JPH0122146B2 - - Google Patents

Info

Publication number
JPH0122146B2
JPH0122146B2 JP55123773A JP12377380A JPH0122146B2 JP H0122146 B2 JPH0122146 B2 JP H0122146B2 JP 55123773 A JP55123773 A JP 55123773A JP 12377380 A JP12377380 A JP 12377380A JP H0122146 B2 JPH0122146 B2 JP H0122146B2
Authority
JP
Japan
Prior art keywords
density
inorganic compound
film
warp
sound insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123773A
Other languages
Japanese (ja)
Other versions
JPS5747647A (en
Inventor
Tadayoshi Murakami
Ichiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP55123773A priority Critical patent/JPS5747647A/en
Publication of JPS5747647A publication Critical patent/JPS5747647A/en
Publication of JPH0122146B2 publication Critical patent/JPH0122146B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフレキシブルな遮音シートおよびその
製造方法に関する。 従来、フレキシブルな遮音シートとして粗密度
の基布に、重金属その他の無機系化合物のような
高密度物質を含有したゴム系重合体または熱可塑
性樹脂をカレンダーロール等によりシート状物と
し張り合わせたものが広く使用されている。しか
しながら、かかる遮音シートは高密度物質のブリ
ツジ効果のみであり、接着強力が乏しいことから
基布が剥離し易く、また粗密度基布のために長期
間の使用ことに吊り下げ、または縦にして使用し
たときシートの自重により部分的な伸長や固定部
に亀裂を生じる等の欠点現象を生じる。遮音シー
トの強力、形態安定性を改善するため高密度基布
を使用することも考えられるが、高密度基布を使
用するときは剥離強度はますます低下する欠点を
生じる。 本発明者等は従来法の上記欠点を解決し、柔軟
で、かつ機械的強力、寸法および形態の安定性が
大きく、しかも遮音性能に優れた遮音シートを提
供するべく鋭意研究の結果、本発明の遮音シート
およびその製造方法に到達した。すなわち、本発
明は異収縮フイラメント混繊糸を経糸および/ま
たは緯糸として織成してなる嵩高性織物に比重2
以上の金属もしくは無機化合物と皮膜形成性高分
子とが付与されてなることを特徴とする遮音シー
ト。および3%以上の熱収縮率差を有する少くと
も2種の異収縮フイラメントからなる混繊度が40
以上の混繊糸を経糸および/または緯糸として織
成してなる織物を熱処理により嵩高加工した後、
比重2以上の金属もしくは無機化合物と皮膜形成
性高分子とを含浸させることを特徴とする遮音シ
ートの製造方法である。 本発明による遮音シートはフレキシブルであ
り、かつ強力、寸法および形態の安定性に優れ、
しかも基布と高密度組成物(金属もしくは無機化
合物と皮膜形成性高分子)とが剥離することがな
いこと、遮音性能が優れること等の多くの特徴を
有する。遮音シートの寸法および形態安定性は主
として基布の高収縮性フイラメントが保持し、高
密度組成物の含浸性および接着性には嵩高性を付
与する低収縮性フイラメントが主として効果的に
作用し、織物を構成する繊維束間ならびに該繊維
束の単繊維間に高密度組成物が容易に浸入、固着
されることから接着のための下処理を特に施さな
くとも高密度組成物との接着性が著しく高めら
れ、優れた形態安定性、強力が得られる。 本発明の遮音シートは建設工事、解体工事、改
築工事、土木工事、道路工事その他の土木建築工
事用の防音シート、家屋、車輛、船舶その他の内
外装用の防音シート等として多方面に利用するこ
とができる。 本発明において用いるフイラメント素材として
は特に制限はないが、疎水性が大きく高密度組成
物との接着性の乏しいポリエステル、芳香族ポリ
アミド等に適用して効果的である。また、混繊糸
を構成するフイラメントの熱収縮率差は通常3%
以上であり、好ましくは5〜10%である。 本発明でいう熱収縮率差は通常熱風160℃で15
分間条件下における値(SHD)であるが、嵩高
加工における熱処理が熱水処理のときは熱水収縮
差(熱水30分間)であつてもよい。異収縮フイラ
メント混繊糸は通常高収縮性フイラメントのマル
チフイラメント糸と低収縮性フイラメントのマル
チフイラメント糸を引揃えて高圧エアーノズル
(インターレーサー)に通し、乱流空気によつて
混繊し製造される。その際、混繊度Diは通常40
以上、好ましくは50以上とする。混繊度が小さ過
ぎると嵩高加工において部分的に嵩高性が不均一
となり平滑性が劣る欠点を生じる。高収縮性フイ
ラメントと低収縮性フイラメントとの混用率は
7:3〜3:7重量比が好ましい。混繊糸のデニ
ールは通常500〜2000デニールであり、好ましく
は1000〜1500デニールである。フイラメントは所
望により難燃性、耐光性等の諸性能を付与するこ
とができる。 かかる異収縮フイラメント混繊糸を経糸、緯糸
のいずれか一方、好ましくは両方に用いて織物が
織成される。組織としては限定はないが特に朱子
織、斜文織およびそれらの変化組織のような浮き
組織の織物が嵩高加工後の高密度組成物の抱合の
点から好ましい。 かくして得られた織物は乾熱処理、熱水処理、
湿熱処理等により嵩高性を発現させる。織物の厚
みは処理前の1.2倍以上特に1.5倍以上になるよう
に設定するのが好ましい。乾熱処理条件は通常
150〜220℃であり、好ましくは170〜190℃であ
る。また熱水処理条件は通常90〜100℃、好まし
くは95〜100℃、湿熱処理条件は通常100〜140℃、
好ましくは110〜130℃である。嵩高加工により高
収縮性フイラメントが収縮して主として糸の中心
部を構成し、寸法安定性を発揮する。嵩高性発現
後の織物は通常目付が200g/m2以上、特に
300g/m2以上であることが好ましい。また、含
浸性を考慮したとき通気度(フラジール型通気度
試験機により圧力差12.7cm水柱にて測定)が5
c.c./cm2/sec以上、特に15〜100c.c./cm2/secであ
ることが好ましい。 嵩高性発現後の織物は次いで比重2以上の金属
もしくは無機化合物と皮膜形成性化合物から主と
してなる高密度組成物による加工が施され、遮音
シートが製造される。 比重が2以上の金属もしくは無機化合物として
は、鉄、鉛、亜鉛、錫、銅のような金属、酸化
鉄、硫化亜鉛、硫酸バリウム、ガラス、クレー、
タルクのような無機化合物が例示され、単独また
は2種以上の組合せで用いられる。金属と無機化
合物を併用してもよい。比重が2.5〜8.0のものが
特に好ましい。該金属もしくは無機化合物は粉末
状、好ましくは直径0.5mm以下、特に好ましくは
直径0.1mm以下の微粉末として用いられる。 また皮膜形成性高分子としてはゴム類または熱
可塑性樹脂が好ましく、たとえばエチレンプロピ
レンゴム、アクリロニトリルゴム、クロロプレン
ゴム、スチレンブタジエンゴム、クロロプレンス
チレンゴム、アクリロニトリルブタジエンゴムの
ようなゴム類、塩化ビニル樹脂、ポリウレタン樹
脂、エチレン酢酸ビニル樹脂、アクリル樹脂、ポ
リエステル樹脂、ポリエステルポリエーテル樹
脂、ポリアミド樹脂、変性ナイロン樹脂のような
熱可塑性樹脂が挙げられ単独または2種以上の組
合せで用いられる。皮膜形成性高分子は通常溶液
状またはラテツクスとして用いられるが、押出し
ラミネート、カレンダー加工等により用いること
もできる。通常塩化ビニル樹脂または該樹脂を主
体としたゴムや熱可塑樹脂との併用が好ましい。
金属もしくは無機化合物と皮膜形成性高分子との
配合比率は重量比で通常1:1〜10:1が適当で
あり、好ましくは5:1〜8:1である。 高密度組成物の付与量は遮音性能を考慮して遮
音シート重量が1Kg/m2以上となるよう織物目
付、高密度組成物の組成および付与量を適宜選定
することが好ましい。高密度組成物には安定剤、
耐光剤、難燃剤、防汚剤、制電剤等の各種添加剤
を配合することができる。 本発明による遮音シートには更に熱の非伝導層
を形成して断熱または保温性能を併せ持たせるこ
ともできるし、表面に印刷模様、エンボス模様等
を施して意匠性を付与することもできる。 以下、実施例により本発明を説明する。なお、
本発明における混繊度、布の厚み、その他物性の
測定は下記方法によつた。 1) 混繊度(Di) 1本の糸条を0.1g/dの初荷重をかけて吊り下
げ1000mmの間隔にマークを付ける。下のマーク
の個所に針をさして針を上方に移動させる。針
が単繊維の絡みに引つかかり初荷重を持ち上げ
る時点の距離Xmmを測定。糸条を変えて同じ測
定を20回繰り返し、次式によりDiを算出する。 2) 布の厚み 布を5cm×5cmの大きさに切断した試料を3
枚用意し、経方向と緯方向を交互に変えて3枚
重ね合わせ圧縮弾性試験機(前田精機社製)に
より240g/cm2の初荷重を掛けて厚みを測定し
た。 3) 引張強力 JIS L 1096テンシロン引張試験機使用。 実施例 ポリエステルフイラメント糸A(1000d/95f、
SHD=5%)とポリエステルフイラメント糸B
(500d/96f、SHD=20%)とを引揃えて、エア
ーノズルにより空気圧3Kg/cm2で混繊し、混繊度
=100の異収縮フイラメント混繊糸を得た。 得られた混繊糸1500d/191fをレピア式織機
MAVにより経糸密度26本/インチ、緯糸密度26
本/インチ、織上巾227cmの1/3斜文(目付
330g/cm2)、通気度13c.c./cm2/secを織成した。 次いで基布を熱風180℃で1分間熱処理し、嵩
高性を発現させた。熱処理前の布の厚みは0.59
mm、熱処理後の布の厚みは1.1mmであり、熱処理
により1.86倍の厚みになつた。なお、目付は
490g/m2、通気度は25c.c./cm2/secであつた。次
いで該基布を塩化ビニル樹脂ペースト(50重量%
固形分)100重量部に対し硫酸バリウム650重量部
を混合した高密度組成物をコーテイング法により
含浸処理し、厚み1.25mm、重量1800g/m2の遮音
シートを得た。得られた遮音シートの特性を第1
表に示した。 なお、ポリエステルフイラメント糸使いの粗密
度織物にカレンダーロールによるラミネート加工
品(比較例品)についての特性値も比較表示し
た。
The present invention relates to a flexible sound insulating sheet and a method for manufacturing the same. Conventionally, flexible sound insulating sheets have been made by pasting rubber-based polymers or thermoplastic resins containing high-density substances such as heavy metals and other inorganic compounds onto a coarse-density base fabric using calender rolls, etc. Widely used. However, such sound insulating sheets only have the bridge effect of high-density materials, and because the adhesive strength is poor, the base fabric is likely to peel off, and because of the low-density base fabric, it is difficult to hang or store it vertically for long periods of use. When used, the sheet's own weight causes defects such as partial elongation and cracks in the fixed portion. Although it is conceivable to use a high-density base fabric to improve the strength and form stability of the sound insulating sheet, the use of a high-density base fabric has the disadvantage that the peel strength is further reduced. The inventors of the present invention solved the above-mentioned drawbacks of conventional methods, and as a result of intensive research to provide a sound insulation sheet that is flexible, mechanically strong, stable in size and form, and has excellent sound insulation performance, the present invention was developed. A sound insulating sheet and its manufacturing method have been achieved. That is, the present invention provides a bulky fabric made by weaving differential shrinkage filament mixed yarns as warp and/or weft yarns with a specific gravity of 2.
A sound insulating sheet characterized by being provided with the above metal or inorganic compound and a film-forming polymer. and a mixed fiber density of 40, consisting of at least two types of differently shrinkable filaments with a difference in heat shrinkage rate of 3% or more.
After the fabric made by weaving the above blended yarns as warp and/or weft is bulked by heat treatment,
This is a method for producing a sound insulating sheet, which is characterized by impregnating a metal or inorganic compound with a specific gravity of 2 or more and a film-forming polymer. The sound insulation sheet according to the present invention is flexible, strong, and has excellent dimensional and form stability.
Moreover, it has many features such as the base fabric and the high-density composition (metal or inorganic compound and film-forming polymer) not peeling off, and excellent sound insulation performance. The dimensional and morphological stability of the sound insulating sheet is mainly maintained by the high shrinkage filaments of the base fabric, and the low shrinkage filaments that provide bulkiness mainly act effectively on the impregnation and adhesive properties of the high density composition. Since the high-density composition easily penetrates and adheres between the fiber bundles constituting the woven fabric and between the single fibers of the fiber bundles, the adhesiveness with the high-density composition can be achieved without any special preparation for adhesion. This results in significantly improved shape stability and strength. The sound insulation sheet of the present invention can be used in many ways, such as as a sound insulation sheet for construction work, demolition work, renovation work, civil engineering work, road construction, and other civil engineering construction work, and as a sound insulation sheet for the interior and exterior of houses, vehicles, ships, and other buildings. Can be done. Although there are no particular limitations on the filament material used in the present invention, it is effective to apply it to polyester, aromatic polyamide, etc., which are highly hydrophobic and have poor adhesion to high-density compositions. In addition, the difference in heat shrinkage rate of the filaments that make up the mixed yarn is usually 3%.
or more, preferably 5 to 10%. The difference in thermal shrinkage rate in the present invention is usually 15 with hot air at 160℃.
This is the value (SHD) under the condition of 1 minute, but when the heat treatment in bulk processing is hot water treatment, it may be the hot water shrinkage difference (30 minutes of hot water). Different shrinkage filament blend yarns are usually produced by aligning a multifilament yarn with high shrinkage filaments and a multifilament yarn with low shrinkage filaments, passing them through a high-pressure air nozzle (interlacer), and mixing them with turbulent air. Ru. At that time, the blending degree Di is usually 40
or more, preferably 50 or more. If the degree of blending is too small, the bulkiness becomes partially non-uniform during bulk processing, resulting in a disadvantage of poor smoothness. The mixing ratio of high shrinkage filaments and low shrinkage filaments is preferably 7:3 to 3:7 by weight. The denier of the mixed yarn is usually 500 to 2000 deniers, preferably 1000 to 1500 deniers. The filament can be provided with various properties such as flame retardancy and light resistance, if desired. A woven fabric is woven using such differentially contracted filament mixed yarns for either the warp or the weft, preferably for both. Although there are no limitations on the texture, fabrics with floating textures such as satin weave, twill weave, and variations thereof are particularly preferred from the viewpoint of incorporating the high-density composition after bulking. The fabric thus obtained is subjected to dry heat treatment, hot water treatment,
Bulky properties are developed through moist heat treatment, etc. The thickness of the woven fabric is preferably set to be 1.2 times or more, particularly 1.5 times or more, the thickness before treatment. Dry heat treatment conditions are usually
The temperature is 150-220°C, preferably 170-190°C. In addition, hot water treatment conditions are usually 90 to 100℃, preferably 95 to 100℃, moist heat treatment conditions are usually 100 to 140℃,
Preferably it is 110-130°C. The high-shrinkage filament shrinks due to the bulking process, mainly forming the center of the yarn and exhibiting dimensional stability. After developing bulkiness, the fabric usually has a basis weight of 200g/m2 or more, especially
It is preferably 300 g/m 2 or more. In addition, when considering impregnability, the air permeability (measured with a pressure difference of 12.7 cm in the water column using a Frazier type air permeability tester) is 5.
It is preferably cc/cm 2 /sec or more, particularly 15 to 100 c.c./cm 2 /sec. After the woven fabric has developed bulkiness, it is then processed with a high-density composition mainly consisting of a metal or inorganic compound with a specific gravity of 2 or more and a film-forming compound to produce a sound insulating sheet. Examples of metals or inorganic compounds with a specific gravity of 2 or more include metals such as iron, lead, zinc, tin, and copper, iron oxide, zinc sulfide, barium sulfate, glass, clay,
An example is an inorganic compound such as talc, which can be used alone or in combination of two or more. A metal and an inorganic compound may be used together. Particularly preferred are those having a specific gravity of 2.5 to 8.0. The metal or inorganic compound is used in the form of a powder, preferably a fine powder with a diameter of 0.5 mm or less, particularly preferably 0.1 mm or less. The film-forming polymer is preferably a rubber or a thermoplastic resin, such as rubbers such as ethylene propylene rubber, acrylonitrile rubber, chloroprene rubber, styrene butadiene rubber, chloroprene styrene rubber, acrylonitrile butadiene rubber, vinyl chloride resin, and polyurethane rubber. Thermoplastic resins such as resins, ethylene vinyl acetate resins, acrylic resins, polyester resins, polyester polyether resins, polyamide resins, and modified nylon resins can be used alone or in combination of two or more. The film-forming polymer is usually used in the form of a solution or latex, but it can also be used by extrusion lamination, calendering, etc. Usually, it is preferable to use a vinyl chloride resin or a rubber or thermoplastic resin based on this resin.
The mixing ratio of the metal or inorganic compound and the film-forming polymer is generally 1:1 to 10:1 by weight, preferably 5:1 to 8:1. The amount of the high-density composition to be applied is preferably such that the weight of the fabric, the composition of the high-density composition, and the amount of the high-density composition to be applied are appropriately selected so that the weight of the sound insulation sheet is 1 kg/m 2 or more in consideration of sound insulation performance. Stabilizers for dense compositions,
Various additives such as light stabilizers, flame retardants, antifouling agents, and antistatic agents can be added. The sound insulating sheet according to the present invention can further have a heat insulating or heat retaining property by forming a non-thermal conductive layer, and can also be given a design by applying a printed pattern, an embossed pattern, etc. to the surface. The present invention will be explained below with reference to Examples. In addition,
In the present invention, the degree of blending, fabric thickness, and other physical properties were measured by the following methods. 1) Mixing degree (Di) One yarn is hung with an initial load of 0.1g/d and marks are made at 1000mm intervals. Insert the needle into the mark below and move the needle upward. Measure the distance Xmm when the needle is caught in the tangle of single fibers and lifts the initial load. Repeat the same measurement 20 times by changing the yarn, and calculate Di using the following formula. 2) Thickness of the cloth Cut the cloth into 5 cm x 5 cm samples.
Three sheets were prepared, and the thickness was measured by stacking three sheets alternately in the warp direction and the weft direction and applying an initial load of 240 g/cm 2 using a compressive elasticity tester (manufactured by Maeda Seiki Co., Ltd.). 3) Tensile strength JIS L 1096 Tensilon tensile tester was used. Example Polyester filament yarn A (1000d/95f,
SHD=5%) and polyester filament yarn B
(500d/96f, SHD=20%) were aligned and mixed at an air pressure of 3 Kg/cm 2 using an air nozzle to obtain a differential shrinkage filament mixed yarn with a mixing degree of 100. The obtained mixed fiber yarn 1500d/191f is passed through a rapier type loom.
MAV allows warp density of 26 threads/inch and weft thread density of 26
book/inch, woven width 227cm, 1/3 diagonal (basis weight)
330 g/cm 2 ) and air permeability 13 c.c./cm 2 /sec. Next, the base fabric was heat-treated with hot air at 180°C for 1 minute to develop bulkiness. The thickness of the cloth before heat treatment is 0.59
mm, and the thickness of the cloth after heat treatment was 1.1 mm, which became 1.86 times thicker after heat treatment. In addition, the basis weight is
The weight was 490 g/m 2 and the air permeability was 25 c.c./cm 2 /sec. Next, the base fabric was coated with vinyl chloride resin paste (50% by weight).
A high-density composition prepared by mixing 650 parts by weight of barium sulfate with 100 parts by weight (solid content) was impregnated by a coating method to obtain a sound insulating sheet with a thickness of 1.25 mm and a weight of 1800 g/m 2 . The characteristics of the obtained sound insulation sheet were
Shown in the table. In addition, the characteristic values of a product laminated with a calender roll on a coarse density fabric using polyester filament yarn (comparative example product) are also shown for comparison.

【表】【table】

【表】 * 4回の繰返しラミネート加工
第1表から明らかなように、一回の含浸処理に
より所望する含浸量が得られて遮音性、引張強
力、剥離強力、耐久性の優れた遮音シートが得ら
れた。 一方、比較例品は所望する高密度組成物量を得
るためにラミネートを繰返し行うことが必要で工
程的に不利益であるばかりか、引張強力や特に剥
離強力が全く不充分であり耐久性の劣る遮音シー
トしか得られない。また厚地平織布で同様のシー
トを作成したところ引張強力は改善されたが、ブ
リツジ効果(アンカー効果)がなくなり、剥離強
力は更に低下する欠点を生じた。 更にまた、捲縮加工糸からなる嵩高織物にコー
テイング法による含浸処理を行つた比較例では含
浸性は比較的に良好であつたが、得られた遮音シ
ートの寸法および形態安定性が悪く特に吊り下げ
て使用するとき大きな寸法変化や表面亀裂を生じ
た。
[Table] * Repeated lamination process 4 times As is clear from Table 1, the desired amount of impregnation can be obtained through a single impregnation process, resulting in a sound insulating sheet with excellent sound insulating properties, tensile strength, peel strength, and durability. Obtained. On the other hand, the comparative example product requires repeated lamination to obtain the desired amount of high-density composition, which is not only disadvantageous in terms of process, but also has completely insufficient tensile strength and especially peel strength, and is inferior in durability. All you can get is a soundproof sheet. When a similar sheet was made from a thick plain woven fabric, the tensile strength was improved, but the bridge effect (anchor effect) disappeared and the peel strength further decreased. Furthermore, in a comparative example in which a bulky fabric made of crimped yarn was impregnated by a coating method, the impregnability was relatively good, but the resulting sound insulation sheet had poor dimensional and morphological stability, especially when hanging. When used lowered, large dimensional changes and surface cracks occurred.

Claims (1)

【特許請求の範囲】 1 異収縮フイラメント混繊糸を経糸および/ま
たは緯糸として織成してなる嵩高性織物に比重2
以上の金属もしくは無機化合物と皮膜形成性高分
子とが付与されてなることを特徴とする遮音シー
ト。 2 3%以上の熱収縮率差を有する少くとも2種
の異収縮フイラメントからなる混繊度が40以上の
混繊糸を経糸および/または緯糸として織成して
なる織物を熱処理により嵩高加工した後、比重2
以上の金属もしくは無機化合物と皮膜形成性高分
子とを含浸させることを特徴とする遮音シートの
製造方法。
[Scope of Claims] 1. A bulky fabric made by weaving differential shrinkage filament mixed yarns as warp and/or weft yarns with a specific gravity of 2.
A sound insulating sheet characterized by being provided with the above metal or inorganic compound and a film-forming polymer. 2. A woven fabric made of warp and/or weft yarns composed of at least two types of differently shrinkable filaments with a difference in thermal shrinkage of 3% or more and a blending degree of 40 or more is bulked by heat treatment, and then the specific gravity is increased. 2
A method for producing a sound insulation sheet, comprising impregnating the above metal or inorganic compound with a film-forming polymer.
JP55123773A 1980-09-05 1980-09-05 Sound insulating sheet and its manufacture Granted JPS5747647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55123773A JPS5747647A (en) 1980-09-05 1980-09-05 Sound insulating sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55123773A JPS5747647A (en) 1980-09-05 1980-09-05 Sound insulating sheet and its manufacture

Publications (2)

Publication Number Publication Date
JPS5747647A JPS5747647A (en) 1982-03-18
JPH0122146B2 true JPH0122146B2 (en) 1989-04-25

Family

ID=14868916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55123773A Granted JPS5747647A (en) 1980-09-05 1980-09-05 Sound insulating sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPS5747647A (en)

Also Published As

Publication number Publication date
JPS5747647A (en) 1982-03-18

Similar Documents

Publication Publication Date Title
JPH0122146B2 (en)
CN211054567U (en) Uvioresistant polyester fabric
JP4848658B2 (en) Manufacturing method for air bag base fabric
JP2004044018A (en) High-density textile fabric
JP3787893B2 (en) Flameproof mesh sheet
JPS6126386Y2 (en)
JPS6139189B2 (en)
CN113373703B (en) Nonwoven material for wall decoration
JP2004195968A (en) Moisture-permeable waterproof cloth excellent in tear strength and its manufacturing method
JPH03294542A (en) Resin-finished cloth, production thereof, air bag and sailcloth
KR100188069B1 (en) Web for concealing wall paper and method manufacturing it
JPS6154590B2 (en)
JPS6032753B2 (en) Waterproof canvas and its manufacturing method
JP3389969B2 (en) Textile for industrial materials
JPS6226901B2 (en)
JPS5952639A (en) Aromatic polyamide fiber laminated sheet
JPH04352843A (en) Cloth for air bag
JPS6147847A (en) Fire retardant spring receiving material
JPH0616100A (en) Sheet for air bag
JPH0253967A (en) Production of canvas
JPH0369532A (en) Meshy screen
JPS6237138B2 (en)
JPS6226900B2 (en)
JPH06220779A (en) Waterproof fabric and its production
JP3380296B2 (en) Civil engineering sheet