて完成し
た。
In the present invention, a sintered body obtained by adding alumina, magnesia, and spinel as a sintering aid to a starting material mainly composed of silicon carbide has a strong microstructure with intersecting plate crystals. This was completed based on the knowledge that fracture toughness was improved.

その理由については詳細に解明されてはいないが、次の
ように考えられる。
Although the reason for this has not been elucidated in detail, it is thought to be as follows.

すなわち、アルミナ・マグネシア・スピネル単味を焼結
助剤とした場合、焼結中アルミナ・マグネシア・スピネ
ル粒子表面からはマグネシアが優先的に蒸発し、表面は
アルミナで覆われる。このためアルミナ層に接するアル
ミナ・マグネシア・スピネル相中ではマグネシア/アル
ミナのモル比が異なり、マグネシア、アルミナの濃度勾
配が生じたスピネル固溶体が形成される。このスピネル
固溶体と表面に形成されたアルミナの系において液相が
形成され、この液相下で炭化けい素粒子の粒成長が起こ
ると同時に緻密化が進行し、最終的には粒成長により形
成された板状結晶の交叉した強固な微細組織が形成され
る。このような微細組織が形成された焼結体の破壊は、
粒内破壊よりは粒界破壊が主体となり、クラックの分岐
が生じ易く、また伝播径路が複雑になり、破壊に要する
エネルギーは増大する。このため、臨界応力拡大係数(
K、)値が増大して破壊靭性が向上するものと考えられ
る。また、焼結時に形成されるスピネル固溶体とアルミ
ナの液相形成温度は1900℃以上であるため、炭化け
い素本来の高温での優れた緒特性を劣化させることが少
ない。
That is, when alumina, magnesia, and spinel alone are used as a sintering aid, magnesia is preferentially evaporated from the surfaces of alumina, magnesia, and spinel particles during sintering, and the surfaces are covered with alumina. Therefore, the molar ratio of magnesia/alumina is different in the alumina/magnesia/spinel phase in contact with the alumina layer, and a spinel solid solution with a concentration gradient of magnesia and alumina is formed. A liquid phase is formed in the system of this spinel solid solution and alumina formed on the surface, and silicon carbide particles grow under this liquid phase, and at the same time, densification progresses, and finally, silicon carbide particles are formed due to grain growth. A strong microstructure with intersecting plate-shaped crystals is formed. The destruction of a sintered body with such a microstructure is caused by
Intergranular fracture is more prevalent than intragranular fracture, and crack branching is more likely to occur, the propagation path becomes complicated, and the energy required for fracture increases. Therefore, the critical stress intensity factor (
It is thought that the fracture toughness is improved by increasing the K, ) value. Further, since the liquid phase formation temperature of the spinel solid solution and alumina formed during sintering is 1900° C. or higher, the excellent properties inherent to silicon carbide at high temperatures are less likely to be degraded.

本発明において使用する炭化けい素原料としては、α形
、β形いずれの結晶形のものも使用できる。またその純
度は95%以上で、平均粒径が0.5p以下のものを用
いるのが望ましい。
As the silicon carbide raw material used in the present invention, either the α-form or the β-form crystal form can be used. Further, it is desirable to use one having a purity of 95% or more and an average particle size of 0.5p or less.

焼結助剤として添加するスピネルは、純度が98%以上
のものが好ましく、粒径は03虜以下が好ましい。
The spinel added as a sintering aid preferably has a purity of 98% or more, and a particle size of 0.3 mm or less.

アルミナ・マグネシア・スピネルと炭化けい素との合量
におけるアルミナ・マグネシア・スピネルの配合割合は
0.3〜35重量%である。これは、0.3重量%未満
であると焼結時に緻密化が充分に進まずに理論密度の9
0%以上の高密度焼結体が得られす、また、逆に35重
量%を超えると、1900〜2300℃での焼結時の分
解が多く多孔化するためである。
The blending ratio of alumina/magnesia/spinel in the total amount of alumina/magnesia/spinel and silicon carbide is 0.3 to 35% by weight. If it is less than 0.3% by weight, densification will not proceed sufficiently during sintering and the theoretical density will be 9.
A high-density sintered body with a content of 0% or more can be obtained. Conversely, if the content exceeds 35% by weight, a large amount of decomposition occurs during sintering at 1900 to 2300°C, resulting in porosity.

成形方法としては、プレス成形、鋳込成形、射出成形、
押出成形等、通常のセラミックスの成形に使用される方
法がすべて適用できる。
Molding methods include press molding, cast molding, injection molding,
All methods commonly used for molding ceramics, such as extrusion molding, can be applied.

焼結は非酸化性雰囲気中、無加圧、1900〜2300
℃で行うことが必要で、好ましくは1900〜2100
℃である。焼結温度が1900℃より低いと緻密化が充
分に進まないために、高密度焼結体が得られず、230
0℃より高いと成形体の分解が激しく多孔化する。
Sintering is done in a non-oxidizing atmosphere, without pressure, at 1900~2300
It is necessary to carry out at a temperature of 1900 to 2100°C, preferably
It is ℃. If the sintering temperature is lower than 1900°C, densification will not proceed sufficiently, making it impossible to obtain a high-density sintered body.
When the temperature is higher than 0°C, the molded product decomposes violently and becomes porous.

非酸化性雰囲気としては、窒素、アルゴン、ヘリウム等
が使用できるが、とくに、アルゴン、ヘリウムが好まし
い。
As the non-oxidizing atmosphere, nitrogen, argon, helium, etc. can be used, and argon and helium are particularly preferred.

焼結時間は通常1 =24時間必要であるが、好ましく
は1〜10時間である。これは時間が短すぎると緻密化
せず、長すぎると分解しすぎて多孔化するた続である。
The sintering time is usually 1 = 24 hours, preferably 1 to 10 hours. If the time is too short, it will not become densified, and if it is too long, it will decompose too much and become porous.

〔実施例〕〔Example〕

純度97%、平均粒径約0.4pの炭化けい素粉束に平
均粒径約03虜のアルミナ・マク不ンア・スピネル粉末
を第1表に示す割合で添加し、エチルアルコールを媒体
としてボールミルで撹拌混合した。続いて、この混合粉
末を静水圧プレス成形して10 X20 X50mmの
テスト用成形体を得た。この成形体をアルコンガス通気
中で表に示す条件により焼結して、炭化けい素焼給体を
製造した。得られた各焼結体の特性を第1表に示す。ま
た、比較例として焼結助剤に硼素と炭素を用いた市販品
の炭化けい素焼給体の特性も併せて表に示す。
To a silicon carbide powder bundle with a purity of 97% and an average particle size of about 0.4p, alumina spinel powder with an average particle size of about 0.03p was added in the proportions shown in Table 1, and the mixture was milled in a ball mill using ethyl alcohol as a medium. Stir and mix. Subsequently, this mixed powder was subjected to isostatic press molding to obtain a molded body for testing measuring 10 x 20 x 50 mm. This molded body was sintered under the conditions shown in the table in an atmosphere of Alcon gas to produce a silicon carbide fired body. Table 1 shows the characteristics of each of the obtained sintered bodies. Additionally, as a comparative example, the characteristics of a commercially available silicon carbide sintering body using boron and carbon as sintering aids are also shown in the table.

(以下余白) 第1表 第1図、第2図は実施例No、 5の焼結体の走査型電
子顕微鏡及び光学顕微鏡写真である。これらの写真から
、本発明に係る焼結体は発達した板状の炭化けい素結晶
粒子が交叉した強固な微細組織で構成されていることが
判る。
(The following are blank spaces) Table 1, Figures 1 and 2 are scanning electron microscope and optical microscope photographs of the sintered bodies of Examples No. 5. From these photographs, it can be seen that the sintered body according to the present invention is composed of a strong microstructure in which developed plate-shaped silicon carbide crystal grains intersect.

〔発明の効果〕〔Effect of the invention〕

本発明における炭化けい素焼給体は、従来の硼素、アル
ミニウム、べIJ IJウム等の焼結助剤を添加して常
圧焼結法により得られる焼結体と同程度の特性を有する
と同時に、板状結晶の交叉した強固な微細組織のため、
臨界応力拡大係数(K、、)の高い焼結体となる。この
ため、炭化けい素焼給体としての適用範囲が大幅に拡が
る。また、焼結助剤に関しても従来の常圧焼結法では、
純度、添加量を厳密に制御しないと充分な特性の焼結体
が得られないのに対して、本発明では焼結助剤添加量の
範囲が広く、更に粉体処理中に不可避的に混入する不純
物に対しても大きな影響を受けない。
The silicon carbide sintered body of the present invention has properties comparable to those of conventional sintered bodies obtained by atmospheric pressure sintering by adding sintering aids such as boron, aluminum, aluminum, etc. , due to the strong microstructure of intersecting plate crystals,
This results in a sintered body with a high critical stress intensity factor (K, .). Therefore, the scope of application as a silicon carbide heating element is greatly expanded. In addition, regarding sintering aids, in the conventional pressureless sintering method,
Whereas it is not possible to obtain a sintered body with sufficient properties unless the purity and amount added are strictly controlled, the present invention allows a wide range of the amount of sintering aid added, and furthermore, the amount of sintering aid added is unavoidably mixed during powder processing. It is not significantly affected by impurities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明に係る焼結体の粒=8− 子構造を示す走査型電子顕微鏡写真及び光学顕微鏡写真
である。
FIG. 1 and FIG. 2 are a scanning electron micrograph and an optical micrograph showing the grain = octad structure of the sintered body according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 1.アルミナ・マグネシア・スピネルを炭化けい素との
合量に対し0.3〜35重量%添加してなり、且つ板状
結晶の交叉した微細組織からなる高密度,高強度且つ高
靭性の炭化けい素質焼結体。
1. A high-density, high-strength, and high-toughness silicon carbide material made by adding 0.3 to 35% by weight of alumina, magnesia, and spinel based on the total amount of silicon carbide, and consisting of a microstructure with intersecting plate-like crystals. Sintered body.
2.炭化けい素を主体とする出発原料に、焼結助剤とし
てアルミナ・マグネシア・スピネルを炭化けい素との合
量に対し0.3〜35重量%添加した混合物を形成後、
非酸化性雰囲気中、無加圧、1900〜2300℃の温
度で焼結することを特徴とする炭化けい素質焼結体の製
造方法。
2. After forming a mixture in which 0.3 to 35% by weight of alumina, magnesia, and spinel are added as a sintering aid to the starting material mainly consisting of silicon carbide, based on the total amount of silicon carbide,
A method for producing a silicon carbide sintered body, which comprises sintering in a non-oxidizing atmosphere without pressure at a temperature of 1900 to 2300°C.
JP63057883A 1988-03-10 1988-03-10 Sintered silicon carbide and production thereof Pending JPH01230472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057883A JPH01230472A (en) 1988-03-10 1988-03-10 Sintered silicon carbide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057883A JPH01230472A (en) 1988-03-10 1988-03-10 Sintered silicon carbide and production thereof

Publications (1)

Publication Number Publication Date
JPH01230472A true JPH01230472A (en) 1989-09-13

Family

ID=13068388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057883A Pending JPH01230472A (en) 1988-03-10 1988-03-10 Sintered silicon carbide and production thereof

Country Status (1)

Country Link
JP (1) JPH01230472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006515A1 (en) * 1989-10-26 1991-05-16 Western Mining Corporation Limited DENSE SiC CERAMIC PRODUCTS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006515A1 (en) * 1989-10-26 1991-05-16 Western Mining Corporation Limited DENSE SiC CERAMIC PRODUCTS

Similar Documents

Publication Publication Date Title
US5656218A (en) Method for making high performance self-reinforced silicon carbide using a pressureless sintering process
EP0572484B1 (en) A dense, self-reinforced silicon nitride ceramic prepared by pressureless or low pressure gas sintering
JPH06100370A (en) Silicon nitride sintered compact and its production
JPH1171168A (en) Alumina-based sintered ceramic material and its production
US5545597A (en) Silicon nitride ceramic having high fatigue life and high toughness
US5902542A (en) Method of producing silicon nitride ceramics having thermal high conductivity
US5674793A (en) Method for producing a high-strength, high-toughness silicon nitride sinter
JPH01188454A (en) High strength composite ceramic sintered body
US5449649A (en) Monolithic silicon nitride having high fracture toughness
EP0311289A1 (en) SiC-Al2O3 composite sintered bodies and method of producing the same
JPH01230472A (en) Sintered silicon carbide and production thereof
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH0249266B2 (en)
JP3328280B2 (en) Sintered silicon nitride with high toughness, strength and reliability
US20030134737A1 (en) Silicon nitride substances containing sintering additives and sio2, method for producing them and use of the same
JPH02167857A (en) Highly tough mullite-based calcined body and production thereof
JP3159350B2 (en) Highly dense silicon nitride sintered body and method for producing the same
JP2793635B2 (en) Silicon nitride powder composition
JPS6344713B2 (en)
JPH0559073B2 (en)
JPS63256572A (en) Sic base ceramics and manufacture
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body