JPH01219103A - Magnetic metal powder for magnetic recording - Google Patents

Magnetic metal powder for magnetic recording

Info

Publication number
JPH01219103A
JPH01219103A JP63043884A JP4388488A JPH01219103A JP H01219103 A JPH01219103 A JP H01219103A JP 63043884 A JP63043884 A JP 63043884A JP 4388488 A JP4388488 A JP 4388488A JP H01219103 A JPH01219103 A JP H01219103A
Authority
JP
Japan
Prior art keywords
iron oxide
acicular
particles
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043884A
Other languages
Japanese (ja)
Inventor
Yoshihiro Inoue
善博 井上
Yoji Chikamori
近森 洋二
Shoki Matsumoto
松本 昭喜
Yukimasa Tanabe
田邊 行正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP63043884A priority Critical patent/JPH01219103A/en
Publication of JPH01219103A publication Critical patent/JPH01219103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title magnetic metal powder having prescribed coercive force by adding an Ni source compd. and an Al2O3 source compd. to acicular iron oxide particles having a specified axial ratio, carrying out surface treatment and reducing the resulting iron oxide powder under heating in the presence of an alkali metal salt and an S compd. CONSTITUTION:An Al2O3 source compd. such as aluminum sulfate is added to iron oxide powder consisting of acicular iron oxide particles having >=8 axial ratio in the presence of an Ni source compd. by about 3-6% (expressed in terms of Al) of the amt. of Fe and surface treatment is carried out. The resulting iron oxide powder is reduced under heating at about 320-400 deg.C in a flow of gaseous hydrogen in the presence of an alkali metal salt such as Na hydroxide or an alkaline earth metal salt and an S compd. such as an ammonium salt of S by which SO3 is provided by >=0.5% of the amt. of Fe. The amt. of the metal salt used is >=0.005% (expressed in terms of Na) of the amt. of Fe in case of Na hydroxide. Magnetic metal powder for magnetic recording having about 800-1,100 Oe coercive force (Hc) is obtd. while maintaining the acicular shape.

Description

【発明の詳細な説明】 本発明は、酸化鉄粉末を水素ガス等で加熱還元して得ら
れる、Feを主成分とする磁気記録媒体用、金属磁性粉
に関するものであり、更に詳しくは原料酸化鉄粉末を構
成する各粒子の針状性を保持しながら、この針状形骸を
持つ粒子中に存在するFe結晶の結晶性を制御し、且つ
個々の粒子の斜状形骸を構成しているFe結晶同志の結
合を適度に分断して形状磁気異方性を低下させることに
より、800〜1,1000eの範囲の保磁力を示すも
のとして調製された金属磁性粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal magnetic powder for magnetic recording media containing Fe as a main component, which is obtained by heating and reducing iron oxide powder with hydrogen gas, etc. While maintaining the acicularity of each particle constituting the iron powder, the crystallinity of the Fe crystals present in the particles with the acicular shape is controlled, and the Fe constituting the oblique shape of each particle is controlled. The present invention relates to a metal magnetic powder prepared to exhibit a coercive force in the range of 800 to 1,1000 e by appropriately breaking bonds between crystals and reducing shape magnetic anisotropy.

近年ビデオ用a気記録再生機器の長時間記録化、小型軽
量化が目指されており、これに対応するために磁気記録
媒体である磁気テープに対する高性能化、高密度記録化
の要求が強い。従来、磁気記録媒体として使用されてき
た、あるいは現在使用されている磁性材料には、Fe3
04)。7’−Fe、0.。
In recent years, the aim has been to make video recording and reproducing equipment longer recording times, smaller and lighter, and in order to meet these demands, there is a strong demand for higher performance and higher recording density for magnetic tapes, which are magnetic recording media. Magnetic materials that have been or are currently used as magnetic recording media include Fe3.
04). 7'-Fe, 0. .

Cry、等があり、これらの材料が有する保磁力(Hc
 )は、250〜5000e、飽和磁化(・σS)は、
70−85 emu/g程度である。又Coを含有した
Co−7”−Fe20sやCo  Fe5O4もビデオ
テープ用磁性材料として使用されるが、これらは保磁力
(Hc)は、500〜1,0000eという大きい値を
示す特徴を有しているが、飽和磁化(・υS)は、70
−80 emu7gという程度の低いものである。
Cry, etc., and the coercive force (Hc
) is 250 to 5000e, and the saturation magnetization (・σS) is
It is about 70-85 emu/g. Co-containing Co-7''-Fe20s and CoFe5O4 are also used as magnetic materials for video tapes, but these have a large coercive force (Hc) of 500 to 1,0000e. However, the saturation magnetization (・υS) is 70
-80 emu is as low as 7g.

最近、高出力並びに高密度記録に適する特性を持つ磁性
粒子即ち飽和磁化■s)が高く、且つ高い保磁力(Hc
)を有する金属磁性粉末が開発され実用化されつつある
Recently, magnetic particles with characteristics suitable for high output and high density recording, that is, high saturation magnetization ■s, and high coercive force (Hc
) has been developed and is being put into practical use.

これらの針状メタル粉と称されるFeを主成分とした金
属磁性粒子材は、従来の磁性酸化鉄粒子材及びCOを含
有した磁性酸化鉄粒子材に比較して飽和磁化(・σS)
が、120−130 emu/fiと著しく高く、又保
磁力(Hc)も1,400〜1,6000eと高い特徴
を有している。
These metal magnetic particles, which are called acicular metal powders and whose main component is Fe, have a higher saturation magnetization (・σS) than conventional magnetic iron oxide particles and CO-containing magnetic iron oxide particles.
is extremely high at 120-130 emu/fi, and the coercive force (Hc) is also high at 1,400-1,6000e.

このため現在の主流である塗付型磁気記録方式の下では
、特にビデオ用磁性材の低ノイズ化、高画質化の検討が
行なわれていると共に、高出力、高密度記録の点からは
、Co含有磁性酸化鉄に比べ高い飽和磁化(・Os )
と高い保磁力(Hc)を有する金属磁性粉末の使用が研
究され、3 //4 rryrLl’Lビデオ、DAT
に一部実用化されている。
For this reason, under the current mainstream coating-type magnetic recording method, studies are being conducted to reduce noise and improve image quality, especially in magnetic materials for video, and from the standpoint of high output and high density recording, Higher saturation magnetization (・Os) than Co-containing magnetic iron oxide
The use of metal magnetic powders with high coercive force (Hc) has been investigated, 3//4 rryrLl'L Video, DAT
Some of them have been put into practical use.

しかしながらこの様に高い保磁力(Hc)の金属磁性粉
末を使用する磁気記録媒体に於いては、当然のことなが
ら磁性材料の保持する保磁力に打ちかって磁気記録させ
ることが必要となるため、録音ヘッド及び再生ヘッドと
して一般のビデオテープデノキに使用されているMn 
−Zn −Ni系を主体とするフェライト・ヘッドは使
用できず、アモルファス合金あるいはセンダスト合金等
の特殊な材料で製造されたヘッドを使用しなげればなら
ない。
However, in magnetic recording media that use metal magnetic powder with such a high coercive force (Hc), it is naturally necessary to perform magnetic recording by counteracting the coercive force held by the magnetic material. Mn is used as the head and playback head in general video tape recorders.
-Zn-Ni based ferrite heads cannot be used, and heads made of special materials such as amorphous alloys or sendust alloys must be used.

最近、高画質、高出力の磁気記録再生方式として5=V
H8方式が提唱され、フェライト・ヘッドを使用し磁気
記録材料としてCo −7” −Fe 203が用いら
れているのは周知の通りである。このCo −r −F
e 20sの飽和磁化(グS)は高k 80emu/g
であるが、フェライト・ヘッド使用と云う制約の下では
良好な特性を示している。しかし、時代の要求は更なる
高画質、高密度記録を必要としている。しかるに、フェ
ライト・ヘッドを使用する限りは使用する記録材料磁性
粉の示す保磁力(Hc )に限界があり、この制約下で
目的を達成するためには磁性材料自体の飽和磁化■s)
をあげ出力を増加させることが必要である。
Recently, 5=V is used as a high-quality, high-power magnetic recording and reproducing method
It is well known that the H8 system has been proposed and uses a ferrite head and Co-7''-Fe 203 as the magnetic recording material.
e Saturation magnetization (G S) for 20s is high k 80emu/g
However, it shows good characteristics under the restriction of using a ferrite head. However, the demands of the times require even higher image quality and higher density recording. However, as long as a ferrite head is used, there is a limit to the coercive force (Hc) of the magnetic powder of the recording material used, and in order to achieve the objective under this constraint, it is necessary to increase the saturation magnetization of the magnetic material itself.
It is necessary to increase the power and output.

本発明は、Feを主成分とする金属磁性粉末を改質し、
その針状性と飽和磁化(輸)を高く保持したまま、保磁
力(Ha )をフェライト・ヘッド仕様に合わせて80
0〜1.1000eK調整した金属磁性粉末とその製造
法を提供せんとするものである。前述の通り金属磁性粉
末の持つ磁気的潜在能力は極めてすぐれたものであるが
、フェライト・ヘッド仕様のビデオ用磁気記録再生機器
に使用されなかった理由は、従来の金属磁性粉製造技術
では所望の特性を維持しつつ保磁力(Hc )を調節す
ることが困難であったことにある。即ち塗付型磁気記録
媒体として用いられる強磁性金属粉は、粒子間に焼結等
による結合がなく、しかも適当な軸比な有することが必
要であると云われている。こわは、Feを主成分とする
金属磁性粒子粉末の持つ保磁力が主として粒子の形状磁
気異方性に由来し、Hc=2KU/MS+N−MS・・
・−0式で示される値となるが、この値はN(形状磁気
異方性定数)の値が、軸比の大きいもの程大きくなるの
で、結局軸比の大きいとき保磁力Hcが大きい値をとる
ためである。
The present invention modifies metal magnetic powder containing Fe as a main component,
While maintaining its acicularity and saturation magnetization (transport), the coercive force (Ha) was adjusted to 80% to match the ferrite head specifications.
It is an object of the present invention to provide a metal magnetic powder adjusted to 0 to 1.1000 eK and a method for producing the same. As mentioned above, metal magnetic powder has extremely excellent magnetic potential, but the reason why it has not been used in video magnetic recording and reproducing equipment with ferrite heads is that conventional metal magnetic powder manufacturing technology cannot achieve the desired magnetic potential. The problem is that it has been difficult to adjust the coercive force (Hc) while maintaining the characteristics. That is, it is said that ferromagnetic metal powder used as a coated magnetic recording medium must have no bonding between particles due to sintering or the like, and must have an appropriate axial ratio. The stiffness is due to the coercive force of metal magnetic particles whose main component is Fe, mainly due to the shape magnetic anisotropy of the particles, Hc = 2KU/MS + N-MS...
・This value is expressed by the -0 formula, but since the value of N (shape magnetic anisotropy constant) increases as the axial ratio increases, the coercive force Hc becomes a large value when the axial ratio is large. This is to take.

しかしながら一般に針状酸化鉄を加熱還元すると、約4
7%程の体積の収縮が起り、この際粒子同志が融着した
り又粒子自体の焼結が起ったりして結果的に軸比の劣化
や形骸粒子の崩れが発生する。この粒子の焼結を防止す
るため、原料酸化鉄をP、 Si、 Al、 Zn、 
Zr、 Ti等種々の金属の塩又はそれらの金属の水酸
化物で表面処理し、還元磁性粉の特性を改良する方法が
種々開示されている(例えば公開特許昭59−1572
04、昭60−162706等多数)。
However, in general, when acicular iron oxide is reduced by heating, approximately 4
A volume contraction of about 7% occurs, and at this time, the particles fuse together or the particles themselves sinter, resulting in deterioration of the axial ratio and collapse of the bulk particles. In order to prevent sintering of these particles, the raw material iron oxide is made of P, Si, Al, Zn,
Various methods have been disclosed for improving the characteristics of reduced magnetic powder by surface treating it with salts of various metals such as Zr and Ti or hydroxides of these metals (for example, Japanese Patent Publication No. 1572-1989).
04, 1986-162706, and many others).

これらの方法によれば、加熱還元の際、原料の針状性が
保たれ0式におけるNの値が大きい値に保たれるので保
磁力Hcが1,400〜1,6000eの金属磁性粉が
得られる。従ってこれらの開示された方法ではフェライ
ト・ヘッド仕様に合う保磁力Hc 800〜1,100
0eの金属磁性粉は得られないのである。
According to these methods, during thermal reduction, the acicularity of the raw material is maintained and the value of N in equation 0 is kept at a large value, so that metal magnetic powder with a coercive force Hc of 1,400 to 1,6000e can be obtained. can get. Therefore, these disclosed methods have a coercive force Hc of 800 to 1,100 that meets the ferrite head specifications.
Metal magnetic powder of 0e cannot be obtained.

金属磁性粉の保磁力Hcを低下させる方法としては、粒
子を焼結させて形状磁気異方性を低下させることが可能
であるが、実際問題としては、粒子の針状性が失われる
ためテープにした時の角型、配向比、Hc碗等が極めて
劣ったものとなり実用にはならない。又公開特許昭59
−157204等に開示された方法により針状性を保持
した保磁力Hc 1,400〜1,6000e、飽和磁
化(・り5)120〜125 emu / gの金属磁
性粉な得、その表面を徐々に酸化することにより金属磁
性粉末表面に非磁性層を析出させ、保磁力(Hc )を
SOO〜1.1000eに調整することも考えられる。
As a method of reducing the coercive force Hc of metal magnetic powder, it is possible to reduce the shape magnetic anisotropy by sintering the particles, but as a practical matter, the acicularity of the particles is lost, so tape The square shape, orientation ratio, Hc bowl, etc. are extremely poor when it is made, and it cannot be put to practical use. Also published patent in 1982
A metal magnetic powder with a coercive force Hc of 1,400 to 1,6000e and a saturation magnetization (R5) of 120 to 125 emu/g, which maintains its acicularity by the method disclosed in Japanese Patent Application No. 157204, etc., is obtained, and its surface is gradually polished. It is also conceivable to precipitate a nonmagnetic layer on the surface of the metal magnetic powder by oxidizing it to adjust the coercive force (Hc) to SOO to 1.1000e.

しかしながらこの方法は保磁力(Hc )を800〜1
,1000eの範囲に調節することは可能であるが、磁
性粉表面に非磁性層を析出させるため、飽和磁化ρSの
大巾な低下を引き起し記録材料としての金属磁性粉の特
性を著しく損うので好ましい方法ではない。
However, this method reduces the coercive force (Hc) to 800-1
, 1000e, but since a non-magnetic layer is deposited on the surface of the magnetic powder, the saturation magnetization ρS is significantly lowered and the properties of the metal magnetic powder as a recording material are significantly impaired. This is not the preferred method.

一方、金属磁性粉末製造用原料として軸比の小さい短軸
状酸化鉄を使用して得たFeを主成分とする金属磁性粉
末は、そのものの形状磁気異方性が小さいため、1.0
000e以下の保磁力を有し且つ飽和磁化・σSも12
0−125 emu /gと高いレベルを示す。しかし
この方法によって得られた金属磁性粉末は、軸比が小さ
いため無配向で使用されるフロッピー・ディスクやリジ
ッド・ディスク等には有用な記録媒体であるが、ビデオ
・テープ等の様に磁場配向して用いられる記録材料とし
ては、特にテープ化した時の角型の不足から針状の金属
磁性粉に比べて出力が得られないという本質的欠点があ
る。
On the other hand, metal magnetic powder whose main component is Fe obtained by using short-axis iron oxide with a small axial ratio as a raw material for manufacturing metal magnetic powder has a small shape magnetic anisotropy of 1.0
It has a coercive force of less than 000e and a saturation magnetization/σS of 12
It shows a high level of 0-125 emu/g. However, since the metal magnetic powder obtained by this method has a small axial ratio, it is useful as a recording medium for floppy disks, rigid disks, etc. that are used without orientation, but it is useful for recording media such as floppy disks and rigid disks that are used without orientation. The recording material used for this purpose has an essential drawback in that it cannot produce as much output as acicular magnetic metal powder due to its lack of square shape, especially when it is made into a tape.

本発明者らは、フェライト・ヘッドを使用する磁気記録
再生機器に対応しうる針状粒子で高い、(FS値を有し
、かつ保磁力(Hc ) 800〜1,1000eの金
属磁性粉を得るべく検討した結果、■耐熱処理剤として
一般に用いられるSiとAlが還元に際し全く別の挙動
を示すこと、■還元促進剤としてのNiの存在下で原料
酸化鉄をAt処理する場合に第3成分として、Na、に
等のアルカリ金属又はCa等のアルカリ土類金属の元素
と803 とを適当竜存在させることにより、加熱還元
で得られる強磁性金属磁性粉を、飽和磁化(・’s) 
120 emu/y以上に高く保持されたまま原料の針
状酸化鉄の針状形骸が継承されており、且つその針状形
骸粒子中に生成するFe結晶の結合が分断された金属粉
末として得ることができることを発見し、本発明に到達
した。
The present inventors have obtained a metal magnetic powder that is acicular particles that are compatible with magnetic recording and reproducing equipment using ferrite heads, has a high FS value, and has a coercive force (Hc) of 800 to 1,1000e. As a result of our investigation, we found that: 1) Si and Al, which are commonly used as heat-resistant treatment agents, behave completely differently during reduction; 2) When treating raw iron oxide with At in the presence of Ni as a reduction promoter, the third component As a result, the ferromagnetic metal magnetic powder obtained by thermal reduction can be saturated magnetized (・'s) by appropriately containing an alkali metal such as Na or an alkaline earth metal such as Ca, and 803.
To obtain a metal powder in which the needle-like shape of the raw material acicular iron oxide is inherited while being maintained at a high level of 120 emu/y or more, and the bonds of Fe crystals generated in the needle-like shape particles are broken. We have discovered that this can be done, and have arrived at the present invention.

本発明によって得られる針状形骸を保持し、その形骸粒
子中のFe結晶の結合の分断により粒子の形状磁気異方
性を低下せしめられた、保磁力(Hc)を800〜1.
1000eに調整されたFeを主成分とする金属磁性粉
は、塗料化に際しその形骸を保持したまま分散されベー
スフィルムに塗付されて磁場配向をうけることができる
ので、良好な角型を示すとともにその飽和磁化■s)が
高く、この故に本発明の磁性粉を用いればフェライト・
ヘッドを使用する磁気記録再生機器に於いて大巾な記録
密度の向上、高出力・高画質化が実現できるのである。
The coercive force (Hc), which maintains the acicular shape obtained by the present invention and reduces the shape magnetic anisotropy of the particle by breaking the bonds of Fe crystals in the shape particle, is 800 to 1.
Metal magnetic powder whose main component is Fe adjusted to 1000e can be dispersed while retaining its shape when it is made into a paint, and applied to a base film and subjected to magnetic field orientation, so it exhibits good square shape and Its saturation magnetization ■s) is high, and therefore, if the magnetic powder of the present invention is used, ferrite
In magnetic recording and reproducing equipment that uses heads, it is possible to significantly improve recording density, high output, and high image quality.

以下本発明に係る技術的背景について説明する。The technical background of the present invention will be explained below.

第1図および第3図は、比表面積70 mj /gの針
状酸化鉄粒子に湿式でFeに対するSi又はAlが50
重量%に相当する量のS r 02・nHto又はAl
 、 O,・n H20を添加して表面処理した試料を
空気中700℃で30分間焼成したもののX線回、折回
なパターンで示したものであり、第2図および第4図は
、これらの加熱試料を水素ガスを用いて400℃で22
時時間光して得られた金属粉のX線回折図を。
Figures 1 and 3 show that acicular iron oxide particles with a specific surface area of 70 mj/g are wet-treated with a ratio of Si or Al to Fe of 50%.
S r 02·nHto or Al in an amount corresponding to % by weight
, O,・n H20 added to the surface and baked at 700°C for 30 minutes in the air. Heated the sample at 400℃ using hydrogen gas for 22 hours.
An X-ray diffraction pattern of metal powder obtained by subjecting it to light over time.

パターンで示したものである。This is shown in the pattern.

第1図、第2図は、5in2を用いて処理した試料、第
3図、第4図は、Al 、 0.  を用いて処理した
試料に関するものである。
1 and 2 are samples processed using 5in2, and FIGS. 3 and 4 are samples processed using Al, 0. This relates to samples treated using .

第1図、第2図及び第3図、第4図より原料酸化鉄に添
加された5in2とAl 、 03それぞれの挙動が明
確に識別できる。即ち空気中での加熱の場合には第1図
および第3図に於いて主成分であるα−Fe203と5
iOz及びα−Fe203とAl 20゜0回折線がそ
れぞれ認められるので、原料酸化鉄は加熱により脱水さ
れ、α−Fe203へ変態し、又表面処理に用いられた
珪素化合物もしくはアルミニウム化合物も脱水酸化され
各々の酸化物5i02、またはAltosとして存在し
ていることが判る。
From FIGS. 1, 2, 3, and 4, the behavior of 5in2, Al, and 03 added to the raw iron oxide can be clearly identified. That is, in the case of heating in air, the main components α-Fe203 and 5 in Figures 1 and 3 are
Since iOz and α-Fe203 and Al 20°0 diffraction lines are observed, the raw iron oxide is dehydrated by heating and transformed into α-Fe203, and the silicon compound or aluminum compound used for surface treatment is also dehydrated and oxidized. It can be seen that each oxide exists as 5i02 or Altos.

一方空気中で加熱処理した試料を400℃にて水素気流
中で還元した場合には、第2図および第4図にそれぞれ
示した様にS iO2添加の場合にはα−Fe の回折
線のみが認められ、還元前の試料に騎められていたS 
t 02の回折線は消失しているのに対し、A l t
 Osを用いて処理した試料には明らかにAl 、 0
.の回折線が認められると云う点において両者に顕著な
相違があることが判った。
On the other hand, when a sample heat-treated in air is reduced in a hydrogen stream at 400°C, only the α-Fe diffraction line appears when SiO2 is added, as shown in Figures 2 and 4, respectively. was observed, and S which was attached to the sample before reduction
The diffraction line at t 02 has disappeared, whereas the diffraction line at A l t
The sample treated with Os clearly contains Al, 0
.. It was found that there is a remarkable difference between the two in that the diffraction lines of

上記実験に於てSi又はAlをFeに対して50重量%
というほど多量に用いたのは、還元に際してのSiとA
lとの挙動の違いを明確に知ることが目的であったから
である。−旦挙動の違いがわがnば、用いる処理剤の種
類に従って、実際の適用に最も適した添加量範囲を後の
試験で決定できることは自明である。
In the above experiment, Si or Al was 50% by weight relative to Fe.
Si and A were used in such large amounts during the reduction.
This is because the purpose was to clearly understand the difference in behavior from 1. It is self-evident that once the differences in behavior become known, the range of addition amount most suitable for the actual application can be determined by subsequent tests, depending on the type of treatment agent used.

本発明者らはこの事実に着目し、還元促進剤としてのN
iの共存下にAl2O,を主処理剤として金属磁性粉を
作製することを研究した結果、表面処理用試薬の添加量
が原料酸化鉄中のFe重量に対しA1重量で1−10%
好ましくは3−6%となる量で添加して表面処理した後
、洗浄乾燥し非還元性雰囲気中で焼成して結晶性を高め
たのち、水素気流中で3208C〜400℃好ましくは
350℃近傍で加熱還元すれば保磁力(Hc)が、1,
300〜1.5000e  を示す金属磁性粉が得らn
ることが判った。
The present inventors paid attention to this fact and used N as a reduction accelerator.
As a result of research on producing metal magnetic powder using Al2O as the main treatment agent in the coexistence of i, it was found that the amount of surface treatment reagent added was 1-10% by weight of Al relative to the weight of Fe in the raw material iron oxide.
Preferably, it is added in an amount of 3-6% for surface treatment, washed and dried, and fired in a non-reducing atmosphere to increase crystallinity, and then heated to 3208C to 400℃ in a hydrogen stream, preferably around 350℃. If it is heated and reduced, the coercive force (Hc) will be 1,
300 to 1.5000e was obtained.
It turns out that

この場合非還元性雰囲気での焼成温度が余りにも高い場
合は、この時点でα−Fe203の焼結が起るので、6
509C〜800℃の範囲が好ましい。又場合によった
は熱処理を行わなくても次工程の還元工程で調整できる
場合もある。
In this case, if the firing temperature in a non-reducing atmosphere is too high, sintering of α-Fe203 will occur at this point.
A range of 509C to 800C is preferred. In some cases, it may be possible to adjust the temperature in the next reduction step without performing heat treatment.

又還元温度は450℃以上と高い場合にも加熱還元時に
Fe結晶同志の焼結が起り軸比が減少し保磁力Hcは低
下する。この様な場合は、保磁力(Hc)は800−1
.1000eとすることはできるが磁気記録媒体として
軸比低下による角型の劣化が著しく磁気特性は極めて劣
ったものとなり好ましくない。
Further, even when the reduction temperature is as high as 450° C. or higher, sintering of Fe crystals occurs during thermal reduction, the axial ratio decreases, and the coercive force Hc decreases. In such a case, the coercive force (Hc) is 800-1
.. 1000e, but as a magnetic recording medium, the squareness deteriorates significantly due to a decrease in the axial ratio, and the magnetic properties become extremely poor, which is not preferable.

この様に本発明の目的であるHc800〜1,1000
eを有し、且つ針状性を損なわずに高いσS値を保持す
る金属磁性粉を作製する為には、針状性を保持しつつ形
状磁気異方性を低下させる必要があり、この−見矛盾す
る問題を解決するには、耐熱処理剤として特異な挙動を
示すA l t Osを用い、還元促進剤としてのNi
の存在下に於いて第3成分としてNa、に等のアルカリ
金属塩及び/又はS化合物を所定量原料酸化鉄に添加、
処理することによって針状形骸を保持したままHcを所
望の範囲に調節できることを見出し本発明を完成した。
In this way, Hc800 to 1,1000, which is the objective of the present invention,
In order to produce metal magnetic powder that has e and maintains a high σS value without impairing its acicularity, it is necessary to reduce the shape magnetic anisotropy while maintaining its acicularity. In order to solve the seemingly contradictory problem, Al t Os, which exhibits unique behavior as a heat-resistant treatment agent, was used, and Ni was used as a reduction accelerator.
Adding a predetermined amount of an alkali metal salt such as Na and/or S compound as a third component to the raw iron oxide in the presence of
The present invention was completed based on the discovery that by treatment, Hc can be adjusted to a desired range while retaining the needle-like shape.

即ち詳細な実険結果からH2ガスによる還元の際の温度
は350℃近辺が適当であり、Al2O,による処理に
ついてはAl2O,量がAlとしてFeに対して1%以
下の場合は得られるメタル粉の針状形骸の債持が十分で
なく、Fe結晶が単独に存在することが認められている
。このため、表面処理に用いるAl、O,の涜は製品鉄
粉の針状形骸を保持できる3%以上が適当であることが
わかった。又Al 、 03を10%以上添加すると、
得られるメタル粉の飽和磁化■s)が低下することが認
められた。
That is, from detailed practical results, it is appropriate that the temperature for reduction with H2 gas is around 350°C, and for treatment with Al2O, when the amount of Al2O is less than 1% relative to Fe as Al, the metal powder obtained It is recognized that the retention of the needle-like structure is insufficient and Fe crystals exist alone. For this reason, it has been found that the appropriate amount of Al, O, used for surface treatment is 3% or more, which can maintain the needle-like shape of the product iron powder. Also, when 10% or more of Al, 03 is added,
It was observed that the saturation magnetization (s) of the obtained metal powder decreased.

又Al2O,の添加量が6%の場合に於ける他成分の保
磁力(Hc)への影響は、Ni0.5〜3%の範囲では
、Ni添加量1%の増加で約800e上昇し、NaO,
02〜0.4%の範囲では、Na O,1%増加当り約
2500eの低下、又SOs 0.02〜0.7%の間
で+’> so、 o、 t%当り約200e低下する
ことが見出された。従って以上のことからAl 20.
を6%用いて処理し、Ni共存下に於いてNaとSの含
有量の比を適当に選ぶことにより、針状形骸を有し、高
Fsで且つ保磁力Hcをフェライト・ヘッド仕様に適応
する800〜1.1000eの値に調節した金属磁性粉
が得られるのである。
In addition, when the amount of Al2O added is 6%, the influence of other components on the coercive force (Hc) increases by about 800e with an increase of 1% in the amount of Ni added in the range of 0.5 to 3% Ni. NaO,
In the range from 0.02 to 0.4%, there is a decrease of about 2500 e per 1% increase in Na O, and about 200 e per % increase in SOs between 0.02 and 0.7%. was discovered. Therefore, from the above, Al 20.
By appropriately selecting the ratio of Na and S content in the coexistence of Ni, it has an acicular shape, high Fs, and a coercive force Hc suitable for ferrite head specifications. Metal magnetic powder adjusted to a value of 800 to 1.1000e can be obtained.

第5図はNi 1%共存下に於いて、Al2O,6%、
Na 0.05%、およびSo、0.6%を用いて処理
した、又はそれらの添加剤を含有する針状酸化鉄原料を
空気中で700℃で加熱処理したのち、固定層還元装置
を用いて還元温度350℃、水素ガス流t15NI/k
g・Fe−hrの条件で還元して得たHc9800eの
Feを主成分とする金属磁性粉の粒子構造を示す12万
倍の成子顕微鏡写真である。
Figure 5 shows Al2O, 6%, in the coexistence of 1% Ni,
Acicular iron oxide raw materials treated with 0.05% Na and 0.6% So, or containing those additives, were heat-treated at 700°C in air, and then heated using a fixed bed reduction device. reduction temperature 350℃, hydrogen gas flow t15NI/k
This is a 120,000x Seiko micrograph showing the particle structure of a metal magnetic powder containing Fe as a main component of Hc9800e obtained by reduction under conditions of g·Fe-hr.

第5図から、このFeを主成分とする全滅磁性粉の各粒
子は針状形骸を保持し、しかもその形骸をもつ各粒子中
のFe結晶同志の結合が一部分断されているのが判る。
From FIG. 5, it can be seen that each particle of the completely demagnetized magnetic powder containing Fe as a main component retains a needle-like shape, and that the bonds between Fe crystals in each particle having the shape are partially severed.

針状形骸を保持したFeを主成分とする金属磁性粒子中
のFe結晶の結合が分断され、形状磁気異方性が低下す
る理由は明確ではないが、5if2処理の場合にはNa
、Sの含有量が数%の場合でもFe結晶の結合の分断は
極めて少なくHcも1.4000e以上を示すことから
、結合の分断は金属粒子表面に存在するAl −Na−
8の相互作用によるものと推察している。
Although it is not clear why the bonds of Fe crystals in metal magnetic particles mainly composed of Fe that retain needle-like shapes are broken and the shape magnetic anisotropy decreases, in the case of 5if2 treatment, Na
, even when the S content is a few percent, the bond breakage in the Fe crystal is extremely small and the Hc value is 1.4000e or more.
We speculate that this is due to the interaction of 8.

本発明の実施に使用できるAt20.源としては、硫酸
アルミニウム、アルミン酸ソーダ、ポリ塩化アルミニウ
ム等のアルミニウム化合物を挙げることができ、又第3
成分として使用するアルカリ金属源としてはNa、にの
水酸化物、塩化物、硫酸塩等があり、アルカリ土類金属
源としては主とし又カルシウム塩が用いられる。S化合
物としてはSのアンモニウム塩、ソーダ塩が使用できる
が、Al 20゜による表面処理を行う場合反応副生す
るNa2SO4等のNa、Sを含有する化合物を所定数
残存させろ方法も採用できるのは勿論である。
At20. which can be used to practice the present invention. Examples of the source include aluminum compounds such as aluminum sulfate, sodium aluminate, and polyaluminum chloride;
Alkali metal sources used as components include Na, hydroxides, chlorides, sulfates, etc., and calcium salts are mainly used as alkaline earth metal sources. Ammonium salts and soda salts of S can be used as the S compound, but when performing surface treatment with Al 20°, it is also possible to adopt a method in which a predetermined number of compounds containing Na and S, such as Na2SO4, which are produced as reaction by-products, remain. Of course.

以下実施例により説明する。This will be explained below using examples.

実施例1゜ Fe S 04  水溶液をアルカリで中和しつつ空気
酸化して得た黄色針状酸化鉄(比表面積55 mj /
 9.5o30.72%)を十分洗浄したのちNiC1
、をN i /Fe として1%、NaAlQ2をA 
1 /Te  として6%添加混合したのちNaOH水
溶液を徐々に加えてpH7,5に調整した。
Example 1 Yellow acicular iron oxide (specific surface area 55 mj/
9.5o30.72%) and then NiC1
, is 1% as N i /Fe, NaAlQ2 is A
After adding and mixing 6% of 1/Te, an aqueous NaOH solution was gradually added to adjust the pH to 7.5.

生成スラリーを洗浄・ろ過してケーキとし、これK N
a Cl ヲNa /Feと!、テ0.08%、(NH
4)2 so4をSQ、/FetO,として0.76%
になる様添加しニーダ−で練り合せたのち直径4Mvm
+tの棒状に成型したのち乾燥した。
The resulting slurry is washed and filtered to form a cake, which is KN
a Cl wo Na /Fe and! , Te0.08%, (NH
4) 2so4 as SQ, /FetO, 0.76%
After adding it and kneading it with a kneader, it becomes 4Mvm in diameter.
It was molded into a +t rod shape and then dried.

得られた乾燥物を電気炉中で750℃で加熱し、X線半
価巾からシェラ−の式によっ、て計算さ扛る結晶子径が
246Aのα−Fe203を得た。
The obtained dried product was heated at 750° C. in an electric furnace to obtain α-Fe203 having a crystallite diameter of 246 A calculated from the X-ray half width using the Scherrer equation.

この様にして得られたα−Fe203を固定層式還元装
置に入れ温度350℃、水素ガス流量15ONl /F
e−Kg−hrの条件で還元し、Feを主成分とする金
属磁性粉を得た。この金属磁性粉をトルエン中にとりだ
し空気を吹き込んで金属磁性粉の表面を酸化安定化した
のち風乾して得た還元鉄粉は比表面積47.3ゴ/gで
あり、成子顕微鏡写真からは針状形態を保持しており、
且つ個々の針状形骸粒子中のFe結晶の結合が分断され
ていた。
The α-Fe203 thus obtained was placed in a fixed bed reduction device at a temperature of 350°C and a hydrogen gas flow rate of 15ONl/F.
Reduction was carried out under conditions of e-Kg-hr to obtain metal magnetic powder containing Fe as a main component. This metal magnetic powder was taken out in toluene, air was blown in to stabilize the surface of the metal magnetic powder by oxidation, and then air-dried.The reduced iron powder obtained had a specific surface area of 47.3g/g, and Seiko's micrograph showed that it was needles. It retains its shape,
Moreover, the bonds of Fe crystals in each needle-shaped skeleton particle were broken.

VSMによる外部磁場(10キロ・ガウス)で測定され
た保磁力(Hc)は1.0180e、飽和磁化■s)は
120 emu/g、待/σSは9.466でありフェ
ライト・ヘッド仕様の磁気記録材料として飽和磁化が高
(秀れたものであった。
The coercive force (Hc) measured in an external magnetic field (10 kilogauss) by VSM is 1.0180e, the saturation magnetization (s) is 120 emu/g, and the coercivity/σS is 9.466, which is the magnetism of the ferrite head specification. As a recording material, it had a high saturation magnetization (excellent).

実施例2゜ 実施例1.のN1、Al、Na、 SO3によって処理
された又はこれらを含有する黄色酸化鉄を775°C及
び800℃の空気中でそれぞれ加熱し、X線半価巾から
求められる結晶子径を273八及び289人とした以外
は実施例1.と同様に還元して金属磁性粉を得た。
Example 2゜Example 1. Yellow iron oxide treated with or containing N1, Al, Na, and SO3 was heated in air at 775°C and 800°C, respectively, and the crystallite diameter determined from the X-ray half-width was 273° and 273°. Example 1 except that the number of people was 289. Metal magnetic powder was obtained by reduction in the same manner as above.

得られた金嘆磁性粉は電子顕微鏡写真による観察から、
針状形骸を保持し、該形骸!ハノ洛′、粒子中のFe結
晶の結合が分断されていることが認められた。磁気特性
は775℃熱処理の試料はHc 8880e、  ′7
s 124 emu/g、SOO℃熱処理の試料はHc
8800e、  りs 132 emu/g であり、
q r /q sは両者とも0.42台であった。
The obtained magnetic powder was observed using an electron microscope.
Hold the needle-like shape, and the shape! It was observed that the Fe crystal bonds in the particles were broken. The magnetic properties of the sample heat-treated at 775°C are Hc 8880e, '7
s 124 emu/g, the sample heat-treated at SOO℃ is Hc
8800e, 132 emu/g,
Both q r /q s were in the 0.42 range.

比較例1゜ 実施例1.で用いたNi、 Al、 Na5303によ
って処理された又はこれらを含有する黄色酸化鉄を75
0℃で処理し、還元温度を450℃とした以外は実施例
1.と同様に還元して金属磁性粉を得た。
Comparative example 1゜Example 1. The yellow iron oxide treated with or containing Ni, Al, Na5303 used in
Example 1 except that the treatment was carried out at 0°C and the reduction temperature was 450°C. Metal magnetic powder was obtained by reduction in the same manner as above.

得られた磁性粉は、電子顕微鏡による観察では針状形態
がくずれHcも6800eと低く夕r/psも0.39
と劣ったものであった。
When observed using an electron microscope, the obtained magnetic powder had a acicular shape, and the Hc was as low as 6800e, and the r/ps was 0.39.
It was inferior.

比較例2゜ Niを3%添加し、Na/Fe O,03%、SOs/
Fe0002%とした以外は実施例1.と同様にして金
属磁粉性を得た。得られた磁性粉は針状形態を保持して
いたが、Hcが1,4800eとフェライト・ヘッド仕
様の磁性材としては適用できないものであった。
Comparative Example 2゜3% Ni added, Na/Fe O, 03%, SOs/
Example 1 except that Fe0002% was used. Metal magnetic powder properties were obtained in the same manner as above. Although the obtained magnetic powder maintained an acicular shape, it had an Hc of 1,4800e and could not be used as a magnetic material for ferrite head specifications.

比較例3゜ 比較例2.で得た還元終了した金属磁性粉を窒素ガスを
流通しつつ室温まで冷却し、つづいてその窒素ガス中に
空気を少量づつ混合し、金属磁性粉の表面を酸化した。
Comparative example 3゜Comparative example 2. The reduced metal magnetic powder obtained in step 1 was cooled to room temperature while flowing nitrogen gas, and then air was mixed into the nitrogen gas little by little to oxidize the surface of the metal magnetic powder.

空気の導入により系の温度は40℃まで上昇し、最終的
にHc 9800eの磁性粉が得られたが、そのqsは
98 emu /:iと低く金属磁性粉の最大の特徴で
ある0sが劣ったものであった。
By introducing air, the temperature of the system rose to 40°C, and finally a magnetic powder of Hc 9800e was obtained, but its qs was as low as 98 emu/:i, and its 0s, the most characteristic of metal magnetic powder, was inferior. It was something like that.

比較例4゜ 実施例1.に於いてAlKよるFeの処理にかえてFe
に対し5.3重量%の81を用いて処理した以外は実施
例1.と同様にして金属磁性粉を得た。このもののHc
は1.5320e、 、Osは123 emu/ gで
あり目的とするHc 800−1.1000eのものは
得られなかった。
Comparative example 4゜Example 1. In this process, instead of treating Fe with AlK, Fe
Example 1 except that 5.3% by weight of 81 was used for the treatment. Metal magnetic powder was obtained in the same manner as above. Hc of this thing
was 1.5320e, Os was 123 emu/g, and the desired Hc of 800-1.1000e was not obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、黄色酸化鉄を、Feに対しSi 50重量%
に相当する量のS i Otを用いて処理した原料を7
00℃で30分焼成してつくったα−Fe203のX線
回折パターンであり、第2図は、このものを350℃、
水素ガス流量15ON1/Fe−Kg−h「で還元した
試料のX線回折パターンである。 第3図は、黄色酸化鉄をFeに対しAl50重量%に相
当する竜のAl2O3を用いて処理した原料を700℃
で30分焼成してつくったα−Fe20sのX線回折パ
ターンであり、第4図は、このものを350℃、水素ガ
ス流411150 Nl/Fe−Kg−hrで還元した
試料のX線回折パターンである。 第5図は、本発明によって得られたHe 800−1.
1000eの針状形骸をもつ金属磁性粉の粒子構造を示
す12万倍の電子顕微鏡写真で蔦゛る。 I                I区      
     区 −へ iま            恢 エエ コ         区 1寸 沫         塚 竿 5 メi Lβ25−一
Figure 1 shows yellow iron oxide with 50% Si by weight relative to Fe.
The raw material treated with an amount of S i Ot corresponding to 7
This is the X-ray diffraction pattern of α-Fe203 made by firing at 350°C for 30 minutes.
This is an X-ray diffraction pattern of a sample reduced with a hydrogen gas flow rate of 15ON1/Fe-Kg-h. 700℃
This is the X-ray diffraction pattern of α-Fe20s prepared by firing for 30 minutes at It is. FIG. 5 shows He 800-1.
An electron micrograph at a magnification of 120,000 times shows the particle structure of magnetic metal powder with a needle-like structure of 1,000 e. II Ward
Ward - Heima 恢Eeko Ward 1 inch Tsukakan 5 Mei Lβ25-1

Claims (6)

【特許請求の範囲】[Claims] (1)8以上の軸比を持つ針状酸化鉄の針状形態を保持
したFeを主成分とする金属結晶粒子からなり、800
〜1,100Oeの範囲の保持力(Hc)を有する磁気
記録用金属磁性粉末。
(1) Consisting of metal crystal particles mainly composed of Fe that maintains the acicular morphology of acicular iron oxide with an axial ratio of 800 or more.
A metal magnetic powder for magnetic recording having a coercive force (Hc) in the range of ~1,100 Oe.
(2)120emu/g以上の飽和磁化(■s)を有す
る請求項1に記載の磁気記録用金属磁性粉末。
(2) The metal magnetic powder for magnetic recording according to claim 1, which has a saturation magnetization (■s) of 120 emu/g or more.
(3)8以上の軸比を持つ針状酸化鉄の針状形態を保持
した、NiおよびAlを含有しFeを主成分とする金属
結晶粒子からなり、前記針状形態を保持している各粒子
中に含まれ該粒子の形骸を構成しているFe結晶相互間
の結合が適度に分断されており、800〜1,100O
eの保磁力(Hc)と120emu/g以上の飽和磁化
(■s)とを有する磁気記録用金属磁性粉末。
(3) Acicular iron oxide with an axial ratio of 8 or more, which is made of metal crystal particles containing Ni and Al and mainly composed of Fe, which retains the acicular morphology; The bonds between the Fe crystals contained in the particles and constituting the skeleton of the particles are moderately broken, and the
A metal magnetic powder for magnetic recording having a coercive force (Hc) of e and a saturation magnetization (■s) of 120 emu/g or more.
(4)軸比8以上の針状酸化鉄の針状形態を継承した、
Ni,Alを含有する金属磁性粉末であり、更にFeに
対し0.05重量%以上のNa及び/又は0.5重量%
以上のSO_3の添加により形骸粒子内部の微細なFe
結晶の結晶性が制御され、且つ微細なFe結晶粒子同志
の結合が分断されていることにより、形状磁気異方性が
減衰せしめられている請求項1に記載の磁気記録用金属
磁性粉末。
(4) Inheriting the acicular form of acicular iron oxide with an axial ratio of 8 or more,
It is a metal magnetic powder containing Ni and Al, and further contains 0.05% by weight or more of Na and/or 0.5% by weight with respect to Fe.
Due to the addition of SO_3 above, fine Fe inside the skeleton particles is
2. The metal magnetic powder for magnetic recording according to claim 1, wherein shape magnetic anisotropy is attenuated by controlling the crystallinity of the crystal and breaking bonds between fine Fe crystal grains.
(5)軸比8以上の針状酸化鉄粒子からなる酸化鉄粉に
Ni源化合物およびAl_2O_3源化合物を添加して
表面処理した針状酸化鉄粉中、または軸比8以上の針状
酸化鉄粒子からなる酸化鉄粉にNi源化合物およびAl
_2O_3源化合物を単に添加混合した配合物中に、ア
ルカリ金属およびアルカリ土類金属のうちから選ばれる
少なくとも1種の金属の塩およびS化合物を適量存在さ
せて加熱還元することにより、粒子の針状形骸を保持し
たまま保磁力(Hc)が所望の範囲に調節された磁気記
録用金属磁性粉末を製造する方法。
(5) In acicular iron oxide powder that is surface-treated by adding a Ni source compound and an Al_2O_3 source compound to iron oxide powder consisting of acicular iron oxide particles with an axial ratio of 8 or more, or in acicular iron oxide powder with an axial ratio of 8 or more. Ni source compound and Al are added to iron oxide powder consisting of particles.
A suitable amount of a salt of at least one metal selected from alkali metals and alkaline earth metals and an S compound are present in a mixture obtained by simply adding and mixing a _2O_3 source compound, and the mixture is heated and reduced to form acicular particles. A method for producing metal magnetic powder for magnetic recording whose coercive force (Hc) is adjusted to a desired range while retaining its shape.
(6)前記金属の塩が、原料酸化鉄中のFe重量に対し
0.05重量%以上のNaであり、前記S化合物が原料
酸化鉄中のFe重量に対し0.5重量%以上のSO_3
を提供できるS化合物である請求項5に記載の方法。
(6) The metal salt is Na in an amount of 0.05% by weight or more based on the weight of Fe in the raw material iron oxide, and the S compound is SO_3 in a content of 0.5% by weight or more based on the weight of Fe in the raw material iron oxide.
The method according to claim 5, which is an S compound capable of providing.
JP63043884A 1988-02-26 1988-02-26 Magnetic metal powder for magnetic recording Pending JPH01219103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043884A JPH01219103A (en) 1988-02-26 1988-02-26 Magnetic metal powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043884A JPH01219103A (en) 1988-02-26 1988-02-26 Magnetic metal powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPH01219103A true JPH01219103A (en) 1989-09-01

Family

ID=12676133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043884A Pending JPH01219103A (en) 1988-02-26 1988-02-26 Magnetic metal powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH01219103A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556575A (en) * 1978-05-09 1980-01-18 Commw Scient Ind Res Org Fiber material treating composition
JPS5853689A (en) * 1981-09-24 1983-03-30 Kobe Steel Ltd Gear pump
JPS60162708A (en) * 1984-01-31 1985-08-24 Toda Kogyo Corp Production of magnetic particle powder consisting of needle crystal iron alloy for magnetic recording
JPS60162707A (en) * 1984-01-31 1985-08-24 Toda Kogyo Corp Production of magnetic particle powder consisting of needle crystal iron alloy for magnetic recording

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556575A (en) * 1978-05-09 1980-01-18 Commw Scient Ind Res Org Fiber material treating composition
JPS5853689A (en) * 1981-09-24 1983-03-30 Kobe Steel Ltd Gear pump
JPS60162708A (en) * 1984-01-31 1985-08-24 Toda Kogyo Corp Production of magnetic particle powder consisting of needle crystal iron alloy for magnetic recording
JPS60162707A (en) * 1984-01-31 1985-08-24 Toda Kogyo Corp Production of magnetic particle powder consisting of needle crystal iron alloy for magnetic recording

Similar Documents

Publication Publication Date Title
JP5623301B2 (en) Magnetic particle, method for producing the same, and magnetic recording medium
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JP2004319923A (en) Iron nitride-based magnetic powder
JP3428351B2 (en) Spindle-shaped metal magnetic particles containing iron as a main component and method for producing the same
JP5711086B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
JPH1111951A (en) Spindle goethite particle powder and its production, spindle hematite particle powder and its production and spindle metallic magnetic particle powder consisting essentially of iron and its production
JPH01219103A (en) Magnetic metal powder for magnetic recording
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JPS6361362B2 (en)
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JP5447768B2 (en) Method for producing ferromagnetic metal particle powder
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
JP3049373B2 (en) Method for producing acicular cobalt-containing iron oxide magnetic powder
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JP5700191B2 (en) Method for producing ferromagnetic metal particle powder, magnetic recording medium
JPS58151333A (en) Manufacture of needlelike iron oxide particle
JPS6244842B2 (en)
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder