JPH01219803A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPH01219803A
JPH01219803A JP4451388A JP4451388A JPH01219803A JP H01219803 A JPH01219803 A JP H01219803A JP 4451388 A JP4451388 A JP 4451388A JP 4451388 A JP4451388 A JP 4451388A JP H01219803 A JPH01219803 A JP H01219803A
Authority
JP
Japan
Prior art keywords
solvent
monomer
org
polymer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4451388A
Other languages
Japanese (ja)
Inventor
Kazunori Miura
和則 三浦
Ippei Sawaki
一平 佐脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4451388A priority Critical patent/JPH01219803A/en
Publication of JPH01219803A publication Critical patent/JPH01219803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To shorten the time for production and to obtain a large refractive index difference by providing a stage which removes the residual monomer of a 2nd org. material failing to make photopolymn. by using a solvent which does not dissolve the polymers of the 1st and 2nd org. materials and dissolves the monomer of the 2nd org. material. CONSTITUTION:The residual monomer of the 2nd org. material failing to make the photopolymn. is removed by such a method of immersing the entire part of a substrate into the solvent (e.g.; ethanol) which does not dissolve the polymers of both the 1st and 2nd org. materials (prescribed PMMA, styrene monomers) and dissolves the monomer of the 2nd org. material. The solvent penetrates rapidly into the polymer of the 1st org. material and the residual monomer existing in said polymer dissolves into the solvent and is thus rapidly released to the outside of the polymer when the entire part of the substrate after the photopolymn. is immersed into the solvent. A short period of about 1min suffices with the time required for the residual monomer to be removed in such a manner and, therefore the time for production over the entire part is shortened. In addition, the temp. of the solvent may be at room temp. and the large refractive index difference is obtainable.

Description

【発明の詳細な説明】 〔概   要〕 有機材料の光重合を利用した光導波路の製造方法に関し
、 製造時間を短縮でき、しかも大きな屈折率差を得られる
ようにすることを目的とし、 基板上に、少なくとも、第1の有機材料のポリマ中に第
2の有機材料のモノマを含んでなる4波路材材を成膜す
る工程と、前記モノマに対し光導波路となる領域に光重
合を生じさせる工程とを有する光導波路の製造方法にお
いて、少なくとも、前記第1及び第2の有機材料ポリマ
を溶解させず且つ前記第2の有機材料のモノマを溶解さ
せる溶剤、あるいは、前記第1及び第2の有機材料の高
重合ポリマを溶解させず且つ前記第2の有機材料の低重
合ポリマを溶解させる溶剤を用いて、前記光重合の生じ
なかった第2の有機材料の残留モノマを除去する工程を
備えるように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for manufacturing an optical waveguide using photopolymerization of an organic material, and aims to reduce manufacturing time and obtain a large refractive index difference. at least a step of forming a four-wave path material comprising a monomer of a second organic material in a polymer of the first organic material, and causing photopolymerization of the monomer in a region that will become an optical waveguide. In the method of manufacturing an optical waveguide, the method includes at least a solvent that does not dissolve the first and second organic material polymers and dissolves a monomer of the second organic material; A step of removing residual monomer of the second organic material that has not been photopolymerized using a solvent that does not dissolve the highly polymerized polymer of the organic material and dissolves the low polymerized polymer of the second organic material. Configure it as follows.

〔産業上の利用分野〕[Industrial application field]

本発明は、有機材料の光重合を利用した光導波路の製造
方法に関する。
The present invention relates to a method for manufacturing an optical waveguide using photopolymerization of an organic material.

現在、光通信や光情報処理の分野において、光回路の低
損失化、小型化、軽量化及び高信頼化等のために、導波
型光素子の研究−が数多く行われており、これに伴って
光導波路による各光機能素子間の光配線技術が重要とな
ってきている。
Currently, in the fields of optical communication and optical information processing, much research is being conducted on waveguide optical devices to reduce loss, reduce size, reduce weight, and improve reliability of optical circuits. Accordingly, optical wiring technology between optical functional elements using optical waveguides has become important.

〔従来の技術〕[Conventional technology]

従来、光導波路の材料として、ガラス、半導体、ニオブ
酸リチウム等を用いて研究が行われている。
Conventionally, research has been conducted using glass, semiconductors, lithium niobate, etc. as materials for optical waveguides.

しかし、これらの材料を用いた光導波路は、その製造工
程において熱拡散や真空プロセス等の複雑な工程を必要
とし、しかも得られる屈折率の自由度が小さいという欠
点がある。
However, optical waveguides using these materials require complicated steps such as thermal diffusion and vacuum processing in the manufacturing process, and have the disadvantage that the degree of freedom in the refractive index that can be obtained is small.

これに対し、ポリカーボネートやポリメタクリル酸メチ
ル(PMMA)等の有機材料を用いた光導波路も検討さ
れている。これによれば、光重合を利用することで、製
造が簡単になり、大きな屈折率差を得ることができると
共に、安価で、伝IM損失も小さいという利点が得られ
る。この光重合を利用した従来の光導波路の製造方法は
、次の通りである。
In contrast, optical waveguides using organic materials such as polycarbonate and polymethyl methacrylate (PMMA) are also being considered. According to this, by utilizing photopolymerization, manufacturing becomes simple, a large refractive index difference can be obtained, and the advantages are that it is inexpensive and the transmission IM loss is small. A conventional method for manufacturing an optical waveguide using this photopolymerization is as follows.

(i)ガラス等でできた基板上に、モノマ(例えばスチ
レンモノマ)を含んだポリマ(例えばPMMA)を導波
路材料としてコーティングする。
(i) A substrate made of glass or the like is coated with a polymer (eg, PMMA) containing a monomer (eg, styrene monomer) as a waveguide material.

(ii)上記モノマを紫外線により選択的に重合させて
、コア層とクラフト層との屈折率差を生じさせる。すな
わち、モノマが光重合を起こした領域は屈折率の大きな
コア領域となり、その周囲の領域はコア層よりも屈折率
の小さなりラフト領域となる。
(ii) selectively polymerizing the monomer with ultraviolet light to create a difference in refractive index between the core layer and the kraft layer; That is, the region where the monomer is photopolymerized becomes a core region with a high refractive index, and the surrounding region becomes a raft region with a refractive index lower than that of the core layer.

(iii )光重合を起こしていない未反応の残留モノ
マをクラッド領域中から除去する。この除去は、真空中
もしくは空気中においてベーキングを施すことによって
行われる。
(iii) Remove unreacted residual monomers that have not undergone photopolymerization from the cladding region. This removal is performed by baking in vacuum or air.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の製造方法における残留モノマの除去は、上記
(iii )に示したようにベーキングで行うため、長
い時間(例えば30分)が必要となり、これに伴い全体
の製造時間も長くなってしまうという問題があった。
In the conventional manufacturing method, the residual monomer is removed by baking as shown in (iii) above, which requires a long time (for example, 30 minutes), which increases the overall manufacturing time. There was a problem.

また、上記ベーキングは例えば90℃程度の高温下で行
われるため、除去されるべきはずの残留モノマが熱重合
を起こし、これによりコア領域とクラッド領域の屈折率
差が小さくなってしまうというおそれもあった。更に、
コア領域中のポリマがクラッド領域へ熱拡散するために
、屈折率分布がなまるおそれもあった。
Furthermore, since the above baking is performed at a high temperature of, for example, about 90°C, there is a risk that the residual monomer that should be removed will undergo thermal polymerization, which will reduce the difference in refractive index between the core region and the cladding region. there were. Furthermore,
There was also a risk that the refractive index distribution would be blunted due to thermal diffusion of the polymer in the core region to the cladding region.

本発明は、上記問題点に鑑み、製造時間を短縮でき、し
かも大きな屈折率差を得られるようにすることを目的と
する。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to shorten the manufacturing time and to obtain a large refractive index difference.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、まず基板上に、少なくとも、第1の有機材
料のポリマ(例えばP MM A)中に第2の有機材料
のモノマ(例えばスチレンモノマ)を含んでなる導波路
材料を成膜する。
In the present invention, first, a waveguide material containing at least a monomer of a second organic material (eg, styrene monomer) in a polymer of a first organic material (eg, PMMA) is formed on a substrate.

続いて、上記モノマに対し、光導波路となる領域に光重
合を起こさせて、コア領域とクラッド領域との屈折率差
を生じさせる。
Subsequently, the monomer is photopolymerized in a region that will become an optical waveguide, thereby creating a difference in refractive index between the core region and the cladding region.

その後、少なくとも、上記第1及び第2の有機材料のい
ずれのポリマをも溶解させず、かつ上記第2の有機材料
のモノマを溶解させうる溶剤、あるいは、前記第1及び
第2の有機材料の高重合ポリマを溶解させず且つ前記第
2の有機材料の低重合ポリマを溶解させる溶剤(例えば
エタノール)を用意する。そして、この溶剤中に上記工
程で得られた基板全体を浸漬させること等により、上記
光重合を起こさなかった第2の有機材料の残留モノマを
除去する。
Thereafter, at least a solvent that does not dissolve any of the polymers of the first and second organic materials and can dissolve the monomers of the second organic materials, or a solvent that does not dissolve any of the polymers of the first and second organic materials; A solvent (for example, ethanol) is prepared that does not dissolve the highly polymerized polymer but dissolves the low polymerized polymer of the second organic material. Then, by immersing the entire substrate obtained in the above step in this solvent, residual monomers of the second organic material that did not undergo the above photopolymerization are removed.

〔作   用〕[For production]

上記溶剤中に光重合後の基板全体を浸した場合、溶剤が
第1の有機材料のポリマ中に素早く染みこんでいく。す
ると、そのポリマ中に存在する残留モノマが溶剤中に溶
は込み、ポリマの外に素早く放出される。
When the entire photopolymerized substrate is immersed in the above solvent, the solvent quickly penetrates into the polymer of the first organic material. The residual monomer present in the polymer is then dissolved into the solvent and quickly released from the polymer.

このようにして残留モノマが除去されるのに要する時間
は1分程度の短時間で十分であるため、全体の製造時間
が短縮される。しかも、溶剤の温度ハ’Effi温テよ
く、従来のベーキングのような高温を必要としないので
、残留モノマが熱重合を起こしてしまうような心配もな
べ、よって大きな屈折率差が得られる。
In this way, a short time of about 1 minute is sufficient to remove the residual monomer, thereby reducing the overall manufacturing time. Moreover, since the temperature of the solvent is very high and high temperatures unlike conventional baking are not required, there is no need to worry about thermal polymerization of residual monomers, and a large refractive index difference can be obtained.

更に、コア中のポリマ(第2の有機材料のポリマ)がク
ラッド中へ熱拡散しないため、急峻な屈折率分布が得ら
れる。
Furthermore, since the polymer in the core (the polymer of the second organic material) does not thermally diffuse into the cladding, a steep refractive index distribution can be obtained.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例の製造工程図である。FIG. 1 is a manufacturing process diagram of an embodiment of the present invention.

本実施例では、まず第1図(alに示すように、Siか
らなる基板l上に、メタクリル酸メチル(MMA)のポ
リマであるポリメタクリル酸メチル(PMMA)からな
るクラッド材料2を例えば厚さ2μm程度に形成する。
In this example, first, as shown in FIG. It is formed to a thickness of about 2 μm.

この場合、例えば、PMMAを多量の溶媒(例えばMM
A等)に熔かしてなる溶液をスピンコード法により基板
1上にコーティングした後、これを乾燥することによっ
て上記クラフト材料2が得られる。
In this case, for example, PMMA is mixed with a large amount of solvent (e.g. MM
The above-mentioned craft material 2 is obtained by coating the substrate 1 with a solution obtained by melting A, etc.) on the substrate 1 by a spin-coating method and then drying it.

続いて、クラッド材料2上に、これと同一材料のPMM
A中にスチレンのモノマ(St)を含んでなるコア材料
3を例えば厚さ3μm程度に形成する。この場合は、例
えば、PMMA及びスチレンモノマ(St)を多量の溶
媒(例えば、1.4ジオキサンやスチレンモノマ等)に
熔かしてなる溶液をスピンコード法によりクラフト材料
2上にコーティングした後、これを乾燥することによっ
て上記コア材料3が得られる。なお、コア材料3中には
、以下に述べる光重合の開始剤として、例えばアセトフ
ェノン系の開始剤を含ませておく。
Next, PMM of the same material is placed on the cladding material 2.
A core material 3 containing styrene monomer (St) in A is formed to have a thickness of, for example, about 3 μm. In this case, for example, a solution prepared by dissolving PMMA and styrene monomer (St) in a large amount of solvent (such as 1.4 dioxane or styrene monomer) is coated on the craft material 2 by a spin coating method, and then, By drying this, the core material 3 described above is obtained. Note that the core material 3 contains, for example, an acetophenone-based initiator as a photopolymerization initiator described below.

次に、第1図(C)に示すように、所望の導波路パター
ンを有するフォトマスク4をコア材料3上に近接して配
置し、その上から高圧水銀ランプ(波長0.36〜0.
41μm)等による紫外光を照射する。
Next, as shown in FIG. 1(C), a photomask 4 having a desired waveguide pattern is placed close to the core material 3, and a high-pressure mercury lamp (wavelength: 0.36 to 0.05 cm) is placed over the photomask 4.
41 μm) etc. is irradiated with ultraviolet light.

すると、コア材料3のうち、上記紫外光による露光領域
(最終的にコア層となる領域)3aでは、その中に含ま
れているスチレンのモノマ(St)が光重合を起こして
ポリスチレン(PSt)に変化するため、非露光領域3
bとの間で屈折率差が生じる。
Then, in the ultraviolet light exposed region 3a of the core material 3 (the region that will eventually become the core layer), the styrene monomer (St) contained therein undergoes photopolymerization to form polystyrene (PSt). , so the non-exposed area 3
A difference in refractive index occurs between the

その後、第1図(dlに示すように、以上の工程で得ら
れた基板の全体をエタノール5中に例えば約1分間浸漬
する。ここで、上記エタノール5は、少なくともポリマ
(ここではPMMA及びPSt)を溶解させず、かつモ
ノマ(ここではSt)を溶解させうる溶剤(あるいは高
重合のPMMA及びpstを溶解させず、かつ低重合の
pstを溶解させる溶剤)として作用する。そのため、
エタノール5がコア材料3中に染み込んでい(と、その
中に存在する未反応の残留モノマ(特に、非露光領域3
b中のSL)の大部分がエタノール5中に溶は込み、そ
のまま外部に放出される。続いて、基板全体をエタノー
ル5中から取り出して水洗し、エタノール5を洗い落と
す。
Thereafter, as shown in FIG. ) and which can dissolve the monomer (here, St) (or a solvent which does not dissolve highly polymerized PMMA and pst but dissolves lowly polymerized pst).Therefore,
The ethanol 5 has soaked into the core material 3 (and the unreacted residual monomers present therein (particularly in the non-exposed areas 3).
Most of SL) in b is dissolved in ethanol 5 and released to the outside as it is. Subsequently, the entire substrate is taken out of the ethanol 5 and washed with water to wash off the ethanol 5.

その後は、図示しないが、コア材料3上に、クラッド材
料2と同様なもう1つのクラフト材料を形成する。以上
の工程により、PStを含んだPMMAからなる露光領
域3aをコア層とし、その周囲のPMMAのみからなる
領域をクラッド層とする光導波路が得られる。
After that, although not shown, another craft material similar to the cladding material 2 is formed on the core material 3. Through the above steps, an optical waveguide is obtained in which the exposed region 3a made of PMMA containing PSt serves as the core layer, and the surrounding region made only of PMMA serves as the cladding layer.

本実施例によれば、第1図+d)に示した工程において
、エタノール5がコア材料3中に染み込んでいく速度は
非常に迅速であり、このエタノール5中に残留Stが溶
は込む時間も橿めて短いため、残留Stの除去に要する
時間は高々1分程度で済む。従って、従来のような長時
間のベーキングを利用する場合と比較し、全体の製造時
間を著しく短縮することができる。
According to this example, in the step shown in FIG. Since the length is relatively short, the time required to remove the residual St is about 1 minute at most. Therefore, the overall manufacturing time can be significantly shortened compared to the conventional case where long-time baking is used.

しかも、残留Stの除去工程が上記のように短時間で済
むと、3tからpstへの経時変化も低く抑えられる。
Moreover, if the process of removing residual St is completed in a short time as described above, the change over time from 3t to pst can be suppressed to a low level.

その上、エタノール5の温度は室温でよく、従来のベー
キングのような高温を必要としないため、残留Stが熱
重合を起こしてPStに変化してしまう心配もない。従
って、クラッド層中に生じるpstの量を最低限に抑え
ることができ、よってコア層とクラッド層間の屈折率差
を大きく維持することができる。この効果を確認するた
め、本実施における露光量(露光時間)と屈折率差の関
係を、従来のベーキングによる場合と比較して、第2図
に示す。ここで、本実施例ではエタノール中に室温で1
分間浸した場合について示し、従来例では90℃で30
分間ベーキングを行った場合について示した。同図にお
いて、従来の場合は最大0.009程度の屈折率差しか
得られないのに対し、本実施例の場合は従来の2倍以上
である約0.02という大きな屈折率差が得られている
Furthermore, the temperature of the ethanol 5 may be room temperature and does not require high temperatures unlike conventional baking, so there is no fear that residual St will undergo thermal polymerization and change into PSt. Therefore, the amount of pst generated in the cladding layer can be suppressed to a minimum, and therefore the difference in refractive index between the core layer and the cladding layer can be maintained large. In order to confirm this effect, the relationship between the exposure amount (exposure time) and the refractive index difference in this embodiment is shown in FIG. 2 in comparison with that in the case of conventional baking. Here, in this example, 1
The figure shows the case of soaking for 30 minutes at 90℃ in the conventional example.
The case where baking was performed for a minute was shown. In the same figure, in the conventional case, only a maximum refractive index difference of about 0.009 can be obtained, whereas in the case of this embodiment, a large refractive index difference of about 0.02, which is more than twice that of the conventional case, can be obtained. ing.

更に、コア層中のPStがクラッド層中へ熱拡散するこ
ともないため、急峻な屈折率分布を得ることができる。
Furthermore, since PSt in the core layer does not thermally diffuse into the cladding layer, a steep refractive index distribution can be obtained.

なお、上記実施例では、コア材料3としてSt/PMM
Aを用い、クラッド材料2としてPMMAを用いたが、
これらの材料以外にも、光重合により屈折率差を持たせ
ることのできる各種の有機材料を用いることができる。
In the above embodiment, St/PMM is used as the core material 3.
A was used, and PMMA was used as the cladding material 2, but
In addition to these materials, various organic materials that can be made to have a difference in refractive index by photopolymerization can be used.

また、基板1としてガラス基板を用いた場合は、その上
にコア材料3を直接形成するようにしてもよい。
Furthermore, when a glass substrate is used as the substrate 1, the core material 3 may be directly formed thereon.

また、残留モノマの除去に用いる溶剤としては、上述し
たエタノールの代わりにメタノールやイソプロピルアル
コール等の他のアルコールを用いることもでき、或いは
各種導波路材料に応じて他の溶剤を用いてもよい。
Furthermore, as the solvent used to remove the residual monomer, other alcohols such as methanol or isopropyl alcohol may be used instead of the above-mentioned ethanol, or other solvents may be used depending on the various waveguide materials.

更に、露光によって得られる導波路パターンは、上記実
施例のようにフォトマスクを用いる代わりに、光ビーム
を走査して描くようにしてもよい。
Furthermore, the waveguide pattern obtained by exposure may be drawn by scanning a light beam instead of using a photomask as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光重合されなか
った残留モノマを非常に迅速に除去できるため、全体の
製造時間を大幅に短縮させることができる。しかも、残
留モノマを除去する際、従来のベーキングのような高温
を必要としないため、残留モノマの熱重合及びコア層中
のポリマのクラッド層への熱拡散を防止でき、よってコ
ア層とクラッド層間に急峻で大きな屈折率差を持たせる
ことができる。
As explained above, according to the present invention, residual monomer that has not been photopolymerized can be removed very quickly, so that the overall manufacturing time can be significantly shortened. Moreover, since high temperatures unlike conventional baking are not required when removing residual monomers, it is possible to prevent thermal polymerization of residual monomers and thermal diffusion of polymer in the core layer to the cladding layer, thereby preventing the gap between the core layer and the cladding layer. can have a steep and large refractive index difference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例の製造工程図
、第2図は同実施例及び従来例における露光時間と屈折
率差の関係を示す図である。 1・・・基板、 2・・・クラッド材料、 3・・・コア材料、 3a・・・露光領域、 3b・・・非露光領域、 4・・・フォトマスク、 5・・・エタノール。 特許出願人   富士通株式会社 鴬外光 本発明の一実施例 露光r!間 (min) 露尤特閑ヒ圧営4)、Lの関イ糸 第2図
FIGS. 1(a) to 1(d) are manufacturing process diagrams of one embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between exposure time and refractive index difference in the same embodiment and a conventional example. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Clad material, 3...Core material, 3a...Exposed area, 3b...Non-exposed area, 4...Photomask, 5...Ethanol. Patent Applicant: Fujitsu Ltd. Ugaikou One Embodiment of the Present Invention Exposure r! Time (min) L's Sekii Thread Figure 2

Claims (1)

【特許請求の範囲】 1)基板(1)上に、少なくとも、第1の有機材料のポ
リマ中に第2の有機材料のモノマを含んでなる導波路材
料(3)を成膜する工程と、前記モノマに対し光導波路
となる領域に光重合を生じさせる工程とを有する光導波
路の製造方法において、 少なくとも、前記第1及び第2の有機材料のポリマを溶
解させず且つ前記第2の有機材料のモノマを溶解させる
溶剤(5)を用いて、前記光重合の生じなかった第2の
有機材料の残留モノマを除去する工程を備えることを特
徴とする光導波路の製造方法。 2)基板(1)上に、少なくとも、第1の有機材料のポ
リマ中に第2の有機材料のモノマを含んでなる導波路材
料(3)を成膜する工程と、前記モノマに対し光導波路
となる領域に光重合を生じさせる工程とを有する光導波
路の製造方法において、 少なくとも、前記第1及び第2の有機材料のポリマを溶
解させず且つ前記第2の有機材料のモノマを溶解させる
溶剤、あるいは、前記第1及び第2の有機材料の高重合
ポリマを溶解させず且つ前記第2の有機材料の低重合ポ
リマを溶解させる溶剤(5)を用いて、前記光重合の生
じなかった第2の有機材料の残留モノマを除去する工程
を備えることを特徴とする光導波路の製造方法。
[Claims] 1) forming a film on the substrate (1) of a waveguide material (3) comprising at least a monomer of a second organic material in a polymer of the first organic material; A method for producing an optical waveguide comprising the step of causing photopolymerization of the monomer in a region that will become an optical waveguide, at least the step of not dissolving the polymers of the first and second organic materials, and the step of causing the monomer to undergo photopolymerization in a region that will become an optical waveguide. A method for manufacturing an optical waveguide, comprising the step of removing residual monomer of the second organic material that has not undergone photopolymerization using a solvent (5) that dissolves the monomer. 2) forming a film of a waveguide material (3) comprising at least a monomer of a second organic material in a polymer of a first organic material on the substrate (1), and forming an optical waveguide with respect to the monomer; A method for manufacturing an optical waveguide comprising a step of causing photopolymerization in a region where the solvent is at least a solvent that does not dissolve the polymers of the first and second organic materials and dissolves the monomer of the second organic material. Alternatively, using a solvent (5) that does not dissolve the highly polymerized polymers of the first and second organic materials but dissolves the low polymerized polymers of the second organic material, 2. A method for manufacturing an optical waveguide, comprising the step of removing residual monomer of an organic material.
JP4451388A 1988-02-29 1988-02-29 Production of optical waveguide Pending JPH01219803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4451388A JPH01219803A (en) 1988-02-29 1988-02-29 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4451388A JPH01219803A (en) 1988-02-29 1988-02-29 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPH01219803A true JPH01219803A (en) 1989-09-01

Family

ID=12693628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4451388A Pending JPH01219803A (en) 1988-02-29 1988-02-29 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPH01219803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438307B1 (en) 1999-03-25 2002-08-20 Kyocera Corporation Optical waveguide and process for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438307B1 (en) 1999-03-25 2002-08-20 Kyocera Corporation Optical waveguide and process for producing same

Similar Documents

Publication Publication Date Title
KR100798200B1 (en) Process for producing flexible optical waveguide
US4609252A (en) Organic optical waveguide device and method of making
US6678453B2 (en) High aspect ratio patterning of glass film
US5170461A (en) Polymeric electrooptic waveguide devices using a polymeric substrate
JP2968508B2 (en) Manufacturing method of optical waveguide device
EP0932844B1 (en) Optical guide
JP2599497B2 (en) Flat plastic optical waveguide
JP2000275456A (en) Optical waveguide and its manufacture
JP3147284B2 (en) Method for producing polymer optical waveguide film
JPH01219803A (en) Production of optical waveguide
KR970011522B1 (en) Optical bleach time reduction method in optical nonliner high molecule thin film by sensitizer
CA1327285C (en) Optical waveguide devices, elements for making the devices and methods of making the devices and elements
JPH01134309A (en) Production of light guide
JP2000056147A (en) Manufacture of polymer optical waveguide
JPH10177103A (en) Microlens structure
US7244369B2 (en) Method for producing active or passive components on a polymer basis for integrated optical devices
JP2001166166A (en) Polymer optical waveguide film
JPH0233296B2 (en)
JPH10170739A (en) Production of polymer optical waveguide
JPH01134311A (en) Light guide and production thereof
JP2000098162A (en) Forming method of film type polymer waveguide
JPH05119203A (en) Microoptical lens and production of optical waveguide
JPH01134310A (en) Production of light guide
JPH11237518A (en) Manufacture of optical waveguide
Wong et al. Electron-beam direct-write polymeric optical waveguides