JPH01222254A - Photoresist composition - Google Patents

Photoresist composition

Info

Publication number
JPH01222254A
JPH01222254A JP4757088A JP4757088A JPH01222254A JP H01222254 A JPH01222254 A JP H01222254A JP 4757088 A JP4757088 A JP 4757088A JP 4757088 A JP4757088 A JP 4757088A JP H01222254 A JPH01222254 A JP H01222254A
Authority
JP
Japan
Prior art keywords
group
formulas
siloxane polymer
polymer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4757088A
Other languages
Japanese (ja)
Other versions
JP2700655B2 (en
Inventor
Tadayoshi Kokubo
小久保 忠嘉
Kazuya Uenishi
一也 上西
Saburo Imamura
三郎 今村
Haruyori Tanaka
啓順 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Fuji Photo Film Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63047570A priority Critical patent/JP2700655B2/en
Publication of JPH01222254A publication Critical patent/JPH01222254A/en
Application granted granted Critical
Publication of JP2700655B2 publication Critical patent/JP2700655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Abstract

PURPOSE:To obtain the title composition which has a high accuracy and reproducibility and a high oxygen plasma durability by incorporating a photosensitive siloxane polymer obtd. by condensing a quinone diazide compd. with a hydroxyl group contd. in a specified alkali soluble siloxane polymer, in the composition. CONSTITUTION:The photosensitive siloxane polymer obtd. by condensing the quinone diazide compd. with the hydroxyl group contd. in the alkali soluble siloxane polymer contg. at least one of repeating units shows by formulas I and II, is incorporated in the photoresist composition. In formulas I and II, X is a group shown by formula III or IV, etc., R1-R5 are each hydrogen atom. or optionally substd. alkyl group, etc., (l), (m), (n) and (p) are each 0 or a positive integer. And, in formulas III and IV, R is a hydrocarbon group or a substd. hydrocarbon group. And, as the siloxane polymer contg. formulas I and/or II, has a polysiloxane structure as the main chain of a polymer, a fine pattern which has a very high durability against an oxygen plasma radiation reactive etching (RIE) and a high aspect ratio is formed advantageously. Thus, the composition can be formed as a positive type photoresist which has a high sensitivity against UV rays.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高精度に再現しうる酸素プラズマ耐性の高い
フォトレジスト組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to photoresist compositions with high oxygen plasma resistance that can be reproduced with high precision.

〔従来技術とその問題点〕[Prior art and its problems]

従来、LSIの加工プロセスにおけるパターン形成には
高エネルギー線用のレジスト材料が用いられている。こ
の中でポジ形レジストとしてフッ素含有メタクリレート
系ポリマーが高感度(1×10−5C/cn)であるこ
とがしられている(特許第1034536号)。しかし
ながら、この高感度なポジ形レジストにはLSI加工に
おけるプラズマ加工耐性が低いという欠点がある。これ
に対し、高感度でプラズマ加工耐性が高いレジストとし
て、ネガ形レジストであるクロロメチル化ポリスチレン
(CMS)が知られている(特許第1107695号)
。しかし、このネガ形レジストでは、膜厚が厚くなるに
従い解像性が低下し、微細なパターンを形成することが
できない。そこで、この欠点を解決するために、レジス
トを1層ではなく多層化することにより、膜厚が厚く、
しかも微細な高形状比パターンを形成する方法が提案さ
れている。すなわち、第一層目に薄膜のレジスト材料を
形成したのち、この第2層のレジスト材料に高エネルギ
ーを照射し、現像後に得られるパターンをマスクとして
第1層の有機ポリマーを酸素プラズマエツチング(02
RIE)で異方性エツチングすることにより、高形状比
のパターンを得ようとするものである〔B。
Conventionally, resist materials for high-energy radiation have been used for pattern formation in LSI processing processes. Among these, fluorine-containing methacrylate polymers are known to have high sensitivity (1×10 −5 C/cn) as positive resists (Japanese Patent No. 1034536). However, this highly sensitive positive resist has a drawback in that it has low resistance to plasma processing in LSI processing. On the other hand, chloromethylated polystyrene (CMS), which is a negative resist, is known as a resist with high sensitivity and high plasma processing resistance (Patent No. 1107695).
. However, with this negative resist, the resolution decreases as the film thickness increases, making it impossible to form fine patterns. Therefore, in order to solve this drawback, by using multiple layers of resist instead of one layer, the film thickness can be increased.
Moreover, methods have been proposed for forming fine patterns with high shape ratios. That is, after forming a thin film of resist material as the first layer, high energy is irradiated to this second layer resist material, and the organic polymer of the first layer is subjected to oxygen plasma etching (02) using the pattern obtained after development as a mask.
This method attempts to obtain a pattern with a high shape ratio by anisotropic etching using RIE (B.

J、Lin、5olid 5tate Technol
、、 24.73(1981) )。
J, Lin, 5olid 5tate Technol
, 24.73 (1981)).

この方法においては0□RIB耐性が高くなければなら
ないので、このレジスト材料としてS1ポリマーを用い
ることが提案されている。例えば、Hatzakisう
はポリビニルメチルシロキサンポリマーをネガ形レジス
トとして用いてパターン形成を行った[!J、Hatz
akis et al、Proc、Int、I、Con
foMicrol−ithography(1981)
) 。
Since this method requires high 0□RIB resistance, it has been proposed to use S1 polymer as the resist material. For example, Hatzakis et al. used polyvinylmethylsiloxane polymer as a negative resist to form patterns [! J.Hatz
akis et al., Proc. Int. I. Con.
foMicrol-ithography (1981)
).

しかし、このネガ形レジスト材料にはガラス転移温度(
Tg)が低いという問題がある。Tgが低い場合、その
レジストには埃が付着しやすい、膜厚制御が困難、現像
時のパターン変形による現像性低下という゛問題が発生
するからである。
However, this negative resist material has a glass transition temperature (
There is a problem that Tg) is low. This is because when the Tg is low, problems occur such as dust tends to adhere to the resist, difficulty in controlling film thickness, and deterioration of developability due to pattern deformation during development.

このように、レジスト材料としては、Tgが高く、しか
も0.RIε耐性の高いものが必要である。
In this way, the resist material has a high Tg and 0. A material with high RIε resistance is required.

また高解像性パターン形成のためにはアルカリ現像タイ
プの非膨潤レジストが必要である。
Furthermore, in order to form a high-resolution pattern, an alkaline development type non-swelling resist is required.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明にあってはポリシロキサン構造を採用
して02RIε耐性を高め、さらに側鎖にフェニル基を
多数導入してTgを高めたシリコーンポリマーを用いる
ことにより、上記問題点を解決するようにした。
Therefore, in this invention, the above-mentioned problems are solved by adopting a polysiloxane structure to increase the resistance to 02RIε, and by using a silicone polymer which has a high Tg by introducing a large number of phenyl groups into the side chain. did.

本発明は下記一般式〔■〕およびCl1lあるいは置換
炭化水素を示す。)、カルボキシル基の群から選ばれた
一種であり、同じでも異なってもよ<、R,、R2,R
3,R4およびR3は、同一または異なり、水素、置換
または無置換のアルキル置換または無置換のフェニル基
、水酸基およびトリアルキルシロキシ基よりなる群から
選ばれる一種の基を示し、p,m,nおよびpはOまた
は正の整数を示すが、同時に0であることはなく、また
β=m二〇の時、L、 R3,R4およびR6で示され
る少な(とも一種の基は水酸基であり、かつR2+R3
,R4およびR1で示される少なくとも一種の基はフェ
ニル基である、で表される単位の少なくとも1つを分子
中に含むアルカリ可溶性シロキサンポリマーの水酸基に
キノンジアジド化合物を縮合させた感光性シロキサンポ
リマーを含むことを特徴とするフォトレジスト組成物で
ある。
The present invention represents the following general formula [■] and Cl1l or a substituted hydrocarbon. ), is a type selected from the group of carboxyl groups, and may be the same or different <, R,, R2, R
3, R4 and R3 are the same or different and represent a type of group selected from the group consisting of hydrogen, substituted or unsubstituted alkyl substituted or unsubstituted phenyl group, hydroxyl group and trialkylsiloxy group, p, m, n and p represents O or a positive integer, but is never 0 at the same time, and when β=m20, the groups represented by L, R3, R4, and R6 are hydroxyl groups, and R2+R3
, R4 and R1 are phenyl groups, and includes a photosensitive siloxane polymer in which a quinonediazide compound is condensed with the hydroxyl group of an alkali-soluble siloxane polymer containing in the molecule at least one of the units represented by R4 and R1. This is a photoresist composition characterized by the following.

以下、本発明のフォトレジスト組成物について詳細に説
明する。
Hereinafter, the photoresist composition of the present invention will be explained in detail.

上記の本発明における感光性ポリシロキサンは、それ自
体バインダーとしての役をはだすので、本発明のフォト
レジスト組成物は上記感光性ポリシロキサン単独でもよ
く、また、必要に応じて他の感光性成分及び/又はバイ
ンダーを含んでもよい。
Since the photosensitive polysiloxane in the present invention described above acts as a binder itself, the photoresist composition of the present invention may contain the above photosensitive polysiloxane alone, or may contain other photosensitive components as necessary. and/or may contain a binder.

なお、上記〔■〕及び(Il〕式中、R3−R6で表さ
れる置換アルキル基の例としてはフェニルアルキル基等
があり、置換フェニル基の例としてはアルキルフェニル
基、アルコキシフェニル基等力する。
In addition, in the above [■] and (Il) formulas, examples of substituted alkyl groups represented by R3-R6 include phenylalkyl groups, and examples of substituted phenyl groups include alkylphenyl groups, alkoxyphenyl groups, etc. do.

また、XにおけるRで示される炭化水素基としては、例
えばアルキル基(メチル、エチル、プロピル、イソプロ
ピル、等)やアラルキル基(ベンジノペフエネチル等)
があげられる。
Furthermore, examples of the hydrocarbon group represented by R in X include alkyl groups (methyl, ethyl, propyl, isopropyl, etc.) and aralkyl groups (benzinopephenethyl, etc.)
can be given.

本発明の感光性ポリシロキサンは、一般式CI]及び〔
■〕で表される単位を少なくとも1つ有するシロキサン
ポリマーとキノンジアジド化合物を公知の方法で反応(
縮合)させることによって容易に合成することができる
The photosensitive polysiloxane of the present invention has general formulas CI] and [
■) A siloxane polymer having at least one unit represented by
can be easily synthesized by condensation).

上記一般式〔I〕及び/又は[II)の単位を含むシロ
キサンポリマーは、ポリマーの主鎖がポリシロキサンの
構造であることからO□RIB耐性が非常に高く微細で
高アスペクト比のパターン形成に有利である。またポリ
シロキサン構造であるにもかかわらずフェニル基が側鎖
に多く存在するため、Tgが室温以上でありレジストと
して使用できる。
Siloxane polymers containing units of the above general formulas [I] and/or [II] have a polysiloxane structure as the main chain of the polymer, and therefore have very high O It's advantageous. Furthermore, despite having a polysiloxane structure, there are many phenyl groups in the side chains, so the Tg is higher than room temperature and it can be used as a resist.

キノンジアジド基が導入された本発明の感光性シロキサ
ンポリマーはアルカリ水溶液に不溶であるが、紫外線の
照射により相応するキノンジアジド基がインデンカルボ
ン酸に変化するため、アルカリ水溶液に可溶となる。す
なわち、照射部がアルカリ現像で除去されるためポジ型
レジスト特性を示す。
The photosensitive siloxane polymer of the present invention into which a quinonediazide group has been introduced is insoluble in an aqueous alkali solution, but when irradiated with ultraviolet light, the corresponding quinonediazide group is converted to indenecarboxylic acid, so that it becomes soluble in an aqueous alkali solution. That is, since the irradiated area is removed by alkaline development, it exhibits positive resist characteristics.

本発明で用いる一般式Iで示される単位を含むシロキサ
ンポリマーの製造法としては、ヘキサフェニルシクロト
リシロキサン、オクタフェニルシクロテトラシロキサン
など環状フェニルシロキサンを水酸化カリウムなどのア
ルカリ金属の水酸化物やブチルリチウムなどのアルカリ
金属のアルキル化物で開環重合させ、得られたポリジフ
ェニルシロキサンを変性する方法がある。
As a method for producing a siloxane polymer containing units represented by the general formula I used in the present invention, cyclic phenylsiloxanes such as hexaphenylcyclotrisiloxane and octaphenylcyclotetrasiloxane are combined with alkali metal hydroxides such as potassium hydroxide or butyl hydroxides. There is a method of carrying out ring-opening polymerization with an alkylated product of an alkali metal such as lithium, and modifying the obtained polydiphenylsiloxane.

また、他の方法として環状フェニルシロキサン単独では
なく、テトラメチルテトラフェニルシクロテトラシロキ
サンやオクタメチルシクロテトラシロキサンなどと共重
合させてもよい。また、特に高解像度のパターンを形成
したい場合には、分子量のそろった単分散ポリマーが好
ましいが、シクロシロキサンは、ブチルリチウム等の触
媒でアニオンリビング重合をさせ、得られたポリマーを
を変性することにより所望の単分散ポリマーを得ること
ができる。
Alternatively, instead of using cyclic phenylsiloxane alone, it may be copolymerized with tetramethyltetraphenylcyclotetrasiloxane, octamethylcyclotetrasiloxane, or the like. In addition, especially when it is desired to form a pattern with high resolution, a monodisperse polymer with a uniform molecular weight is preferable, but cyclosiloxane can be subjected to anionic living polymerization with a catalyst such as butyllithium, and the resulting polymer can be modified. A desired monodisperse polymer can be obtained by this method.

本発明で用いる一般式■で示される単位か一般式〔■〕
及び(Inで示される両単位を含むキオキサンポリマー
の製造法としては ラン化合物を加水分解することにより容易に得られるフ
ェニルシルセスキオキサンポリマーを変性する方法があ
る。
Units represented by general formula ■ or general formula [■] used in the present invention
A method for producing a quioxane polymer containing both units represented by and (In) includes a method of modifying a phenylsilsesquioxane polymer easily obtained by hydrolyzing a ran compound.

本発明で用いるシロキサンポリマーと縮合させるキノン
ジアジド化合物としては、1.2−ナフトキノンジアジ
ド−4−スルフォニルクロリド、1.2−ナフトキノン
ジアジド−5−スルフォニルクロリドまたは1.2−ベ
ンゾキノンジアジド−4−スルフォニルクロリドが挙げ
られる。
The quinonediazide compound to be condensed with the siloxane polymer used in the present invention includes 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonyl chloride, or 1,2-benzoquinonediazide-4-sulfonyl chloride. Can be mentioned.

上記シロキサンポリマーの製造や縮合反応に使用される
有機溶剤としては、例えば、セルソルブアセテート、ジ
エチレン、グリコールモノエーテル、ジエチレングリコ
ールジエーテル、メチルプロピレングリコール、メチル
ブロピνングリコールアセテート、メチルイソブチルケ
トン、乳酸エチル酢酸ブチル、酢酸イソアミル、炭酸プ
ロピレン 、T−ブチロラクトン、N−メチルピロリド
ン等を挙げることができ、単独でも2種以上併用して使
用することができる。
Examples of organic solvents used in the production and condensation reaction of the siloxane polymer include cellosolve acetate, diethylene, glycol monoether, diethylene glycol diether, methylpropylene glycol, methylpropylene glycol acetate, methyl isobutyl ketone, and ethyl acetate lactate. Examples include butyl, isoamyl acetate, propylene carbonate, T-butyrolactone, N-methylpyrrolidone, etc., and they can be used alone or in combination of two or more.

さらに、本発明のフォトレジスト組成物には、必要に応
じて増感剤、保存安定剤、染料、界面活性剤等を添加す
ることができる。
Furthermore, a sensitizer, a storage stabilizer, a dye, a surfactant, etc. can be added to the photoresist composition of the present invention, if necessary.

次に、本発明のフォトレジスト組成物を用いて、パター
ンを形成する方法を説明する。
Next, a method of forming a pattern using the photoresist composition of the present invention will be described.

まず、シリコンなどの基板上に有機高分子材料の膜を形
成し、その上に本発明のフォトレジスト組成物を塗布し
て二層構造とする。ついで、熱処理した後、光照射して
照射部分のみを現像溶媒に可溶の形とし、次いで現像に
より照射部のフォトレジスト組成物を除去する。つづい
て、非照射部分のフォトレジスト組成物をマスクとして
、酸素ガスを用いるドライエツチングによって下層の有
機高分子材料をエツチング除去すること−よりパターン
を形成する。上記有機高分子材料としては、酸素プラズ
マによりエツチングされるものであれば何れのものでも
よいが、パターン形成後、これをマスクとして基板をド
ライエツチングする際、耐性を高めるため芳香族含有ポ
リマーが望ましい。
First, a film of an organic polymer material is formed on a substrate such as silicon, and the photoresist composition of the present invention is applied thereon to form a two-layer structure. Then, after heat treatment, the photoresist composition is irradiated with light to make only the irradiated area soluble in a developing solvent, and then the photoresist composition in the irradiated area is removed by development. Next, using the non-irradiated portions of the photoresist composition as a mask, the underlying organic polymer material is removed by dry etching using oxygen gas to form a pattern. The above-mentioned organic polymer material may be any material as long as it can be etched by oxygen plasma, but aromatic-containing polymers are preferred in order to increase resistance when dry etching the substrate using this as a mask after pattern formation. .

〔実施例〕〔Example〕

以下、本発明の実施例を、本発明で用いるシロキサンポ
リマー及び感光性シロキサンポリマーの製造例と共に示
すが、本発明はこれに限定されることはない。
Examples of the present invention will be shown below along with production examples of the siloxane polymer and photosensitive siloxane polymer used in the present invention, but the present invention is not limited thereto.

(製造例1) かき混ぜ機、温度計、滴下漏戸をつけた30011のフ
ラスコに無水塩化アルミニウム15g1塩化アセチル5
011をとり撹拌する。次に分子量7800のポリフェ
ニルシルセスキオキサン5gを塩化アセチル5011に
溶かした溶液を徐々に滴下する。温度を25℃に保ち反
応を進める。反応の進行とともに塩化水素が発生する。
(Production Example 1) In a 30011 flask equipped with a stirrer, a thermometer, and a dropping funnel, 15 g of anhydrous aluminum chloride 1 5 g of acetyl chloride
Take 011 and stir. Next, a solution of 5 g of polyphenylsilsesquioxane having a molecular weight of 7800 dissolved in 5011 acetyl chloride is gradually added dropwise. The reaction is allowed to proceed while maintaining the temperature at 25°C. Hydrogen chloride is generated as the reaction progresses.

3時間反応後冷却して内容物を塩酸を含む氷水中に注ぐ
。よくかき混ぜて塩化アルミニウムを分解し、氷水が酸
性であることを確かめてから沈澱したポリマを濾別する
。希塩酸−水でよく洗い、最後に真空乾燥器で乾燥する
。得られたポリマの分子量は7900であった。赤外線
吸収スペクトルでは1670cm−’にカルボニル基の
吸収が、NMRでδ=2.4にメチル基の吸収がみられ
、アセチル化合物されたことが確認できた。
After reacting for 3 hours, the mixture was cooled and the contents were poured into ice water containing hydrochloric acid. Stir well to decompose the aluminum chloride, make sure the ice water is acidic, and filter out the precipitated polymer. Wash thoroughly with dilute hydrochloric acid and water, and finally dry in a vacuum dryer. The molecular weight of the obtained polymer was 7,900. The infrared absorption spectrum showed a carbonyl group absorption at 1670 cm-', and the NMR showed a methyl group absorption at δ=2.4, confirming that it was an acetyl compound.

この時のアセチル化率はNMRから60%であった。The acetylation rate at this time was 60% based on NMR.

(製造例2) かき混ぜ機、温度計、滴下漏戸をつけた300+1のフ
ラスコに塩化第二すず2511、無水酢酸5Qm ji
!をとり撹拌する。つぎにジフェニルシランジオール6
gを無水酢酸5011に溶かした溶液を徐々に滴下する
。以下製造例1と同様な方法でアセチル化ポリシロキサ
ンを得た。得られたポリマの分子量は1500であり、
アセチル化率は42%であった。
(Production Example 2) In a 300+1 flask equipped with a stirrer, thermometer, and dropping funnel, add 2511 stannic chloride and 5Qm ji of acetic anhydride.
! Take and stir. Next, diphenylsilanediol 6
A solution of g dissolved in acetic anhydride 5011 is gradually added dropwise. Acetylated polysiloxane was obtained in the same manner as in Production Example 1. The molecular weight of the obtained polymer was 1500,
The acetylation rate was 42%.

(製造例3) 製造例1で得たアセチル化ポリフェニルシルセスキオキ
サン5gをテトラヒドロフラン100+1に溶かし、こ
れに3gのLIAI84を加え、3時間還流を行った。
(Production Example 3) 5 g of acetylated polyphenylsilsesquioxane obtained in Production Example 1 was dissolved in tetrahydrofuran 100+1, and 3 g of LIAI84 was added thereto, followed by refluxing for 3 hours.

反応終了後5%の塩酸を含む氷水の中に注ぎこみ、黄白
色固体を得た。収率55%生成物の赤外線吸収スペクト
ルでは原料でみられた1670cm=のカルボニルの吸
収が消え、3100〜3400cm−’付近にOH基に
起因する吸収が見られ、還元されたことが確認できた。
After the reaction was completed, the mixture was poured into ice water containing 5% hydrochloric acid to obtain a yellowish white solid. In the infrared absorption spectrum of the product with a yield of 55%, the carbonyl absorption at 1670 cm that was observed in the raw material disappeared, and absorption due to OH groups was observed around 3100 to 3400 cm, confirming that it had been reduced. .

(製造例4) 製造例2で得たアセチル化ポリジフェニルシロキサン5
gをテトラヒドロフラン10011に溶かし、これに3
gのLiAIHlを加え還流を行った。反応終了後5%
の塩酸を含む氷水の中に注ぎこみ、黄白色固体を得た。
(Production Example 4) Acetylated polydiphenylsiloxane 5 obtained in Production Example 2
Dissolve g in tetrahydrofuran 10011, add 3
g of LiAIHl was added and refluxed. 5% after reaction completion
The mixture was poured into ice water containing hydrochloric acid to obtain a yellowish white solid.

収率66% 製造例3および製造例4で得られたポリマはアルカリ性
水溶液、メタノール等のアルコールに可溶であった。
Yield: 66% The polymers obtained in Production Examples 3 and 4 were soluble in alkaline aqueous solutions and alcohols such as methanol.

(製造例5) 製造例1においてポリフェニルシルセスキオキサンの代
りに環状シロキサンの開環重合で得られたポリジフェニ
ルシロキサン(分子量1万)を用いて、同じ方法でアセ
チル化ポリジフェニルシロキサンを得た。
(Production Example 5) Acetylated polydiphenylsiloxane was obtained in the same manner as in Production Example 1, using polydiphenylsiloxane (molecular weight 10,000) obtained by ring-opening polymerization of cyclic siloxane instead of polyphenylsilsesquioxane. Ta.

(製造例6) 製造例1において、塩化アセチルの代りに塩化プロピオ
ニルを用いて同じ方法によりプロピオニル化ポリフェニ
ルシルセスキオキサンヲ得た。
(Production Example 6) A propionylated polyphenylsilsesquioxane was obtained by the same method as in Production Example 1 except that propionyl chloride was used instead of acetyl chloride.

(製造例7) 製造例5において、塩化アセチルの代りに塩化プロピオ
ニルを用いて同じ方法によりプロピオニル化ポリフェニ
ルシロキサンヲ得り。
(Production Example 7) A propionylated polyphenylsiloxane was obtained by the same method as in Production Example 5, using propionyl chloride instead of acetyl chloride.

(製造例8) 製造例1で得られたアセチル化シロキサンポリマー4.
4gと1,2−ナフトキノンジアジド−5−スルフォニ
ルクロリド10.8 gをジオキサン90gに溶解し、
これを撹拌しながら40℃で炭酸ナトリウムの10%水
溶液40gを徐々に加える。
(Production Example 8) Acetylated siloxane polymer obtained in Production Example 1 4.
4 g and 10.8 g of 1,2-naphthoquinonediazide-5-sulfonyl chloride were dissolved in 90 g of dioxane,
While stirring, 40 g of a 10% aqueous solution of sodium carbonate is gradually added at 40°C.

それを約2時間撹拌すると粘りのある油状物が沈澱する
。この溶液の上澄みを傾斜法で除き、約10倍量の水を
加えて激しく撹拌すると、油状物は粉末状となる。それ
を、3別して、得られた沈澱物をメタノールで良く洗い
、真空乾燥を行なって、目的とするレジスト材を得た。
After stirring it for about 2 hours, a sticky oil precipitates out. The supernatant of this solution is removed by decanting, about 10 times the amount of water is added, and the mixture is vigorously stirred to turn the oil into a powder. It was separated into three parts, and the resulting precipitate was thoroughly washed with methanol and vacuum dried to obtain the desired resist material.

(製造例9〜14) 製造例8において、製造例1で得られたポリマーの代わ
りに、製造例2〜9で得られたポリマーを用いて同じ方
法でシロキサンポリマーのキノンジアジド系化合物の縮
合物を得た。
(Production Examples 9 to 14) In Production Example 8, instead of the polymer obtained in Production Example 1, the polymers obtained in Production Examples 2 to 9 were used to produce a condensate of a quinonediazide compound of a siloxane polymer in the same manner. Obtained.

〔実施例〕 (実施例1) 製造例8〜14で得られた感光性シロキサンポリマーを
約0.2μm厚さでシリコンウェハ1に塗布し、80℃
で20分間プリベークした。プリベータ後キャノン社製
のマスクアライナ(PLA−501F)を用いて紫外線
露光した。露光後、現像液(テトラメチルアンモニウム
とドロキシド1.5重量%水溶液)で現像し、照射部の
残膜が0となるところの照射量を感度とした。
[Example] (Example 1) The photosensitive siloxane polymer obtained in Production Examples 8 to 14 was applied to a silicon wafer 1 to a thickness of about 0.2 μm, and heated at 80°C.
Prebaked for 20 minutes. After pre-beta, it was exposed to ultraviolet light using a mask aligner (PLA-501F) manufactured by Canon. After exposure, development was performed with a developer (a 1.5% by weight aqueous solution of tetramethylammonium and droxide), and the irradiation amount at which no residual film remained in the irradiated area was defined as the sensitivity.

表1に感度と解像性を示す。解像性はライン&スペース
パターンを形成して評価し、いずれの材料も0.5μm
幅のパターンが形成できた。
Table 1 shows the sensitivity and resolution. Resolution was evaluated by forming line and space patterns, and each material was 0.5 μm.
A wide pattern was formed.

(実施例2) シリコンウェハにHPR−206レジスト(ハント社製
)を2μmの厚さに塗布し、200℃で30分間加熱し
不溶化させた。このHPRレジストの上に実施例1で用
いたレジスト材料を実施例1と同様の操作で約0.2μ
mの厚さに塗布し、80℃で20分間プリベークした。
(Example 2) HPR-206 resist (manufactured by Hunt) was coated on a silicon wafer to a thickness of 2 μm, and heated at 200° C. for 30 minutes to make it insolubilized. The resist material used in Example 1 was applied on top of this HPR resist by approximately 0.2 μm in the same manner as in Example 1.
It was coated to a thickness of m and prebaked at 80° C. for 20 minutes.

プリベーク後、実施例1と同様の紫外線照射と現像を行
ったところマスクのパターンが)IPRレジスト上に転
写された。その後、平行平板型スパッタエツチング装置
で酸素ガスをエッチャントガスとしてレジストパターン
をマスクとしてHPRレジストをチツチングした。
After prebaking, ultraviolet irradiation and development were performed in the same manner as in Example 1, and the mask pattern was transferred onto the IPR resist. Thereafter, the HPR resist was etched using a parallel plate type sputter etching apparatus using oxygen gas as an etchant gas and the resist pattern as a mask.

RFパワー0.2 W/cd、 O,ガス圧20ミリト
ルの条件で15分間エツチングすることによりレジスト
パターンに覆われていない部分のHPRレジストは完全
に消失した。
By etching for 15 minutes under the conditions of RF power of 0.2 W/cd, O, and gas pressure of 20 mTorr, the HPR resist in the portions not covered by the resist pattern completely disappeared.

実施例1で用いたいずれのレジスト材料でも0、5μm
ライン&スペースのパターンが約2μmの厚さで形成で
きた。
0.5 μm for any resist material used in Example 1
A line and space pattern with a thickness of about 2 μm could be formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、アルカリ可溶性のシロキサンポリ
マーにキノンジアジド系化合物を縮合した感光性シロキ
サンポリマーよりなる本発明のフォトレジスト組成物は
紫外線に対し高感度のポジ形フォトレジストとなる。ま
た、シリコンを含有するため酸素プラズマ耐性が高く、
2層レジストの上層レジストとして使用できる。
As explained above, the photoresist composition of the present invention, which is made of a photosensitive siloxane polymer obtained by condensing a quinonediazide compound with an alkali-soluble siloxane polymer, becomes a positive photoresist that is highly sensitive to ultraviolet light. Also, because it contains silicon, it has high oxygen plasma resistance.
It can be used as an upper layer resist of a two-layer resist.

したがって、アルカリ現像が可能でありさらに2層レジ
ストに使用できるため、従来のレジスト材料では達成で
きなかった0、5μm以下の微細パターンが高アスペク
ト比で形成できる利点がある。
Therefore, since it can be developed with alkali and can be used in a two-layer resist, it has the advantage of being able to form fine patterns of 0.5 μm or less with a high aspect ratio, which could not be achieved with conventional resist materials.

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式〔 I 〕及び〔II〕 ▲数式、化学式、表等があります▼〔 I 〕 ▲数式、化学式、表等があります▼〔II〕 (但しXは▲数式、化学式、表等があります▼、▲数式
、化学式、表等があります▼(Rは炭化水素あるいは置
換炭化水素を示す。)、カルボキシル基の群から選ばれ
た一種であり、同じでも異なってもよく、R_1、R_
2、R_3、R_4およびR_5は、同一または異なり
、水素、置換または無置換のアルキル基、置換または無
置換のフェニル基、水酸基およびトリアルキルシロキシ
基よりなる群から選ばれる一種の基を示し、l、m、n
およびpは0または正の整数を示すが、同時に0である
ことはなく、また、l=m=0の時、R_2、R_3、
R_4およびR_5のうち少なくとも一種の基は水酸基
であり、かつR_2、R_3、R_4およびR_5の少
なくとも一種の基はフェニル基である、で表される単位
の少なくとも1つを分子中に含むアルカリ可溶性シロキ
サンポリマーの水酸基に、キノンジアジド化合物を縮合
させた感光性シロキサンポリマーを含むことを特徴とす
るフォトレジスト組成物。
(1) The following general formulas [I] and [II] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [ I ] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [II] (However, X is ▲ Mathematical formulas, chemical formulas, tables, etc. There are ▼, ▲Mathematical formulas, chemical formulas, tables, etc.▼ (R represents a hydrocarbon or substituted hydrocarbon), is a type selected from the group of carboxyl groups, and may be the same or different, R_1, R_
2, R_3, R_4 and R_5 are the same or different and represent a type of group selected from the group consisting of hydrogen, substituted or unsubstituted alkyl group, substituted or unsubstituted phenyl group, hydroxyl group and trialkylsiloxy group, , m, n
and p indicate 0 or a positive integer, but they are never 0 at the same time, and when l=m=0, R_2, R_3,
An alkali-soluble siloxane containing in its molecule at least one of the following units: at least one of R_4 and R_5 is a hydroxyl group, and at least one of R_2, R_3, R_4, and R_5 is a phenyl group A photoresist composition comprising a photosensitive siloxane polymer in which a quinonediazide compound is condensed to the hydroxyl groups of the polymer.
JP63047570A 1988-03-02 1988-03-02 Photoresist composition Expired - Fee Related JP2700655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047570A JP2700655B2 (en) 1988-03-02 1988-03-02 Photoresist composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047570A JP2700655B2 (en) 1988-03-02 1988-03-02 Photoresist composition

Publications (2)

Publication Number Publication Date
JPH01222254A true JPH01222254A (en) 1989-09-05
JP2700655B2 JP2700655B2 (en) 1998-01-21

Family

ID=12778894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047570A Expired - Fee Related JP2700655B2 (en) 1988-03-02 1988-03-02 Photoresist composition

Country Status (1)

Country Link
JP (1) JP2700655B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230249A (en) * 1988-10-28 1990-09-12 Internatl Business Mach Corp <Ibm> Photosensitive composition
EP0568476A2 (en) * 1992-04-30 1993-11-03 International Business Machines Corporation Silicon-containing positive resist and method of using the same in thin film packaging technology
US5399462A (en) * 1992-09-30 1995-03-21 International Business Machines Corporation Method of forming sub-half micron patterns with optical lithography using bilayer resist compositions comprising a photosensitive polysilsesquioxane
US6342562B1 (en) 1999-04-23 2002-01-29 Fujitsu Limited Silicon-containing polymer, process for its production, resist composition employing it, pattern-forming method and electronic device fabrication method
JP2007293160A (en) * 2006-04-27 2007-11-08 Asahi Kasei Corp Photosensitive cage-like silsesquioxane compound
US9989852B2 (en) * 2013-07-02 2018-06-05 Toray Industries, Inc. Positive photosensitive resin composition, cured film formed by curing same, and optical device equipped with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212645A (en) * 1986-03-14 1987-09-18 Nippon Telegr & Teleph Corp <Ntt> Resist material
JPS63143538A (en) * 1986-12-08 1988-06-15 Toshiba Corp Photosensitive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212645A (en) * 1986-03-14 1987-09-18 Nippon Telegr & Teleph Corp <Ntt> Resist material
JPS63143538A (en) * 1986-12-08 1988-06-15 Toshiba Corp Photosensitive composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230249A (en) * 1988-10-28 1990-09-12 Internatl Business Mach Corp <Ibm> Photosensitive composition
EP0568476A2 (en) * 1992-04-30 1993-11-03 International Business Machines Corporation Silicon-containing positive resist and method of using the same in thin film packaging technology
JPH0627671A (en) * 1992-04-30 1994-02-04 Internatl Business Mach Corp <Ibm> Photosensitive silicon-contained resist composition and its usage method
EP0568476A3 (en) * 1992-04-30 1994-05-04 Ibm
US5422223A (en) * 1992-04-30 1995-06-06 International Business Machines Corporation Silicon-containing positive resist and use in multilayer metal structures
US5399462A (en) * 1992-09-30 1995-03-21 International Business Machines Corporation Method of forming sub-half micron patterns with optical lithography using bilayer resist compositions comprising a photosensitive polysilsesquioxane
US6342562B1 (en) 1999-04-23 2002-01-29 Fujitsu Limited Silicon-containing polymer, process for its production, resist composition employing it, pattern-forming method and electronic device fabrication method
US6541077B1 (en) 1999-04-23 2003-04-01 Fujitsu Limited Silicon-containing polymer, process for its production, resist composition employing it, pattern-forming method and electronic device fabrication method
JP2007293160A (en) * 2006-04-27 2007-11-08 Asahi Kasei Corp Photosensitive cage-like silsesquioxane compound
US9989852B2 (en) * 2013-07-02 2018-06-05 Toray Industries, Inc. Positive photosensitive resin composition, cured film formed by curing same, and optical device equipped with same

Also Published As

Publication number Publication date
JP2700655B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
JPH025060A (en) Radiation sensitive resin composition
JPH02285351A (en) Positive type photoresist composition
JP2507481B2 (en) Polysilane and photosensitive composition
JPH02118574A (en) Dyed photoresist composition and method
JP2003066600A (en) Photoresist, method for working substrate using the same, and method for producing photoresist
JP2619358B2 (en) Photosensitive resin composition
US5389492A (en) Resist composition comprising a siloxane or silsesquioxane polymer having silanol groups in a composition with a naphthoquinone compound
JPH0623841B2 (en) Photoresist composition
JPH01222254A (en) Photoresist composition
EP0651893B1 (en) Hexahydroxybenzophenone sulfonate esters of diazonaphthoquinone sensitizers and positive photoresists employing same
JPS62220949A (en) Photoresist material and photosensitive resin composition
JPH0769609B2 (en) Photosensitive resin composition
JPH10319594A (en) Positive photoresist composition for far ultraviolet ray exposure
JPH04343359A (en) Radiation-sensitive resin composition
JP2646241B2 (en) Photoresist composition
JP2573996B2 (en) Pattern forming material
JPH063548B2 (en) Photosensitive resin composition
JPH08179502A (en) Photosensitive resin composition
JPH0232354A (en) Photosensitive resin composition
JPS63113021A (en) Polysilane and photosensitive composition using said polysilane
JP2811663B2 (en) Radiation-sensitive resin composition
JPH07104467A (en) Positive resist composition and pattern forming method
JPH04274242A (en) Radiation sensitive resin composition
JPH04360146A (en) Positive type photoresist composition and production of resist pattern
JPH06186739A (en) Photoresist composition and pattern forming method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees