JPH0122870B2 - - Google Patents

Info

Publication number
JPH0122870B2
JPH0122870B2 JP56023154A JP2315481A JPH0122870B2 JP H0122870 B2 JPH0122870 B2 JP H0122870B2 JP 56023154 A JP56023154 A JP 56023154A JP 2315481 A JP2315481 A JP 2315481A JP H0122870 B2 JPH0122870 B2 JP H0122870B2
Authority
JP
Japan
Prior art keywords
weight
composition
vec
vinyl
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56023154A
Other languages
Japanese (ja)
Other versions
JPS57137340A (en
Inventor
Masashi Kinoshita
Muneo Koyama
Kei Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2315481A priority Critical patent/JPS57137340A/en
Publication of JPS57137340A publication Critical patent/JPS57137340A/en
Publication of JPH0122870B2 publication Critical patent/JPH0122870B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高電圧ケーブルの半導電層として使用
される半導電性樹脂組成物に関するものである。 高電圧ケーブルの絶縁層の周上には電界緩和の
目的から半導電性を有するゴムやプラスチツク配
合物層が被覆されている。この種の被覆材を構成
する半導電性樹脂組成物としては本来の目的であ
る電界緩和に適した導電性を有していることが第
一に要求されるが、その他に強度、耐油性、耐熱
性、低温可撓性が必要である。更にケーブルは連
続的に生産されるので生産性の良い配合が望ま
れ、又ケーブルの敷設工事の作業能率上絶縁層で
あるポリエチレン層に対する剥離性の良いものが
望まれていた。 従来、この種の組成物として酢酸ビニル含量50
重量%以下のエチレン−酢酸ビニル共重合体、エ
チレン−エチルアクリレート共重合体等のエチレ
ン共重合体に導電性カーボンブラツクを配合した
ものが用いられてきた。しかし、周知のとおりこ
の組成物は絶縁層であるポリエチレンと組成が類
似しているため、剥離性が悪く、又耐油性も著し
く劣るという欠点を有していた。この点を改良す
るため種々の技術が提案されている。 例えば特公昭49−19907にはエチレン−酢酸ビ
ニル共重合体(以下、EVAと略す)とEVAに塩
化ビニルをグラフトしたグラフトポリマーとのブ
レンド物を過酸化物で架橋する組成物が開示され
ている。このものは剥離性が改良されるが、耐油
性が悪く、又架橋化工程が必要であるので生産効
率が悪いという欠点がある。 又、本発明者らは耐油性及び剥離性を改良する
ため既に特願昭50−41830でEVA配合物を過酸化
物で架橋する組成物を提案している。しかし、こ
の組成物は架橋化工程を不可欠とするものであり
生産効率が悪いという欠点がある。 本発明は従来の組成物が有する欠点を改良し、
耐油性、耐熱性、剥離性及び生産性の良い高電圧
ケーブル用半導電樹脂組成物の提供を目的として
いる。 即ち、本発明はビニルエステル含量が55〜80重
量%であるビニルエステル−エチレン共重合体
(以下VEと略す)35〜65重量部の存在下で塩化ビ
ニルを35〜65重量部重合して得られるビニルエス
テル−エチレン−塩化ビニルグラフトポリマー
(以下VECと略)と安定剤2〜10重量部及ぎ導電
性フイラー30〜80重量部から成る高電圧ケーブル
用半導電性樹脂組成物に関するものである。 本発明の組成物中のVECは例えばVEを塩化ビ
ニルモノマー中に溶解させ、有機過酸化物等のラ
ジカル発生触媒を用いて合成されるものでその性
質はVEのビニルエステル含量と分子量及びVEC
中の塩化ビニル結合量によつて大きく左右され
る。 VEのビニルエステル含量はケン化価により評
価されるが、55〜80重量%に制限される。かかる
ビニルエステル含量が55重量%未満では耐油性が
悪く、80重量%より多いと耐寒性が悪くなる。 VEの分子量はムーニー粘度(JIS K6300)で
評価するが導電性フイラーを多く配合するために
10以上が好ましく、又混練加工性の点から60以下
が好ましい。 ビニルエステルとしては酢酸ビニルが経済的で
あるが、プロピオン酸ビニル、ラウリル酸ビニ
ル、バーサチツク酸ビニル等の公知のビニルエス
テルの1種又は2種以上を併用してもよい。更に
本発明の目的の範囲内で他の共重合可能なモノマ
ーを併用してもよい。 本発明のVEC中の塩化ビニル含量は35〜65重
量%に制限される。35重量%未満では強度が十分
でなく、又剥離性が悪くなる。又、65重量%より
多いと柔軟性が不足し、耐寒性が悪くなる。 本発明の目的を損わない範囲で塩化ビニルをグ
ラフト重合する際エチレン、イソブチレン、アク
リル酸エステル、ビニルエーテル等の塩化ビニル
と共重合可能なモノマーを共重合しても良い。又
VECの塩化ビニル重合体の重合度は特に制限さ
れないが、通常800〜2000のものが使用される。 本発明のVECは塊状、乳化、溶液重合でも合
成可能であるが、懸濁重合が経済的に有利であ
る。又、VECに用いるVEは塊状、溶液、懸濁重
合でも合成可能であるが高分子量のVEを作るた
め乳化重合が有利である。 本発明の安定剤としてはステアリン酸バリウ
ム、ステアリン酸亜鉛、ラウリル酸カルシウム等
の金属石ケン類、ステアリン酸鉛、二塩基性ステ
アリン酸鉛、三塩基性硫酸鉛等の鉛安定剤、トリ
ノニルフエニルフオスフアイト等のリン酸系安定
剤、ジチオカルバミン酸ニツケル、ジチオカルバ
ミン酸亜鉛等のチオカルバミン酸金属、ポリカル
ボジイミド、2−メルカプトイミダゾール、ター
シヤリーブチルヒドロキシトルエン、フエニルα
−ナフチルアミン、エポキシ樹脂、エポキシ化大
豆油、エポキシ化アマニ油等のエポキシ基を含む
安定剤等が挙げられ、それらの1種又は2種以上
で用いられる。これらの安定剤のうちエポキシ基
含有安定剤は耐熱性の向上に特に有用であり、常
に添加するのが好ましい。安定剤の添加量は実質
的にVEC100重量部に対して2〜10重量部であ
る。 本発明の導電性フイラーとしてはアセチレンブ
ラツク、フアーネスブラツク等の導電性カーボン
或いは銀粉等の金属粉が挙げられる。その配合量
は実質的にVEC100重量部に対して30〜80重量部
である。 本発明の組成物には発明の効果を失わない範囲
内で塩化ビニル樹脂、エチレン/酢酸ビニル樹
脂、塩素化ポリエチレン、クロルスルホン化ポリ
エチレン、ウレタンゴム、天然ゴム等の熱可塑プ
ラスチツク、ゴムを併用できる。 又、必要に応じて難燃剤、可塑剤を添加しても
よい。更に過酸化物を配合したり、電子線照射に
より架橋することも禁ずるものではない。 かくして得られた本発明組成物は耐油性、耐熱
性、剥離性及び生産性に優れ、高電圧ケーブルの
半導電層に用いられる。 以下に実施例を挙げて本発明を更に具体的に説
明する。例中の部および%は重量部および重量%
である。 実施例 1 VEC 100部 エチレン含量 酢酸ビニル含量 塩化ビニル含量 〔ムーニ粘度 20% 31 49 15〕 三塩基性硫酸鉛 3 ステアリン酸鉛 1 エポキシ化大豆油 3 アセチレンブラツク 50 この配合物を6インチロールで165℃×7分間
混練し、それを170℃×7分間プレスして試験片
を作成した。結果を表1に示す。 比較例 1 EVA 100部 エチレン含量 酢酸ビニル含量 〔メルトインデツクス 70% 30 5〕 ステアリン酸亜鉛 1 ジクミルパーオキサイド 1.5 アセチレンブラツク 50 この配合物を6インチロールで70℃×25分間混
練し、それを180℃×10分間プレスして試験片を
作成した。物性等の結果を表1に示す。
The present invention relates to a semiconductive resin composition used as a semiconductive layer of a high voltage cable. The circumference of the insulating layer of the high voltage cable is coated with a semiconductive rubber or plastic compound layer for the purpose of mitigating the electric field. The semiconductive resin composition that constitutes this type of coating material is primarily required to have conductivity suitable for electric field relaxation, which is the original purpose, but it is also required to have strength, oil resistance, Heat resistance and low temperature flexibility are required. Furthermore, since cables are produced continuously, a composition with good productivity is desired, and from the viewpoint of work efficiency in cable laying work, a material with good peelability from the polyethylene layer, which is an insulating layer, is desired. Conventionally, this type of composition has a vinyl acetate content of 50
Ethylene copolymers, such as ethylene-vinyl acetate copolymers and ethylene-ethyl acrylate copolymers, blended with conductive carbon black in an amount less than % by weight have been used. However, as is well known, this composition has a similar composition to the polyethylene of the insulating layer, and therefore has the drawbacks of poor removability and extremely poor oil resistance. Various techniques have been proposed to improve this point. For example, Japanese Patent Publication No. 49-19907 discloses a composition in which a blend of an ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVA) and a graft polymer obtained by grafting vinyl chloride to EVA is crosslinked with peroxide. . Although this product has improved releasability, it has the drawbacks of poor oil resistance and poor production efficiency since it requires a crosslinking step. In addition, the present inventors have already proposed a composition in which an EVA compound is crosslinked with peroxide in Japanese Patent Application No. 41830/1983 in order to improve oil resistance and peelability. However, this composition requires a crosslinking step and has the disadvantage of poor production efficiency. The present invention improves the drawbacks of conventional compositions,
The purpose of the present invention is to provide a semiconductive resin composition for high voltage cables that has good oil resistance, heat resistance, peelability, and productivity. That is, the present invention is produced by polymerizing 35 to 65 parts by weight of vinyl chloride in the presence of 35 to 65 parts by weight of a vinyl ester-ethylene copolymer (hereinafter abbreviated as VE) having a vinyl ester content of 55 to 80% by weight. This invention relates to a semiconductive resin composition for high-voltage cables comprising a vinyl ester-ethylene-vinyl chloride graft polymer (hereinafter abbreviated as VEC), 2 to 10 parts by weight of a stabilizer, and 30 to 80 parts by weight of a conductive filler. . The VEC in the composition of the present invention is synthesized, for example, by dissolving VE in vinyl chloride monomer and using a radical generating catalyst such as an organic peroxide, and its properties are determined by the vinyl ester content and molecular weight of VE and the VEC.
It is greatly influenced by the amount of vinyl chloride bonds in it. The vinyl ester content of VE is evaluated by saponification value and is limited to 55-80% by weight. If the vinyl ester content is less than 55% by weight, oil resistance will be poor, and if it is more than 80% by weight, cold resistance will be poor. The molecular weight of VE is evaluated using Mooney viscosity (JIS K6300), but in order to incorporate a large amount of conductive filler,
It is preferably 10 or more, and preferably 60 or less from the viewpoint of kneading processability. Vinyl acetate is economical as the vinyl ester, but one or more known vinyl esters such as vinyl propionate, vinyl laurate, and vinyl versatate may be used in combination. Furthermore, other copolymerizable monomers may be used in combination within the scope of the purpose of the present invention. The vinyl chloride content in the VEC of the present invention is limited to 35-65% by weight. If it is less than 35% by weight, the strength will not be sufficient and the releasability will be poor. Moreover, if it exceeds 65% by weight, flexibility will be insufficient and cold resistance will deteriorate. When graft polymerizing vinyl chloride, monomers copolymerizable with vinyl chloride such as ethylene, isobutylene, acrylic ester, vinyl ether, etc. may be copolymerized within a range that does not impair the purpose of the present invention. or
The degree of polymerization of the vinyl chloride polymer of VEC is not particularly limited, but a degree of polymerization of 800 to 2000 is usually used. Although the VEC of the present invention can be synthesized by bulk, emulsion, or solution polymerization, suspension polymerization is economically advantageous. Furthermore, although VE used in VEC can be synthesized by bulk, solution, or suspension polymerization, emulsion polymerization is advantageous in order to produce high molecular weight VE. Stabilizers used in the present invention include metal soaps such as barium stearate, zinc stearate, and calcium laurate; lead stabilizers such as lead stearate, dibasic lead stearate, and tribasic lead sulfate; Phosphoric acid stabilizers such as enyl phosphite, metal thiocarbamates such as nickel dithiocarbamate and zinc dithiocarbamate, polycarbodiimide, 2-mercaptoimidazole, tert-butylhydroxytoluene, phenyl α
- Stabilizers containing epoxy groups such as naphthylamine, epoxy resins, epoxidized soybean oil, and epoxidized linseed oil are listed, and one or more of these may be used. Among these stabilizers, epoxy group-containing stabilizers are particularly useful for improving heat resistance, and are preferably always added. The amount of stabilizer added is substantially 2 to 10 parts by weight per 100 parts by weight of VEC. Examples of the conductive filler of the present invention include conductive carbon such as acetylene black and furnace black, and metal powder such as silver powder. The blending amount is substantially 30 to 80 parts by weight per 100 parts by weight of VEC. Thermoplastics and rubbers such as vinyl chloride resin, ethylene/vinyl acetate resin, chlorinated polyethylene, chlorosulfonated polyethylene, urethane rubber, and natural rubber can be used in combination with the composition of the present invention within a range that does not impair the effects of the invention. . Further, flame retardants and plasticizers may be added as necessary. Furthermore, it is not prohibited to mix a peroxide or to crosslink by electron beam irradiation. The composition of the present invention thus obtained has excellent oil resistance, heat resistance, peelability, and productivity, and is used for semiconducting layers of high voltage cables. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Parts and percentages in examples are parts and percentages by weight.
It is. Example 1 VEC 100 parts Ethylene content Vinyl acetate content Vinyl chloride content [Mouni viscosity 20% 31 49 15] Tribasic lead sulfate 3 Lead stearate 1 Epoxidized soybean oil 3 Acetylene black 50 This mixture was rolled into a 6-inch roll for 165 The mixture was kneaded at 170°C for 7 minutes and then pressed at 170°C for 7 minutes to prepare a test piece. The results are shown in Table 1. Comparative Example 1 EVA 100 parts Ethylene content Vinyl acetate content [melt index 70% 30 5] Zinc stearate 1 Dicumyl peroxide 1.5 Acetylene black 50 This mixture was kneaded with a 6-inch roll at 70°C for 25 minutes, and then A test piece was prepared by pressing at 180°C for 10 minutes. Table 1 shows the results of physical properties, etc.

【表】 なお、物性の測定に用いた試験法は以下の通り
である。 体積抵抗:日本ゴム協会規格SRIS−2301 抗張力:JIS K−6723 伸び:JIS K−6723 耐油性:JIS K−6723 (絶縁油2号、70℃、4hrs) 耐熱性:JIS K−6723 (ギヤーオーブン120℃、168hrs) 耐寒性:低温巻付け法:−15゜×1hr浸漬後直径2
cmの金属棒に巻き付けクラツクが生じないもの
を合格とする。 剥離性:ジクミルパーオキサイドを2%含有させ
たポリエチレンシート(厚さ1mm)に組成物の
配合シート(厚さ1mm)を貼り合せ、180℃×
10分間プレス架橋を行い、これを180℃剥離試
験(引張速度10mm/分)した。 実施例 2〜4 実施例1のVECの代りに塩化ビニル分量を60
重量%としたVECを用いた組成物を実施例2、
VE中のビニルエステル分量を65重量%とした
VECを用いた組成物を実施例3、VEのムーニー
粘度を30としたVECを用いた組成物を実施例4
とし、それぞれの組成物を用いて以下実施例1と
同様に行なつた。 比較例 2〜5 実施例1のVECの代りに塩化ビニル分量を80
重量%としたVECを用いた組成物を比較例2、
VE中のビニルエステル含量を45重量%とした
VECを用いた組成物を比較例3、VEのムーニー
粘度が5のVECを用いた比較例を4、VE中のビ
ニルエステル含量を85重量%としたVECを用い
た組成物を比較例5とし、以下実施例1と同様に
行なつた。 特性等の結果を表2及び3に示す。 実施例のものは比較例のものと比べて、耐油
性、耐熱性、剥離性、生産性の何れもバランスよ
く優れていることがわかる。
[Table] The test methods used to measure the physical properties are as follows. Volume resistance: Japan Rubber Association standard SRIS-2301 Tensile strength: JIS K-6723 Elongation: JIS K-6723 Oil resistance: JIS K-6723 (Insulating oil No. 2, 70℃, 4hrs) Heat resistance: JIS K-6723 (Gear oven 120℃, 168hrs) Cold resistance: Low temperature winding method: -15゜×1hr diameter after soaking 2
If it is wrapped around a cm metal rod and no cracks occur, it will pass. Peelability: A sheet containing the composition (1 mm thick) was laminated to a polyethylene sheet (1 mm thick) containing 2% dicumyl peroxide, and heated at 180°C.
Press crosslinking was performed for 10 minutes, and this was subjected to a 180°C peel test (tensile speed 10 mm/min). Examples 2 to 4 In place of VEC in Example 1, the amount of vinyl chloride was 60
Example 2 shows a composition using VEC as % by weight.
The vinyl ester content in VE was set to 65% by weight.
Example 3 is a composition using VEC, and Example 4 is a composition using VEC with a Mooney viscosity of VE of 30.
The following procedure was carried out in the same manner as in Example 1 using each composition. Comparative Examples 2 to 5 In place of VEC in Example 1, the amount of vinyl chloride was 80
Comparative Example 2, a composition using VEC expressed as % by weight
Vinyl ester content in VE was set to 45% by weight
Comparative Example 3 is a composition using VEC, Comparative Example 4 is a composition using VEC with a Mooney viscosity of 5, and Comparative Example 5 is a composition using VEC in which the vinyl ester content in VE is 85% by weight. The following steps were carried out in the same manner as in Example 1. The results of characteristics etc. are shown in Tables 2 and 3. It can be seen that the samples of Examples are superior in oil resistance, heat resistance, releasability, and productivity in a well-balanced manner compared to those of Comparative Examples.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ビニルエステル含量が55〜80重量%であるビ
ニルエステルーエチレン共重合体35〜65重量部の
存在下で塩化ビニルを35〜65重量部重合して得ら
れるビニルエステルーエチレン−塩化ビニルグラ
フト共重合体に安定剤2〜10重量部及び導電性フ
イラー30〜80重量部を配合して成ることを特徴と
する高電圧ケーブル用半導電性樹脂組成物。
1 Vinyl ester-ethylene-vinyl chloride graft copolymer obtained by polymerizing 35 to 65 parts by weight of vinyl chloride in the presence of 35 to 65 parts by weight of a vinyl ester-ethylene copolymer having a vinyl ester content of 55 to 80% by weight. 1. A semiconductive resin composition for a high voltage cable, comprising a polymer, 2 to 10 parts by weight of a stabilizer, and 30 to 80 parts by weight of a conductive filler.
JP2315481A 1981-02-20 1981-02-20 Semiconducting resin composition Granted JPS57137340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2315481A JPS57137340A (en) 1981-02-20 1981-02-20 Semiconducting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315481A JPS57137340A (en) 1981-02-20 1981-02-20 Semiconducting resin composition

Publications (2)

Publication Number Publication Date
JPS57137340A JPS57137340A (en) 1982-08-24
JPH0122870B2 true JPH0122870B2 (en) 1989-04-28

Family

ID=12102665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315481A Granted JPS57137340A (en) 1981-02-20 1981-02-20 Semiconducting resin composition

Country Status (1)

Country Link
JP (1) JPS57137340A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205441A (en) * 1981-06-10 1982-12-16 Sumitomo Chem Co Ltd Electrically conductive vinyl chloride resin composition
JPS60186557A (en) * 1984-03-06 1985-09-24 Victor Co Of Japan Ltd Electrically-conductive resin composition and recording medium of information signal
JPS6076552A (en) * 1984-08-30 1985-05-01 Tokuyama Sekisui Kogyo Kk Electrically conductive resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127456A (en) * 1979-03-26 1980-10-02 Sumitomo Bakelite Co Ltd Thermoplastic resin composition
JPS5662846A (en) * 1979-10-29 1981-05-29 Mitsubishi Petrochem Co Ltd Semiconductive resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127456A (en) * 1979-03-26 1980-10-02 Sumitomo Bakelite Co Ltd Thermoplastic resin composition
JPS5662846A (en) * 1979-10-29 1981-05-29 Mitsubishi Petrochem Co Ltd Semiconductive resin composition

Also Published As

Publication number Publication date
JPS57137340A (en) 1982-08-24

Similar Documents

Publication Publication Date Title
JP4074681B2 (en) Flame retardant halogen-free composition
US8546692B2 (en) Strippable semiconductive composition comprising low melt temperature polyolefin
US5889117A (en) Polymeric compositions for power cables
JP2012057080A (en) Composition for wire coating material, insulated wire, and wire harness
KR20110076983A (en) Semiconducting composition for electric cables
JP2655996B2 (en) Cross-linked flame-retardant resin composition and cross-linked flame-retardant insulated wire using the same
WO2020229659A1 (en) Compositions comprising ldpe and functionalised polyolefins
CA2114552C (en) Moisture resistant thermoset cable jacket
JPH0216137A (en) Stabilization of crosslinked vldpe
JPH0122870B2 (en)
CN104877287B (en) For the crosslinkable polymer mixture of cable and the shell of wire
US6506841B2 (en) Composition having improved thermomechanical properties, and a method of cross-linking it
JP4737362B2 (en) Ethylene-vinyl acetate copolymer and flame retardant resin composition
JP4070006B2 (en) Fluorine-containing elastomer composition
JPS5810801B2 (en) Semiconductive resin composition with improved peelability
JP2012074182A (en) Insulated electric wire
JPS6210254B2 (en)
JP2606334B2 (en) Flame retardant wires and cables
JPH0310662B2 (en)
JPS6046486B2 (en) electrical insulation
JPS6032643B2 (en) Method for producing crosslinked molded product of polymethylene rubber composition containing chlorine
JPH0520933A (en) Heat-resistant elastomer coated cable
JPS63308054A (en) Flame-retardant chlorinated polyethylene composition
JPH052922A (en) Electric wire insulated with fluorine-containing resilient material
JPH02216704A (en) Insulated cable coated with elastomer containing fluorine