JPH01229979A - Impedance measuring apparatus - Google Patents

Impedance measuring apparatus

Info

Publication number
JPH01229979A
JPH01229979A JP5715088A JP5715088A JPH01229979A JP H01229979 A JPH01229979 A JP H01229979A JP 5715088 A JP5715088 A JP 5715088A JP 5715088 A JP5715088 A JP 5715088A JP H01229979 A JPH01229979 A JP H01229979A
Authority
JP
Japan
Prior art keywords
output
sine wave
phase
current
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5715088A
Other languages
Japanese (ja)
Inventor
Hitoshi Kitayoshi
均 北吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP5715088A priority Critical patent/JPH01229979A/en
Priority to US07/284,352 priority patent/US4947130A/en
Priority to DE88121429T priority patent/DE3880648T2/en
Priority to EP88121429A priority patent/EP0321963B1/en
Publication of JPH01229979A publication Critical patent/JPH01229979A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform highly accurate measurement, by adding a current whose phase and amplitude are adjusted at the joint side of an IV converter, offsetting a parasitic current, and effectively utilizing a dynamic range. CONSTITUTION:A sine wave having a phase corresponding to the output of a phase accumulator 22 is generated in a first sine wave generating means. The sine wave is supplied to a test specimen 34. The output current of the test specimen 34 is converted into a voltage in an IV converter 37. The converted output is detected in a vector detector 38. Phase adjusting data are added to the output of the accumulator 22 with a phase adjusting means 55. A sine wave having the phase corresponding to the output of the means 55 is generated in a second sine wave generating means. The amplitude of the output sine wave is adjusted in an amplitude adjusting means 61. The result is supplied to the converter 37 and added to the output of the material to be measured. The means 55 and the means 61 are adjusted, and a current corresponding to a parasitic current is generated. The parasitic current is offset with said current by subtraction in the input side of the converter 37. Only the current to be measured is converted into a voltage. The voltage can be supplied to the means 38, and the measuring accuracy is enhanced.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は測定ダイナミックレンジを拡大して高精度に
インピーダンスを測定することができるインピーダンス
測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an impedance measuring device that can expand the measurement dynamic range and measure impedance with high precision.

「従来の技術」 従来のインピーダンス測定装置を第4図に示す。"Conventional technology" A conventional impedance measuring device is shown in FIG.

方形波発振器11からの方形波は低域通過1p波器12
を通過させられて正弦波とされ、その正弦波は増幅器1
3を通して被測定物14へ供給される。
The square wave from the square wave oscillator 11 is transmitted to the low-pass 1p wave generator 12.
is passed through to become a sine wave, and the sine wave is passed through amplifier 1.
3 to the object to be measured 14.

被測定物14の出力電流は電流電圧変換器15で電圧に
変換され、その出力電圧は、同期検波回路16で方形波
発振器11の出力により同期検波される。その同期検波
出力は積分器17で積分され、その積分出力はAD変換
器18でデジタル信号に変換されて表示器19に表示さ
れる。
The output current of the object to be measured 14 is converted into a voltage by a current-voltage converter 15, and the output voltage is synchronously detected by the output of the square wave oscillator 11 by a synchronous detection circuit 16. The synchronous detection output is integrated by an integrator 17, and the integrated output is converted into a digital signal by an AD converter 18 and displayed on a display 19.

測定回路に寄生容量21が存在する場合、従来において
は被測定物14を接続しない場合の出力を測定し、この
値を、被測定物14を接続した測定結果から差し引いて
いた。しかしこの方式では電流電圧変換器15、同期検
波回路16、積分器17、AD変換器18のダイナミッ
クレンジの制限から、被測定物インピーダンス測定レン
ジ及び解析精度に限界があった。つまり寄生界ft21
を流れる寄生電流に対し、被測定物14を流れる電流が
小さい場合は、電流電圧変換器15、同期検波回路16
、積分器17、AD変換器18における各ダイナミック
レンジに占める寄生電流の割合が大きくなり、測定精度
を低下させていた。
When a parasitic capacitance 21 exists in the measurement circuit, conventionally, the output when the object to be measured 14 is not connected is measured, and this value is subtracted from the measurement result when the object to be measured 14 is connected. However, in this method, the dynamic range of the current-voltage converter 15, synchronous detection circuit 16, integrator 17, and AD converter 18 is limited, so there are limits to the measurement range and analysis accuracy of the impedance of the object to be measured. In other words, parasitic world ft21
When the current flowing through the device under test 14 is smaller than the parasitic current flowing through the current-voltage converter 15 and the synchronous detection circuit 16,
, the integrator 17, and the AD converter 18, the proportion of parasitic currents occupying each dynamic range increases, reducing measurement accuracy.

「課題を解決するための手段」 この発明によればフェーズアキュムレータの出力に応し
た位相をもつ正弦波が第1正弦波発生手段で発生され、
その正弦波が被測定物へ供給され、被測定物の出力電流
はIV変換器で電圧に変換され、その変換出力はベクト
ル検波手段でベクトル検波される。フェーズアキュムレ
ータの出力に位相調整手段により位相調整データが加算
され、その位相調整手段の出力に応じた位相をもつ正弦
波が第2正弦波発生手段で発生され、その出力正弦波の
振幅が振1隔調整手段で調整され、その振幅調整された
正弦波がIV変換器へ供給されて被測定物の出力と加算
される。
"Means for Solving the Problem" According to the present invention, a sine wave having a phase corresponding to the output of the phase accumulator is generated by the first sine wave generating means,
The sine wave is supplied to the object to be measured, the output current of the object to be measured is converted to voltage by an IV converter, and the converted output is vector-detected by vector detection means. The phase adjustment data is added to the output of the phase accumulator by the phase adjustment means, a sine wave having a phase corresponding to the output of the phase adjustment means is generated by the second sine wave generation means, and the amplitude of the output sine wave is The sine wave whose amplitude is adjusted by the interval adjustment means is supplied to the IV converter and added to the output of the object to be measured.

このような構成であるから位相調整手段と振幅調整手段
とを調整して寄生電流と対応した電流を発生させ、これ
をIV変換器の入力側で寄生電流と差引き打消し、測定
したい電流のみを電圧に変換してベクトル検波手段へ供
給することができる。
With such a configuration, the phase adjustment means and the amplitude adjustment means are adjusted to generate a current corresponding to the parasitic current, and this is subtracted and canceled from the parasitic current on the input side of the IV converter, so that only the current to be measured is generated. can be converted into a voltage and supplied to the vector detection means.

「実施例」 この発明ではフェーズアキュムレータ22が設けられる
。フェーズアキュムレータ22は与えられたフェーズイ
ンクリメントデータを累加算して端子23へ出力すると
共に内部の累加算器がオーバーフローするごとに端子2
4にパルスを出力する0発振器25の出力が可変分周器
26でm分の1に分周され、その分周出力がフェーズア
キュムレータ22のクロック端子へ供給される。
Embodiment In this invention, a phase accumulator 22 is provided. The phase accumulator 22 accumulates the given phase increment data and outputs it to the terminal 23, and also outputs the sum to the terminal 23 every time the internal accumulator overflows.
The output of the 0 oscillator 25, which outputs a pulse at 4, is frequency-divided by m by a variable frequency divider 26, and the frequency-divided output is supplied to the clock terminal of the phase accumulator 22.

フェーズアキュムレータ22の累加算出力は正弦波メモ
リ27ヘアドレスとして供給され、正弦波メモリ27の
続出し出力は分周器26の出力クロックでラッチ回路2
8にラッチされ、う・ノチ回路28の出力はDA変換器
29でアナログ正弦波に変換される。つまりDA変換器
29からフェーズアキュムレータ22の出力に応した位
相の正弦波が出力される。この正弦波は低域通過が波器
31を通され、更に増幅器32を通じ、スイッチ33に
より被測定物34と基準抵抗素子35とに切替え供給さ
れる。
The cumulative output of the phase accumulator 22 is supplied as an address to the sine wave memory 27, and the continuous output of the sine wave memory 27 is supplied to the latch circuit 2 using the output clock of the frequency divider 26.
8, and the output of the U-nochi circuit 28 is converted into an analog sine wave by the DA converter 29. That is, the DA converter 29 outputs a sine wave whose phase corresponds to the output of the phase accumulator 22. The low-pass portion of this sine wave is passed through a wave generator 31, further passed through an amplifier 32, and then switched and supplied to an object to be measured 34 and a reference resistance element 35 by a switch 33.

被測定物34の出力電流と基準抵抗素子35の出力電流
とがスイッチ36で切替えられてIV変換器37へ供給
されて電圧に変換される。IV変換器・37の出力はベ
クトル検波手段38へ供給されてベクトル検波される。
The output current of the object to be measured 34 and the output current of the reference resistance element 35 are switched by a switch 36 and supplied to an IV converter 37, where they are converted into a voltage. The output of the IV converter 37 is supplied to vector detection means 38 and subjected to vector detection.

例えばフェーズアキュムレータ22の端子23の出力が
正弦波メモリ39及び余弦波メモリ41へそれぞれアド
レスとして供給され、これらメモリ39.41の読出し
出力は分周器26の出力によりランチ回路42.43に
ラッチされる。ランチ回路42.43の各出力はそれぞ
れ乗算形DA変換器44.45へ供給され、デジタルの
正弦波、余弦波とIV変lIA器37の出力との掛算が
行われると共にアナログ信号に変換される。
For example, the output of the terminal 23 of the phase accumulator 22 is supplied as an address to a sine wave memory 39 and a cosine wave memory 41, respectively, and the readout outputs of these memories 39, 41 are latched by the output of the frequency divider 26 into launch circuits 42, 43. Ru. The outputs of the launch circuits 42 and 43 are respectively supplied to multiplication type DA converters 44 and 45, where the digital sine wave and cosine wave are multiplied by the output of the IV transformer 37 and converted into analog signals. .

乗算形DA変換器44.45の出力はそれぞれスイッチ
46.47を通して積分器48.49へ供給され、正弦
波周期の整数倍の区間積分され、これら積分出力は切替
スイッチ51で切替えられて八り変換器52へ供給され
、AD変換器52の出力は制御器(CPU)53へ供給
され、必要に応じて表示器54に表示される。
The outputs of the multiplication type DA converters 44 and 45 are respectively supplied to integrators 48 and 49 through switches 46 and 47, and are integrated over an interval that is an integral multiple of the sine wave period. The output of the AD converter 52 is supplied to a controller (CPU) 53 and displayed on a display 54 as necessary.

フェーズアキュムレータ22の端子23の出力は位相調
整手段(フェーズシフトアダー)55へ供給され、位相
調整データと加算される。位相調整手段55の出力は正
弦波メモリ56へアドレスとして供給され、正弦波メモ
リ56の読出し出力は分周器26の出力によりラッチ回
路57にラッチされる。ランチ回路57の出力はDA変
換器58でアナログ信号に変換され、その正弦波のアナ
ログ信号は低域通過tア波器59を通じて振幅調整手段
を構成する乗算形DA変換器61の基準入力へ供給され
る。乗算形DA変換器61のデジタル人力には振幅調整
データが供給され、入力の正弦波アナログ信号の振幅が
調整されて出力される。この出力は増幅器62を通じ更
に抵抗器63、スイッチ64を通じてIV変換器37の
入力側へ供給される。
The output of the terminal 23 of the phase accumulator 22 is supplied to a phase adjustment means (phase shift adder) 55 and added to the phase adjustment data. The output of the phase adjustment means 55 is supplied as an address to the sine wave memory 56, and the readout output of the sine wave memory 56 is latched by the latch circuit 57 by the output of the frequency divider 26. The output of the launch circuit 57 is converted into an analog signal by a DA converter 58, and the sine wave analog signal is supplied to the reference input of a multiplication type DA converter 61 constituting amplitude adjustment means through a low-pass t-waver 59. be done. Amplitude adjustment data is supplied to the digital input of the multiplication type DA converter 61, and the amplitude of the input sine wave analog signal is adjusted and output. This output is supplied to the input side of the IV converter 37 through an amplifier 62, a resistor 63, and a switch 64.

増幅器32の出力、IV変換器37の出力、増幅器62
の出力がそれぞれ、検波回路65,66゜67で検波さ
れ、そのレヘルが取出され、これらが切替スイッチ51
を通してAD変lA器52へ供給される。フェーズアキ
ュムレータ22の端子24の出力パルスがシーケンス制
?ra器68へ供給され、シーケンス制御器68の出力
によりスイッチ46゜47、及び積分器48.49の各
リセットスイッチ71.72が制j11され、積分器4
8.49で正弦波周期の整数倍の区間の積分が行われる
。cpu53の出力によりスイッチ33,36,51.
64が制御され、また振幅調整データ、位相調整データ
が制御される。
Output of amplifier 32, output of IV converter 37, amplifier 62
The outputs of are detected by the detection circuits 65, 66 and 67, respectively, and their levels are taken out, and these are sent to the selector switch 51.
The signal is supplied to the AD converter 52 through the A/D converter 52. Is the output pulse of the terminal 24 of the phase accumulator 22 in sequence? The output from the sequence controller 68 controls the switches 46 and 47 and the reset switches 71 and 72 of the integrators 48 and 49.
8.49, integration is performed over an interval that is an integral multiple of the sine wave period. Switches 33, 36, 51 .
64 is controlled, and amplitude adjustment data and phase adjustment data are also controlled.

以下各種場合における測定手順を説明する。第2図Aに
示すように被測定物34が容量素子であり、その容量C
8が、測定系の寄生容量Ctより小さい場合、 被測定物34を取外し、開放状態とし、スイッチ33.
36をM側とし、スイッチ64をオンとして、積分器4
8.49の各出力V、、V、がゼロとなるように位相調
整データ及び振幅調整データをCPU53で調整する。
The measurement procedures in various cases will be explained below. As shown in FIG. 2A, the object to be measured 34 is a capacitive element, and its capacitance C
8 is smaller than the parasitic capacitance Ct of the measurement system, the object to be measured 34 is removed and the switch 33.8 is opened.
36 to the M side, switch 64 is turned on, and integrator 4
The CPU 53 adjusts the phase adjustment data and amplitude adjustment data so that each output V, , V, of 8.49 becomes zero.

これにより寄生容量Cfを流れる電流ベクトルは増幅器
62の出力電流により打消される。従ってこの状態で被
測定物34を接続すれば被測定物34を流れる電流のみ
がIV変換器37で電圧に変換されることになる。
As a result, the current vector flowing through the parasitic capacitance Cf is canceled by the output current of the amplifier 62. Therefore, if the object to be measured 34 is connected in this state, only the current flowing through the object to be measured 34 will be converted into voltage by the IV converter 37.

第2図Bに示すように評価したい容量C,に対し、寄生
コンダクタンスGが並列に接続され、G>>ωC(ωは
測定角周波数)の場合、スイッチ33.36をC側(基
準抵抗素子35側)とし、スイッチ64をオンとする0
位相調整データ及び振幅調整データをCPU53により
制御して積分器48.49の出力V、、V、が共にゼロ
になるように調整する。つまり電流ベクトルの角度がゼ
ロの状態を検出している。この時の位相調整データをθ
。、振幅調整データをAoとする。
As shown in Fig. 2B, when a parasitic conductance G is connected in parallel to the capacitance C to be evaluated, and G>>ωC (ω is the measurement angular frequency), switch 33 and 36 are set to the C side (reference resistance element 35 side) and turn on the switch 64.
The phase adjustment data and amplitude adjustment data are controlled by the CPU 53 so that the outputs V, , V, of the integrators 48, 49 are both adjusted to zero. In other words, a state in which the angle of the current vector is zero is detected. The phase adjustment data at this time is θ
. , the amplitude adjustment data is Ao.

次にスイッチ33.36をM側(被測定物34側)とし
、振幅調整データAのみをCPII53により調整して
IV変換器37の出力■、が十分小さくなるようにする
。つまり寄生コンダクタンスGの成分による電流を増幅
器62の出力により打消す。
Next, the switches 33 and 36 are set to the M side (device under test 34 side), and only the amplitude adjustment data A is adjusted by the CPII 53 so that the output (2) of the IV converter 37 becomes sufficiently small. In other words, the current due to the parasitic conductance G component is canceled by the output of the amplifier 62.

この時観測される積分器48.49の各出力V4+V、
より、次式からC,、Gは求まる。
Each output V4+V of the integrator 48 and 49 observed at this time,
Therefore, C, , G can be found from the following equation.

■。■.

CX= Vl ・K −R,・ω V+’R−・K    Z rA 。CX= Vl ・K −R,・ω V+'R-・K   Z rA .

■1は増幅器32の出力レヘル、Kは検波・積分利得、
R1はIV変換器37の帰還抵抗器73の抵抗値、Zl
は基準抵抗素子35の抵抗値である。Aが■、を最小に
するように調整されていれば積分器48の出力v4はほ
ぼゼロであり、Z、   AO となる。
■1 is the output level of the amplifier 32, K is the detection/integral gain,
R1 is the resistance value of the feedback resistor 73 of the IV converter 37, Zl
is the resistance value of the reference resistance element 35. If A is adjusted to minimize {circle around (2)}, the output v4 of the integrator 48 will be almost zero, and Z, AO.

第2図Cに示すように寄生容1cと評価したいコンダク
タンスG、とが並列に接続され、C8<<ωCである場
合、 スイッチ33.36をC側とし、スイッチ64をオンと
して位相調整データと振幅調整データとをCPU53に
より調整して、積分器出力Va、Vsがゼロになるよう
にする。つまり電流ベクトルの角度がゼロの状態を求め
る。この時の位相調整データをθ。、振幅調整データを
A、とする。スイッチ33.36をM側とし、位相調整
データをθ。+90度に設定する。振幅調整データAの
みをCPU53により調整してV、を十分小さくする。
As shown in Fig. 2C, when the parasitic capacitance 1c and the conductance G to be evaluated are connected in parallel, and C8<<ωC, switch 33, 36 is set to the C side, switch 64 is turned on, and the phase adjustment data is output. The CPU 53 adjusts the amplitude adjustment data so that the integrator outputs Va and Vs become zero. In other words, find a state where the angle of the current vector is zero. The phase adjustment data at this time is θ. , the amplitude adjustment data is A. Switches 33 and 36 are set to the M side, and the phase adjustment data is set to θ. Set to +90 degrees. Only the amplitude adjustment data A is adjusted by the CPU 53 to make V sufficiently small.

つまり寄生容1cを流れる電流を増幅器64の出力電流
で打消す、この時観測されるV4 、VSより C8−= ■ 1  ・ R1・ K Vl   ・ R,・ K  ・ ω        
Zr  ・ ω   A。
In other words, the current flowing through the parasitic capacitance 1c is canceled by the output current of the amplifier 64, and from the V4 and VS observed at this time, C8-= ■ 1 ・ R1 ・ K Vl ・ R, ・ K ・ ω
Zr・ωA.

が求まる。is found.

フェーズアキュムレータ22のビット数をIn、フェー
ズインクリメントデータの設定値をnいフェーズアキュ
ムレータ22の入カクロノクの周波数をf s  (f
lz)とすると、測定角周波数ωはω= −・2πft
  (rad / 5ec)2m となり、nlを変化することにより、測定角周波数ωを
変化させることができる9位相調整データのビット数を
02とし、位相調整手段(位相シフトアダー)55のビ
ット数をrとすると、位相シフト盪θは θ−X 360 (deg) r となり、高分解能、高確度で位相を調整することができ
る。
The number of bits of the phase accumulator 22 is In, the setting value of the phase increment data is n, and the frequency of the input pulse of the phase accumulator 22 is fs (f
lz), then the measured angular frequency ω is ω= −・2πft
(rad/5ec)2m, and by changing nl, the measured angular frequency ω can be changed.9 The number of bits of the phase adjustment data is 02, and the number of bits of the phase adjustment means (phase shift adder) 55 is r. Then, the phase shift θ becomes θ−X 360 (deg) r, and the phase can be adjusted with high resolution and high accuracy.

第3図に示すように電流加算ベクトルの振幅値をアナロ
グ帰還により制御してもよい。つまり検波回路66の出
力によりその出力が最小になるように電ti電圧変換の
係数が制御される。
As shown in FIG. 3, the amplitude value of the current addition vector may be controlled by analog feedback. In other words, the coefficient of voltage conversion is controlled by the output of the detection circuit 66 so that the output is minimized.

「発明の効果」 以上述べたように、この発明によれば、位相調整及び振
幅調整された電流をIV変換器37の入力側で加算する
ことにより寄生電流を打消しているため、1■変換器3
7、ベクトル検波手段38などでは測定したい電流のみ
が供給され、そのグイナミノクレンジを有効に利用する
ことができ、高い精度の測定が可能となる。
"Effects of the Invention" As described above, according to the present invention, the parasitic current is canceled by adding the phase-adjusted and amplitude-adjusted currents on the input side of the IV converter 37. Vessel 3
7. Only the current to be measured is supplied to the vector detection means 38, etc., and its Guinami no clean range can be effectively utilized, allowing highly accurate measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるインピーダンス測定装置の一例
を示すブロック図、第2図は各種の被測定物を示す図、
第3図はこの発明の一部変形例を示すブロック図、第4
図は従来のインピーダンス測定装置を示すブロック図で
ある。
FIG. 1 is a block diagram showing an example of an impedance measuring device according to the present invention, FIG. 2 is a diagram showing various objects to be measured,
FIG. 3 is a block diagram showing a partial modification of the present invention, and FIG.
The figure is a block diagram showing a conventional impedance measuring device.

Claims (1)

【特許請求の範囲】[Claims] (1)フェーズアキュムレータと、 そのフェーズアキュムレータの出力に応じた位相をもつ
正弦波を発生して被測定物に印加する第1正弦波発生手
段と、 上記被測定物の出力電流を電圧に変換するIV変換器と
、 そのIV変換器の出力をベクトル検波するベクトル検波
手段と、 上記フェーズアキュムレータの出力に位相調整データを
加算する位相調整手段と、 その位相調整手段の出力に応じた位相をもつ正弦波を発
生する第2正弦波発生手段と、 その第2正弦波発生手段の出力正弦波電流の振幅を振幅
調整データで調整する振幅調整手段と、その振幅調整手
段の出力を上記IV変換器へ供給して上記被測定物の出
力に加算する加算手段とを具備するインピーダンス測定
装置。
(1) a phase accumulator; a first sine wave generating means for generating a sine wave with a phase corresponding to the output of the phase accumulator and applying it to the object to be measured; and converting the output current of the object to be measured into a voltage; an IV converter, a vector detection means for vector detection of the output of the IV converter, a phase adjustment means for adding phase adjustment data to the output of the phase accumulator, and a sine whose phase corresponds to the output of the phase adjustment means. a second sine wave generation means for generating a wave; an amplitude adjustment means for adjusting the amplitude of the output sine wave current of the second sine wave generation means with amplitude adjustment data; and an output of the amplitude adjustment means to the IV converter. an impedance measuring device comprising an adding means for supplying the output and adding it to the output of the object to be measured.
JP5715088A 1987-12-23 1988-03-09 Impedance measuring apparatus Pending JPH01229979A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5715088A JPH01229979A (en) 1988-03-09 1988-03-09 Impedance measuring apparatus
US07/284,352 US4947130A (en) 1987-12-23 1988-12-14 Impedance measuring apparatus
DE88121429T DE3880648T2 (en) 1987-12-23 1988-12-21 Impedance meter.
EP88121429A EP0321963B1 (en) 1987-12-23 1988-12-21 Impedance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5715088A JPH01229979A (en) 1988-03-09 1988-03-09 Impedance measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01229979A true JPH01229979A (en) 1989-09-13

Family

ID=13047538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5715088A Pending JPH01229979A (en) 1987-12-23 1988-03-09 Impedance measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01229979A (en)

Similar Documents

Publication Publication Date Title
US7555394B2 (en) Measuring circuit and a method for determining a characteristic of the impedance of a complex impedance element for facilitating characterization of the impedance thereof
US4669024A (en) Multiphase frequency selective phase locked loop with multiphase sinusoidal and digital outputs
EP0321963B1 (en) Impedance measuring apparatus
JP2554511B2 (en) Vector ammeter
JPS5875074A (en) Measuring device for capacity or other parameter
JP2999468B2 (en) Method and apparatus for discrete time measurement of reactance
US4728884A (en) Infinite dynamic range phase detector
JPH0132692B2 (en)
JP2846926B2 (en) Impedance measuring device
JPH01229979A (en) Impedance measuring apparatus
JP2787078B2 (en) measuring device
US6384657B1 (en) Phase startable clock device having improved stability
JP2002300036A (en) Method and device for measuring ratio of amplification factor of signal standard unit
JP2589817Y2 (en) LCR tester
JPH01167679A (en) Impedance measuring instrument
JP2889263B2 (en) Impedance measuring device
JPH0711544B2 (en) Electronic phase shift circuit and electronic reactive energy meter
JP2007170891A (en) Arithmetic unit and testing apparatus
JP3171466B2 (en) Vector voltage ratio measuring method and vector voltage ratio measuring device
JP3189866B2 (en) Resistance meter calibration device
JPH01176949A (en) Transient impedance measuring instrument
JP2005189184A (en) Automatic balanced circuit for measuring impedance
JP3053002B2 (en) Frequency measurement method and device
JP2787076B2 (en) Impedance measuring device
JP2802323B2 (en) Vector detector